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RNNs: A recap
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What is the forward 
computation like?
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ht+1 = tanh(Uht + V xt+1)
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“Vanishing” gradients
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(or exploding)

small change, big consequences
f

in an RNN



Long Short Term Memory 
(LSTM)

Hochreiter and Schmidhuber, 1997



LSTMRNN 
Elman, 1990

xt

h(t-1)
ht

X

Thanks to  
http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Be careful with the past!

Memory “cell” Ct

Stuff you (might) want to get out

h(t+1)ht: hidden state

C(t+1)

Thanks to  
http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Sigmoid “gates”
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New stuff to consider
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Look familiar?



Carefully update your cell!!
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Ct = Ct�1 ⇤ ft + C̃t ⇤ it

forget some stuff
think some 
 new stuff



Use your cell (if you want!!)
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ht = ot ⇤ tanh(Ct)



Why does it work?
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Ct = Ct�1 ⇤ ft + C̃t ⇤ it

ht = ot ⇤ tanh(Ct)
VS.

ht = tanh(Uht�1 +Wxt)

plays the “role” of weights 
but always in (0,1) 

(can’t explode!)
no tanh.  

activation = id
new info  

- not dependent on c(t-1)



How many weights in an 
LSTM?

1: 100,000 words in my vocab 

2: layers C_t have 500 units 



Can we go deeper?

xt

h(t-1)
ht

X

yt



Understanding recurrent 
nets….

Thanks to 

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Understanding recurrent 
nets….

Thanks to 
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Why is it called Long Short 
Term Memory?



NLP for the LSTM 
generation

“Read” the sentence both ways 
and concatenate h_t at each time step

“LSTM-based deep learning models for non-factoid answer selection.” Ming Tan et al. 2015
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