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A language model assigns probabilities to sequences of  
words,                                  .w = (w1, w2, . . . , w`)

p(w) = p(w1)⇥ p(w2 | w1)⇥ p(w3 | w1, w2)⇥ · · ·⇥
p(w` | w1, . . . , w`�1)

=

|w|Y

t=1

p(wt | w1, . . . , wt�1)

It is convenient to decompose this probability using the  
chain rule, as follows:

This reduces the language modeling problem to modeling  
the probability of the next word, given the history of  
preceding words.

Unconditional LMs



Evaluating unconditional LMs
How good is our unconditional language model?
1. Held-out per-word cross entropy or perplexity  
 
 
 
 
 
Same as training criterion. How uncertain is the model  
at each time position, an average?  

2. Task-based evaluation  
Use in a task-model that uses a language model in place  
of some other language model. Does it improve?

ppl = b�
1

|w|
P|w|

i=1 logb p(wi|w<i)

H = � 1

|w|

|w|X

i=1

log2 p(wi | w<i) (units: bits per word)

(units: uncertainty 
           per word)



History-based LMs

p(w) = p(w1)⇥
p(w2 | w1)⇥
p(w3 | w1, w2)⇥
p(w4 | w1, w2, w3)⇥
. . .

A common strategy is to make a Markov assumption, 
which is a conditional independence assumption.
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p(w) = p(w1)⇥
p(w2 | w1)⇥
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A common strategy is to make a Markov assumption, 
which is a conditional independence assumption.

Why RNNs are great for language: no more  
Markov assumptions!



History-based LMs with RNNs

h2h1

h0

h3 h4

softmax

w1 w2 w3 w4

w4w3w2w1

p(W5|w1,w2,w3,w4)z }| {

vector 
(word embedding)

observed 
context word

random variable

RNN hidden state vector, length=|vocab|



History-based LMs with RNNs

h2h1

h0

h3 h4

softmax

w1 w2 w3 w4

w4w3w2w1

p(W5|w1,w2,w3,w4)z }| {

vector 
(word embedding)

observed 
context word

random variable

RNN hidden state vector, length=|vocab|



softmax

h

the 
a 
and 
cat 
dog 
horse 
runs 
says 
walked 
walks 
walking 
pig 
Lisbon 
sardines 
…

u = Wh+ b

pi =
expuiP
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Distributions over words
Each dimension corresponds to a word  
in a closed vocabulary, V.

The pi’s form a distribution, i.e.
pi > 0 8i,

X

i

pi = 1

Bridle. (1990) Probabilistic interpretation of feedforward classification…



softmax

h

the 
a 
and 
cat 
dog 
horse 
runs 
says 
walked 
walks 
walking 
pig 
Lisbon 
sardines 
…

u = Wh+ b

pi =
expuiP
j expuj

Distributions over words

p(w) = p(w1)⇥
p(w2 | w1)⇥
p(w3 | w1, w2)⇥
p(w4 | w1, w2, w3)⇥
. . .



softmax

h

the 
a 
and 
cat 
dog 
horse 
runs 
says 
walked 
walks 
walking 
pig 
Lisbon 
sardines 
…

u = Wh+ b

pi =
expuiP
j expuj

Distributions over words

 istories are sequences of words…h

p(w) = p(w1)⇥
p(w2 | w1)⇥
p(w3 | w1, w2)⇥
p(w4 | w1, w2, w3)⇥
. . .



softmax

h

the 
a 
and 
cat 
dog 
horse 
runs 
says 
walked 
walks 
walking 
pig 
Lisbon 
sardines 
…

u = Wh+ b

pi =
expuiP
j expuj

h 2 Rd

|V | = 100, 000

What are the  
dimensions of     ?b

Distributions over words

 istories are sequences of words…h

p(w) = p(w1)⇥
p(w2 | w1)⇥
p(w3 | w1, w2)⇥
p(w4 | w1, w2, w3)⇥
. . .



softmax

h

the 
a 
and 
cat 
dog 
horse 
runs 
says 
walked 
walks 
walking 
pig 
Lisbon 
sardines 
…

u = Wh+ b

pi =
expuiP
j expuj

h 2 Rd

|V | = 100, 000

What are the  
dimensions of     ?

Distributions over words

 istories are sequences of words…h

p(w) = p(w1)⇥
p(w2 | w1)⇥
p(w3 | w1, w2)⇥
p(w4 | w1, w2, w3)⇥
. . .

W



RNN language models
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The cross-entropy objective seeks the maximum 
likelihood (MLE) objective.

“Find the parameters that make the training data most  
likely.”



Training RNN language models
The cross-entropy objective seeks the maximum 
likelihood (MLE) objective.

“Find the parameters that make the training data most  
likely.”

You will overfit.
1. Stop training early, based on a validation set 
2. Weight decay / other regularizers 
3. “Dropout” during training.

In contrast to count-based models, zeroes aren’t a problem.



• Unlike Markov (n-gram) models, RNNs never forget 

• However, they don’t always remember so well (recall 
Felix’s lectures on RNNs vs. LSTMs) 

• Algorithms 

• Sample a sequence from the probability distribution 
defined by the RNN 

• Train the RNN to minimize cross entropy (aka MLE) 

• What about: what is the most probable sequence?

RNN language models



How well do RNN LMs do?

perplexity Word Error Rate  
(WER)

order=5 Markov
Kneser-Ney freq. est. 221 13.5

RNN 400 hidden 171 12.5

3xRNN interpolation 151 11.6

Mikolov et al. (2010 Interspeech) “Recurrent neural network based language model”
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A conditional language model assigns probabilities to 
sequences of words,                                  , given some 
conditioning context,    .

w = (w1, w2, . . . , w`)

Conditional LMs

p(w | x) =
Ỳ

t=1

p(wt | x, w1, w2, . . . , wt�1)

As with unconditional models, it is again helpful to use  
the chain rule to decompose this probability:

What is the probability of the next word, given the history of  
previously generated words and conditioning context    ?

x

x



Conditional LMs
      “input”       “text output”
An author A document written by that author
A topic label An article about that topic
{SPAM, NOT_SPAM} An email
A sentence in French Its English translation
A sentence in English Its French translation
A sentence in English Its Chinese translation
An image A text description of the image
A document Its summary
A document Its translation
Meterological measurements A weather report
Acoustic signal Transcription of speech
Conversational history + database Dialogue system response
A question + a document Its answer
A question + an image Its answer

x w
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Data for training conditional LMs

To train conditional language models, we need paired  
samples,                     .

Data availability varies. It’s easy to think of tasks that  
could be solved by conditional language models, but the  
data just doesn’t exist.

Relatively large amounts of data for:
Translation, summarisation, caption generation,  
speech recognition

{(xi,wi)}Ni=1



Evaluating conditional LMs
How good is our conditional language model?

These are language models, we can use cross-entropy  
or perplexity.

Task-specific evaluation. Compare the model’s most likely 
output to human-generated expected output using a  
task-specific evaluation metric    .

w⇤ = argmax
w

p(w | x)

L

L(w⇤,wref)

Examples of    : BLEU, METEOR, WER, ROUGE.

Human evaluation.

okay to implement, hard to interpret

easy to implement, okay to interpret

hard to implement, easy to interpret

L
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Lecture overview
The rest of this lecture will look at “encoder-decoder”  
models that learn a function that maps     into a fixed-size  
vector and then uses a language model to “decode”  
that vector into a sequence of words,    .w

x

Kunst kann nicht gelehrt werden…

Artistry can’t be taught…

x

w

encoder

decoder

representation



Lecture overview
The rest of this lecture will look at “encoder-decoder”  
models that learn a function that maps     into a fixed-size  
vector and then uses a language model to “decode”  
that vector into a sequence of words,    .w

x

A dog is playing on the beach.

x

w

encoder

decoder

representation



• Two questions 

• How do we encode    as a fixed-size vector,   ? 

• How do we condition on    in the decoding 
model?

Lecture overview

x c

c

- Problem (or at least modality) specific
- Think about assumptions

- Less problem specific
- We will review one standard solution: RNNs



Kalchbrenner and Blunsom 2013

c = embed(x)

s = Vc

Encoder
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K&B 2013: Encoder
How should we define                        ?c = embed(x)

The simplest model possible:

What do you think of this model?

x1

x1 x2 x3 x4 x5 x6

x2 x3 x4 x5 x6

c =
X

i

xi



K&B 2013: RNN Decoder
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A word about decoding

w⇤ = argmax
w

p(w | x)

= argmax
w

|w|X

t=1

log p(wt | x,w<t)

In general, we want to find the most probable (MAP) output  
given the input, i.e.



A word about decoding

w⇤ = argmax
w

p(w | x)

= argmax
w

|w|X

t=1

log p(wt | x,w<t)

In general, we want to find the most probable (MAP) output  
given the input, i.e.

This is, for general RNNs, a hard problem. We therefore 
approximate it with a greedy search:

undecidable :(

w⇤
1 ⇡ argmax

w1

p(w1 | x)

w⇤
2 ⇡ argmax

w2

p(w2 | x, w⇤
1)

...

w⇤
t ⇡ argmax

wt

p(wt | x,w⇤
<t)



A word about decoding
A slightly better approximation is to use a beam search with 
beam size b. Key idea: keep track of top b hypothesis.

E.g., for b=2:

w0 w1 w2 w3

hsi
logprob=0

x = Bier trinke ich
beer drink I
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How well does this model do?

 perplexity (2011) perplexity (2012)

order=5 Markov
Kneser-Ney freq. est. 222 225

RNN LM 178 181

RNN LM + x 140 142
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(Literal: I will feel bad if you do not find a solution.)



How well does this model do?

(Literal: I will feel bad if you do not find a solution.)



Summary
• Conditional language modeling provides a convenient formulation for a lot 

of practical applications 

• Two big problems: 

• Model expressivity 

• Decoding difficulties 

• Next time 

• A better encoder for vector to sequence models 

• “Attention” for better learning 

• Lots of results on machine translation



Questions?


