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RNNs: A recap
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hy = tanh(Uhs_1 + Waxy)

ye = Vhy
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What i1s the forward
computation like?

hy = tanh(Uhs_1 + V ;)
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What i1s the forward
computation like?

hy = tanh(Uhs_1 + V ;)
hiv1 = tanh(Uhy + Vaiiq)
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What i1s the forward
computation like?

= tanh(Uhs_1 + V)
ht—|—1 = tanh(Uh; + Vxi11)
anh(Utanh(Uhi—1 + Vi) + Vi)
nh(Utanh(Utanh(Utah........ )
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“Vanishing” gradients
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“Vanishing” gradients

(or exploding) c(f(x), ) upside = Y
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Long Short Term Memory
(LSTM)

Hochreiter and Schmidhuber, 1997
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RNN LSTM

Elman, 1990

W
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h(t-1) >
» X '
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Thanks to
xt http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Be careful with the past!

Stuff you (might) want to get out
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Thanks to

h(t+1)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

28 UNIVERSITY OF
» CAMBRIDGE




Sigmoid “gates”

fo = oWy, he1 + Wy, x40 + by)

it m— O'(Wihht—l -+ W@ Lt —+ bz)

Ot — U(Woh ht—l =+ Woth + bo)
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New stuff to consider

fo = oWy, hio1 + Wy, + by)

it — O’(W ht—l

0 = (W, he—1 + W, x4t + b,)

Cy = tanh(W,, hy_1 + W._x; + b.)

AN

Look familiar?
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Carefully update your cell!!

fr = oWy, he—y + Wy, a1 + by)

1 = U(Wih hi—1

Wiw Lt

b;)

Cy = tanh(W,, hy—1 + We_x; + b.)

Cy = Ci_1 % f + Cy x4,

forget some stuff

) DeepMind

think some
new stuff
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Use your cell (if you want!!

fo = oWy, hi1 + Wy, 21 4 by)
it - U(Wihht—l Wixazt bz)
Ot — U(Woh ht—l -+ WO:U.CIZ‘t —+ bo)

ét — tanh(Wch ht—l -+ Wcm Tt + bc)
Cy = Cy_1 * fr + Cy * iy

hy = o; x tanh(C})
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Why does it work?

plays the “role” of weights
but always in (0,1)
(can’t explode!)

no tanh. new info
activation = id - not dependent on c(t-1)

Cy=Cho1* [t + Cy * iy ‘

VS.
ht — tCth(Uht_l -+ Wﬂi‘t)
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How many weights In an
LSTM?

1: 100,000 words in my vocab

2: layers C_t have 500 units
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Can we go deeper?

AAAAAAA

AAAAAAA

ht

AAAAAAA

xt time
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Understanding recurrent
nets....

Cell sensitive tc position in line:

SO N A nc e TN e h e c rossing of the Berezina lies in the fact
R R A d e dREbi e ab 1y proved the fallacy of all the plans for
cutting off the enemy's retreat and the soundness of the only possible
1ine of action--the one Kutuzov and the general mass of the army
== ey s mply to follow the enemy up. The French crowd EEEE
BRGNS n C e ass T ilings speed and all its energy was directed to
reaching its goal. It fled like a wounded animal and it was impossible
ORI OICEKEI SRR TS Wa' s s hown not so much by the arrangements 1t
made for crossing as by what took place at the bridges. When the bridges
broke down, unarmed soldiers, people from Moscow and women with children
who were with the French transport, all--carried on by vis inertiae- -
RN ESESEEN O aEI e o boa ts and into the ice-covered water and dad i
surrender.

Thanks to

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Understanding recurrent
nets....

Cell that turns cn inside quotes:
" N '

Thanks to
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Understanding recurrent
nets....

(pending, mask);

(cu

TIF_SIGPENDING),;

Thanks to
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Understanding recurrent
nets....

;4\ large portion of cells are not easily interpretable. Here is a typical example:

pack lter [flileld"SiiSit ring FElpres@ntation ffiirom @Sler-spaie
buffer
pElckBlstrilng(lllli d MEbufp, slzel: DENENNSE" , S0z a5 DEEN)

Thanks to
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Why is it called Long Short
Term Memory?

B UNIVERSITY OF
» CAMBRIDGE

) DeepMind



NLP for the LSTM
generation

Cosone

“Read” the sentence both ways
and concatenate h_t at each time step

“‘LSTM-based deep learning models for non-factoid answer selection.” Ming Tan et al. 2015
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