
Instructions for the Deep Learning for NLP Practical Exercises 

Overview 
The practical exercises are based around a program for predicting dictionary head words, given 
a definition. A neural network is trained to compose words in a definition so that the resulting 
definition vector is close to the vector for the corresponding head word. For example, one of the 
training instances could be: 
 
<​fawn​,​ a young deer​> 
 
The default options in the program are such that ​fawn ​has a pre-trained word embedding, 
whereas the embeddings for the words in the definition are learned. There are currently two 
options for composing the words: an LSTM and a bag-of-words model. For the former, the 
words in the definition are composed using an LSTM sequence model, and the final hidden 
state is taken as the representation for the definition. For the latter, the word vectors in the 
definition are simply averaged. For both composition methods, the objective is to build a vector 
for the definition (​a young deer​) which is close to (as measured by the cosine distance) the 
vector for the head word (​fawn​). 
 
There are three parts to the practical (detailed below). First, you will be asked to make an 
addition to the code by writing an evaluation function which calculates the average (median) 
position of the correct head word, given a definition, when a list of possible head words is 
ranked by the model. Second, you will be asked to perform some experiments to see how the 
results vary when various parameters in the model are changed, for example the optimization 
function and learning rate. And finally, you will be asked to write a report based on the first two 
parts. 

Log in to your data science VM 
You should have a data science virtual machine ready to use, after following the previous set of 
instructions. Go to the azure portal and start your VM running, after which you can ssh into it 
from a terminal (click on the Connect button in the azure web portal to get the ssh command). 
Remember to stop the VM when you’re not using it​, since simply having it running will eat 
away at your 400$ budget. 
 
The ​nvidia-smi ​command lets you see the GPU resources you have available on the VM 
(​watch nvidia-smi ​keeps it running; Ctrl-c kills it):  
 



 
 

Get the Code and Data 
First get the code from github: 
 
git clone https://github.com/fh295/Cambridge_DL4NLP.git 

This will create a new directory called ​Cambridge_DL4NLP ​with the code in it. Now get the 
data: 

wget https://www.cl.cam.ac.uk/~sc609/downloads/data_practical.tgz 

and unpack it: 

tar xzvf data_practical.tgz 

This will create two directories, one called ​data ​and one called ​embeddings ​,​ ​at the same 
level as the code directory. (The code expects these directories to be at the same level.) 

 

cd ​ into the Cambridge_DL4NLP directory, and take a look at the code. The following command 
runs the training procedure: 

python train_definition_model.py 



If you run ​watch nvidia-smi ​in another terminal (after ssh’ing into it) you’ll see the GPU 
usage while the program is running (we’d like this to be high, to fully utilize the GPU resources).  

After a minute or two processing the data, the training program will enter its first epoch of 
training, and start to spit out the value of the loss function, which should be decreasing: 

 

The program is saving models after each epoch. (Note that the default model directory is ​/tmp. 
You may want to change this if there is insufficient space available on ​/tmp ​, or increase the 
available space​.) ​You will probably want to use the Linux ​screen ​command when carrying out 
full training of a model, so that you can exit the ssh session and log back in again at a later time 
(without killing the training process). 

The saved models can be reloaded and used as part of the evaluation procedure, with the 
addition of a couple of flags: 

python train_definition_model.py --restore --evaluate 

The ​--restore ​flag will find the latest model from the saved model directory and load it, and 
the ​--evaluate ​flag runs the evaluation routine. 

Part I: Write an Evaluation Function 

Currently the evaluation function just prints out a message. What we would like it to do is 
calculate the ​median ​rank of the correct head word for the 200 development test instances, over 
the complete vocabulary. The development data is in ​data/concept_descriptions.tok 
(for you to look at), and has already been processed into a form suitable for reading into the 
model. These 200 development test instances are what you are going to use to evaluate the 
model. 

For example, one of the test instances is <​hat, clothing that you wear on your head​>. So the 
code will need to build a vector for the definition, and then create a similarity ranking for all the 
words in the vocabulary. We would like the vector for ​hat​ to be the closest, but the vocabulary is 



large so this is a difficult task. What you should find is that the result will be very good for a few 
cases (in the top 10), but for many the ranking will be lower than this. 

In terms of modifying the code, the tensorflow graph is already set up to compute the score for 
each word in the vocabulary. What you need to do is query the graph to get back the scores as 
a numpy variable, and then use numpy to calculate the rankings. The ​evaluate_model 
function contains a few high-level comments to help you along. 

You will want to use all 200 development test examples, so when creating and running the 
evaluation function think carefully about the appropriate batch size. 

Part II: Experiment with some of the Model (Hyper-)Parameters 

The model is currently trained using the Adam optimizer. Try another one, e.g. gradient descent. 
Also try a few values for the initial learning rate. What behaviour do you observe? Does the loss 
still go down at the same rate? Does the optimizer appear to be finding a good minimum? 

How long does the model have to train for before you start to see reasonable performance on 
some of the examples? Does it begin to overfit? How does the batch size affect the efficiency 
and effectiveness of the training procedure? What about the embedding size? RNN vs. 
bag-of-words? 

Try and think of a few more experiments you can run to probe the behaviour of the model. ​This 
part of the practical is left deliberately open-ended. 

Remember you only have a budget of $400​. Think carefully about what experiments you want 
to run. Training the model to convergence may take a while, and you will not be able to do this 
an unlimited number of times. 

Part III: Write a Report 

The practical, which is worth 40% of the total credit available for the course, will be assessed 
solely through the practical report. 

The report should be no longer than 5,000 words (not including the appendix). ​Note that extra 
credit will not be awarded for overly long reports. 

The report should contain an appendix containing the code you wrote for the evaluation function 
(and only that additional code), as well as some screenshots of the evaluation output. You may 
also include tables or graphs of results in the appendix. 

Part I of your report should contain a summary of your median ranking findings. What was the 
overall median? Which examples did the model perform well on? Which ones did it perform 
badly on? 
 



Part II of your report should contain a description of the experiments you ran to investigate how 
the values of various hyper-parameters affect the performance of the model, and any additional 
experiments to probe the behaviour of the model. 
 

Deadline 
The deadline for handing in the report is 4pm on 24th April 2018. 


