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Image Captioning

Vision Language A group of people
Deep CNN Generating ShOpplng at an
RNN outdoor market.
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fruit stand.

Language

Taken from Vinyals et al. 2015
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Image Captioning

Parsing Natural Scene Images
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Parsing Natural Language Sentences
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Image Captioning
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Image “Ilranslation”
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Image “Translation”

Some cycles and people outside the historic round church
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Caption Model
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Model Optimization

f* = arg max (IE: logp(S|1:6) (1)
)

log p(S|I) = Zl()ﬂp Si|I,S0,....8_1) (2

t=0
Optimized using stochastic gradient descent

Taken from Vinyals et al. 2015
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Is That It?! Yup, Pretty
Much

State-of-the-art CNN for object classification; LSTM for the sentence generation
Image is input only once to the LSTM at the beginning

LSTM trained from scratch, only top layer of CNN retrained

CNN pre-trained on object classification; no pre-training of word embeddings
Beam search (20) used to perform the argmax at test time (better than greedy)

S = arg maxg p(S’|I).

SGD with fixed learning rate and no momentum

Dropout and ensembles used to combat overfitting

5.5 UNIVERSITY OF

Q) DeepMind ¥ CAMBRIDGE




b DeepMind

Datasets

The statistics of the datasets are as follows:

size
Dataset name . .
train valid. test

Pascal VOC 2008 [6] - - 1000
Flickr8k [26] 6000 1000 1000
Flickr30k [33] 28000 1000 1000
MSCOCO [20] 82783 | 40504 | 40775
SBU [24] 1M - _

With the exception of SBU, each image has been annotated
by labelers with 5 sentences that are relatively visual and
unbiased. SBU consists of descriptions given by image
owners when they uploaded them to Flickr. As such they
are not guaranteed to be visual or unbiased and thus this
dataset has more noise.

Taken from Vinyals et al. 2015




Results

Metric BLEU-4 | METEOR | CIDER
NIC 27.7 23.7 85.5
Random 4.6 9.0 5.1
Nearest Neighbor 9.9 15.7 36.5
Human 21.7 25.2 85.4

Table 1. Scores on the MSCOCO development set.

Taken from Vinyals et al. 2015
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Results

Approach PASCAL | Flickr | Flickr | SBU

(xfer) 30k 8k

Im2Text [24] 11

TreeTalk [18] 19

BabyTalk [16] 25

Tri5Sem [11] 48
m-RNN [21] 55 58
MNLM [14]° 56 51

SOTA 25 56 58 19

NIC 59 66 63 28
Human 69 68 70

Table 2. BLEU-1 scores. We only report previous work results
when available. SOTA stands for the current state-of-the-art.

Taken from Vinyals et al. 2015
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Generation Diversity

A man throwing a frisbee in a park.

A man holding a frisbee in his hand.

A man standing in the grass with a frisbee.

A close up of a sandwich on a plate.

A close up of a plate of food with french fries.

A white plate topped with a cut in half sandwich.
A display case filled with lots of donuts.

A display case filled with lots of cakes.

A bakery display case filled with lots of donuts.

Table 3. N-best examples from the MSCOCO test set. Bold lines
indicate a novel sentence not present in the training set.

Taken from Vinyals et al. 2015
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Word Embeddings

Q DeepMind

Word Neighbors

car van, cab, suv, vehicule, jeep

boy toddler, gentleman, daughter, son
street road, streets, highway, freeway
horse pony, donkey, pig, goat, mule
computer | computers, pc, crt, chip, compute

Table 6. Nearest neighbors of a few example words

Taken from Vinyals et al. 2015

77 UNIVERSITY OF
4% CAMBRIDGE



Example Output

A person riding a Two dogs play in the grass. A skateboarder does a trick A dog is jumping to catch a
on a ramp.

motorcycle on a dirt road.

frisbee.

A group of young people Two hockey players are A little girl in a pink hat is A refrigerator filled with lots of
food and drinks.

fighting over the puck.

-

,+,blowing bubbles.
?’5.’5?9' ubbles

A herd of elephants walking A close up of a cat laying
across a di irass field. on a couch.

A red motorcycle parked on the A yellow school bus parked
side of the road..” 7= “====in a parking lot.
il .

N

Somewnatrelated to the image NN

Figure 5. A selection of evaluation results, grouped by human rating.

Taken from Vinyals et al. 2015
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Captions with Attention

® Show, Attend and Tell: Neural Image Caption Generation
with Visual Attention, Xu et al. 2015

® Nice demo at htip.//kelvinxu.github.io/projects/
capgen.html
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http://kelvinxu.github.io/projects/capgen.html
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How Hard is the Task?
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How Hard is the Task?

A camouflaged plane sitting on the green grass.
A plane painted in camouflage in a grassy field
A small camouflaged airplane parked in the grass.

Camouflage airplane sitting on grassy field.

Parked camouflage high wing aircraft.

These examples from:
http://www.cs.toronto.edu/~fidler/slides/2017/CSC2539/Kaustav_slides.pdf
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How Hard is the Task?
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How Hard is the Task?

A biker in red rides in the countryside.
A biker on a dirt path.
A person rides a bike off the top of a hill and is airborne.

A person riding a bmx bike on a dirt course.

The person on the bicycle is wearing red.
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How Hard is the Task?
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How Hard is the Task?

A baseball winds up to pitch the ball.
A pitcher throwing the ball in a baseball game.
A pitcher throwing a baseball on the mound.

A baseball player pitching a ball on the mound.

A left-handed pitcher throwing for the San Francisco giants.
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How Hard is the Task?
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ow Hard is the Task?

( Sentences )

1) A girl is eating donuts with a boy in a restaurant

2) A boy and girl sitting at a table with doughnuts.

3) Two kids sitting a coffee shop eating some frosted donuts
4) Two children sitting at a table eating donuts.

5) Two children eat doughnuts at a restaurant table.
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Visual Question Answering

What Does the Sign Say?
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Visual Question Answering

What Does the Sign Say?

Taken from Agrawal et al. 2016
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Visual Question Answering

What is the mustache made of?
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Visual Question Answering

What color are her eyes?
What is the mustache made of?

What is the mustache made of?

Taken from Agrawal et al. 2016
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Visual

b DeepMind

Question Answering

What color are her eyes? How many slices of pizza are there?
What is the mustache made of? Is this a vegetarian pizza?

Is this person expecting company? Does it appear to be rai ny"
What is just under the tree? Does this person have 20/20 vision?

Fig. 1: Examples of free-form, open-ended questions collected for
images via Amazon Mechanical Turk. Note that commonsense
knowledge is needed along with a visual understanding of the scene
to answer many questions.

Taken from Agrawal et al. 2016
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Visual Question Answering

4096 output units from last hidden layer 1024
(VGGNet, Normalized)

. l] 1
-no |:.f:__

Convolution Layer Fully-Connected MLP
Pooling Layer  + Non-Linearity Pooling Layer

1024 1000 1000

Fully-Connected

Convolution Layer
+ Non-Linearity

) ”2”

2X2X512 LSTM

“How many horses are in this image?”

1024

P0|r1t-.wns$= Fully-Connected Softmax
multiplication

Fully-Connected

Taken from Agrawal et al. 2016
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CLEVR Dataset

Abstract

When building artificial intelligence systems that can
reason and answer questions about visual data, we need
diagnostic tests to analyze our progress and discover short-
comings. Existing benchmarks for visual question answer-
ing can help, but have strong biases that models can exploit
to correctly answer questions without reasoning. They also
conflate multiple sources of error, making it hard to pinpoint
model weaknesses. We present a diagnostic dataset that
tests a range of visual reasoning abilities. It contains mini-
mal biases and has detailed annotations describing the kind
of reasoning each question requires. We use this dataset to
analyze a variety of modern visual reasoning systems, pro-
viding novel insights into their abilities and limitations.

Taken from Johnson et al. 2016: CLEVR: A Diagnostic Dataset
for Compositional Language and Elementary Visual Reasoning
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Clever Hans

Taken from: https://en.wikipedia.org/wiki/Clever_Hans
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CLEVR

Q: Are there an equal number of large things and metal spheres?

Q: What size is the cylinder that is left of the brown metal thing that
is left of the big sphere? Q: There is a sphere with the same size as the
metal cube; is it made of the same material as the small red sphere?
Q: How many objects are either small cylinders or metal things?

Figure 1. A sample image and questions from CLEVR. Questions
test aspects of visual reasoning such as attribute identification,
counting, comparison, multiple attention, and logical operations.

Taken from Johnson et al. 2016
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CLEVR

Q: Are there an equal number of large things and metal spheres?

Q: What size is the cylinder that is left of the brown metal thing that
is left of the big sphere? Q: There is a sphere with the same size as the
metal cube; is it made of the same material as the small red sphere?
Q: How many objects are either small cylinders or metal things?

Figure 1. A sample image and questions from CLEVR. Questions
test aspects of visual reasoning such as attribute identification,
counting, comparison, multiple attention, and logical operations.

A functional program is used to generate the questions and answers,
given a randomly generated image; see Johnson et al. 2016 for details
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Systems Tested

e Question LSTM without looking at the image (46.8% acc)
e CNN (image) + Bag-of-words (question) (48.4%)

e CNN + LSTM (52.3%)

* CNN + LSTM + sophisticated pooling (51.4%)

e CNN + LSTM + spatial attention (68.5%)
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Relation Networks

Non-relational question:

Original Image:

What is the size of
the brown sphere?

Relational question:

Are there any rubber
things that have the
same size as the yellow
metallic cylinder?

Taken from: Santoro, Raposo et al. 2017:
A simple neural network module for relational reasoning
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Relation Networks

In its simplest form the RN is a composite function:
RN(O) = f, Zgg(()i.()j) : (1)
i,j

where the input is a set of “objects” O = {01,09,...,0,}, 0; € R™ is the i!" object, and f,; and gy
are functions with parameters ¢ and 6, respectively. For our purposes, f; and gy are MLPs, and the

Taken from: Santoro, Raposo et al. 2017:
A simple neural network module for relational reasoning

Q DeepMind
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Relation Networks

Final CNN feature maps RN
| |
| | | |
_ e : Object pair
object - — : with question  J0-MLP
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|
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Taken from: Santoro, Raposo et al. 2017:
A simple neural network module for relational reasoning
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Superhuman Performance!

: Compare uery Compare
Model Overall Count Exist Ntllllpbel‘s A'[Cfl‘ibiite Attrigute
Human 92.6 86.7 96.6 86.5 95.0 96.0
Q-type baseline 41.8 34.6 50.2 51.0 36.0 51.3
LSTM 46.8 41.7 61.1 69.8 36.8 51.8
CNN+LSTM 52.3 43.7 65.2 67.1 49.3 53.0
CNN+LSTM+SA 68.5 52.2 71.1 73.5 85.3 52.3
CNN+LSTM+SA* 76.6 64.4 82.7 77.4 82.6 75.4
CNN+LSTM+RN 95.5 90.1 97.8 93.6 97.9 97.1

* Our implementation, with optimized hyperparameters and trained fully end-to-end.

Table 1: Results on CLEVR from pixels. Performances of our model (RN) and previously
reported models [16], measured as accuracy on the test set and broken down by question category.

Taken from: Santoro, Raposo et al. 2017:

A simple neural network module for relational reasoning
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