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What are neural nets for?



What are neural nets for?
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How can you apply a neural
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“language does not naturally go lere, atem, but fortunately.....”



How can you apply a neural
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what’s the issue here????



That’s the whole point!!



what s James doing L the store room?



searching for a book...



what is that empty cup doing over there?




err..belng a cup?



time flies Like an arrow



fruit flies like a banana



The networks that are good at Go and
Atari were first developed for this reason!
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The simple recurrent
network (how RNN)
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dOwn now this is a story all about how my life got flipped turned upside



Suppose we have a vocabulary of 100k words.

How many weights are there in EIman’s network?




hy = tanh(Uhs_1 + Waxy)

ye = Vhy
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Finding structure In time
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Finding more structure In time

200 ELMAN
—smell
—— e _ITOV:
[— '_uink
£iig D.O.-ABR
- L___skecp
Dacat VERBS
mush DO-CFT
e
chase DOOFELIG
—

_rCKU!(
&l
ro AMINALS

[Jion ANIMATES
’(’\
NN
ol HUMAN
S— 1)
S
NOUNS

wéwich )
—E’:_‘f‘ FOCD  NANIMATES

r_Dth

(P  BREAKABLES

L L L A 1

20 15 1.0 na A5

Figure 7. Mera chical cluster diagrem of hicden unit activation vectors in simple sentarce
prodictior ta¢k . Lobals indicate the npute which praduced the hidden unit vectore: inputs
were presented ir contex1, and the hidden unit vectars averaged across multiple contexts



Any downsides?
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“Vanishing” gradients
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“Vanishing” gradients
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One final thing...

no output words.....

to propel oneself into the air with
one’s legs

BPTT



But, more typically...

http://www.cs.toronto.edu/~ilya/rnn.html
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