Better Conditional
Language Modeling

Chris Dyer

& DeepMind

Conditional LMs

A conditional language model assigns probabilities to
sequences of words, w = (w1, ws, ..., we), given some
conditioning context, @.

As with unconditional models, it is again helpful to use

the chain rule to decompose this probabillity:
¢

p(’UJ ‘ ’CB) — Hp(wt | L, Wy1,W2, ... 7wt—1)
t=1
What is the probability of the next word, given the history of
previously generated words and conditioning context x?

Kalchbrenner and Blunsom 2013

Encoder
c = embed(x)
s = Vc

Recurrent connection

Recurrent decoder Embedding of w1

Source sentence

I
h; = g(Wlh;_1;wi_1] +s + b))
u; = Ph; + b’ Learnt bias

p(Wy | ¢, w<;) = softmax(uy)

Recall unconditional RNN
h; = g(Wlh;_1; w;_1] + b])

K&B 2013: RNN Decoder

p(tom | s, (s)) xp(likes | s, (s), tom)
xp(beer | s, (s), tom, likes)
xp({\s) | s, (s), tom, likes, beer)

K&B 2013: Encoder

How should we define ¢ = embed(x)?

The simplest model possible:

c:ZXi
40NN

K&B 2013: Problems

* The bag of words assumption is really bad (part 1)

Alice saw Bob.
Bob saw Alice.

I would like some fresh bread with aged cheese.
I would like some aged bread with fresh cheese.

* We are putting a lot of information inside a single
vector (part 2)

Sutskever et al. (2014)

LSTM encoder
(co,hp) are parameters

(ci,h;) = LSTM(2z;,¢;—1,h;_1)
The encoding is (c¢,hy) where ¢ = |x|.

LSTM decoder
wo = (s)
(Ct+£, ht+€) — LSTM(wt—la Ctir—1, ht—|—€—1)
u; = Ph;,,+Db

p(Wy | &, w-¢) = softmax(uy)

Sutskever et al. (2014)

START

*—9—9—9—¢

J

Y

Y

Y J
Aller| |Anfang

ISt

J

schwer

STOP

Sutskever et al. (2014)

Beginnings

J

START

J
6
<_

*—9—9—9—9

J

Y

Y

J J
Aller| |Anfang

ISt

J

schwer

STOP

Sutskever et al. (2014)

Beginnings||are

START

J J
J J
J J

— =

*—9—9—9—9

J

Y

Y

J J
Aller| |Anfang

ISt

J

schwer

STOP

Sutskever et al. (2014)

Beginnings||are

START

— =

difficult

y y y
y y y
J J J

—

J
J
_J \J

Aller| |Anfang

P

J

ISt

_J

schwer

STOP

Sutskever et al. (2014)

Beginnings||are| |difficult| | STOP

START

J J
J J
J J

—

J

g

oo

. A A

Y

Y

J J
Aller| |Anfang

*—9—9—9—9

J

ISt

J

schwer

STOP

Sutskever et al. (2014)

e Good

 RNNs deal naturally with sequences of various lengths

 LSTMs in principle can propagate gradients a long
distance

e \ery simple architecture!
 Bad

e The hidden state has to remember a lot of information!

Sutskever et al. (2014): Tricks

Beginnings||are| |difficult| | STOP
J J J
J J J
J J J
START —>6—><_ 6—»6—»6
J J J
J J J

L A A

_:c

J
J J
_J J _J J _J

Aller| |Anfang| |ist| |schwer| [STOP

Sutskever et al. (2014): Tricks

Read the input sequence “backwards”: +4 BLEU

Beginnings||are| |difficult| | STOP
N\ \E\

y y
START —>6—>6—>6—>6
?‘*?‘_?‘—?

J J J J

. A A

Aller| |Anfang| |ist| |schwer| [STOP

Sutskever et al. (2014): Tricks

Use an ensemble of J independently trained models.
Ensemble of 2 models: +3 BLEU
Ensemble of 5 models: +4.5 BLEU

Decoder:

(C(j) h)) = LSTM(j)(wt_l, cl)

t+0° “t4-4

1 J
__E: (47
Uy = J?VthlJ

p(Wy | ¢, w<;) = softmax(uy)

t+0—17 “t+4+4—1

Sutskever et al. (2014): Tricks

Use beam search: +1 BLEU

xr = Bier trinke ich

beer drink

(s)
logprob=0

drink
logprob=-6.93

beer

logprob=-1.82

drink
logprob=-6.28

I
logprob=-2.11

I

g logprob=-5.80

like
logprob=-7.31

beer

logprob=-8.66

drink
logprob=-2.87

beer
logprob=-3.04

wWIne

logprob=-5.12

ws

Sutskever et al. (2014): Tricks

Use beam search: +1 BLEU
Make the beam really big: -1 BLEU

31
%403
’\3}0
-) 30 ©29.8 |
m]|
= 294
29
—&— Unnormalized % 5
Normalized
1 A

1 2 4 8 12 20 30 50 106 200 500 1,000

Beam Size

Conditioning with vectors

We are compressing a lot of information in a finite-sized
vector.

Conditioning with vectors

We are compressing a lot of information in a finite-sized
vector.

“You can't cram the meaning of a whole %&!$#
sentence into a single $&!#* vector!”

Prof. Ray Mooney

Conditioning with vectors

We are compressing a lot of information in a finite-sized
vector.

Gradients have a long way to travel. Even LSTMs forget!

Conditioning with vectors

We are compressing a lot of information in a finite-sized
vector.

Gradients have a long way to travel. Even LSTMs forget!

What is to be done?

Solving the vector bottleneck

* Represent a source sentence as a matrix

* (Generate a target sentence from a matrix

e This will
* Solve the capacity problem

* Solve the gradient flow problem

Sentences as vectors matrices

* Problem with the fixed-size vector model

e Sentences are of different sizes but vectors are of
the same size

e Solution: use matrices instead

 Fixed number of rows, but number of columns
depends on the number of words

* Usually |fi = #cols

Sentences as matrices

Ich mochte ein Bier

Sentences as matrices

Ich mochte ein Bier Mach

%\l

gut

Sentences as matrices

o

Ich mochte ein Bier Mach

S g’U,t Die Wahrheiten der Menschen sind die unwiderlegbaren Irrtimer

Sentences as matrices

o

Ich mochte ein Bier Mach

S g’U,t Die Wahrheiten der Menschen sind die unwiderlegbaren Irrtimer

Question: How do we build these matrices?

Sentences as matrices
With concatenation

* Each word type Is represented by an n-dimensional
vector

e Take all of the vectors for the sentence and
concatenate them into a matrix

* Simplest possible model

* S0 simple, no one has bothered to publish how
well/badly it works!

(XX}
& & @]
(XX j

ch mochte ein

'
S

EXx]

Bie

ch mochte ein

Bie

r

F ¢ R*XIf
eSS
e e e
X3 X3 e e e
‘ Ich mochte ein Bier
&
L
ch mochte ein Bier

Sentences as matrices
With bidirectional RNNs

e By far the most widely used matrix representation, due to
Bahdanau et al (2015)

* One column per word
 Each column (word) has two halves concatenated together:
* a “forward representation”, i.e., a word and its left context

* a ‘reverse representation”, i.e., a word and its right context

* Implementation: bidirectional RNNs (GRUs or LSTMs) to read
f tfrom left to right and right to left, concatenate representations

000
& & @]
EXx]

ch mobchte ein

P4
S

Bie

5
\@oﬂgd?ooﬁw
000-(000]

|

000000

|

\&ocgﬂ?ot,

eln

hte

MOC

ch

N

o)

mochte

D)

el

|
@ e el

UJ
D

4_0 & &
1= T

XX

000 °

XX

B

10 © @}
= o

eln

hte

XX

MOC

ch

(s v

,

eseses

\

,.

AL

‘

)

10 @ @

7 L
X X e LY X IR

eln

hte

900000

MOC

ch

1% % &
%

f; = [}lz, hz]

F c R27xI|f|

Ich mochte ein Bier

Sentences as matrices
Where are we in 20187

* There are lots of ways to construct F

* More exotic architectures coming out daily

* |Increasingly common goal: get rid of O(|f}) sequential processing
steps, i.e., RNNs during training

e syntactic information can help (Sennrich & Haddow, 2016; Nadejde
et al., 2017), but many more integration strategies are possible

e try something with phrase types instead of word types?

Multi-word expressions are a pain in the neck .

Conditioning on matrices

* We have a matrix F representing the input, now we need to generate from it

 Bahdanau et al. (2015) and Luong et al. (2015) concurrently proposed using attention for
translating from matrix-encoded sentences

* High-level idea
* Generate the output sentence word by word using an RNN
* At each output position t, the RNN receives two inputs (in addition to any recurrent inputs)
* a fixed-size vector embedding of the previously generated output symbol e, ,
 a fixed-size vector encoding a “view” of the input matrix
 How do we get a fixed-size vector from a matrix that changes over time?

* Bahdanau et al: do a weighted sum of the columns of F (i.e., words) based on how
important they are at the current time step. (i.e., just a matrix-vector product Fa,)

* The weighting of the input columns at each time-step (a,) is called attention

Recall RNNs...

Recall RNNs...

Recall RNNs...

I'd

Recall RNNs...

o o
J /
4)
t t

v J

o J

> >

—)

I'd

Recall RNNs...

I'd like

o o
J J
))
t t

> >

o v

> >

—)

I'd

Recall RNNs...

000

Ich mochte ein Bier

PP OD®®
L 4
L 4
. 1000000
4
\\ L 4

4 4

- -
- D
-
o=~ - . \“.“.
e " ~rcnna==" - s’
DN Y . - -
llllllllllll - “.“.
~ - -
l' "llllll“ -
" “

Ich mochte ein Bier

l kkk\I

| Attention history:
Jee]

Ich mochte ein Bier

00¢
@

1

C1 = Fa1

| Attention history:
Jee]

Ich mochte ein Bier

B A A

00¢
@

1

C1 = Fa1

| Attention history:
Jee]

Ich mochte ein Bier

I'd

B A A

00¢
@

1

C1 = Fa1

| Attention history:
Jee]

Ich mochte ein Bier

I'd

1

Attention history:
J@e]

Ich mochte ein Bier

Attention history

e

-‘
~ ‘-
" “

- am e mm=m =

-
-
lllllllll

"
~
i
el
llllll

1

Ich mochte ein Bier

I'd

[T @ | Attention history:
2D a; |@ ©

o000 :.loe

2D

BB

BHBB

BB

Ich mochte ein Bier

I'd

B A A

00¢
@

1

)

[T @ | Attention history:
2D a; |@ ©

o000 :.loe

2D

BB

BHBB

BB

Ich mochte ein Bier

I'd like

)

[T @ | Attention history:
2D a; |@ ©

o000 :.loe

2D

BB

BHBB

BB

Ich mochte ein Bier

I'd like a

\

[® | Attention history:
2D a |@ ©

o000 :loe

e00e .| .o

BB

BHBB

BB

Ich mochte ein Bier

I'd

like

Q

beer

e

Ich mochte ein Bier

Attention history:

22 7] Attention history:

e00e®| -fee
0000 00
0000 . ®
o000 . ®
0009 .i5000
DB ——

Ich mochte ein Bier

Attention

e How do we know what to attend to at each time-
step”?

* Thatis, how do we compute a;”

Computing attention

« At each time step (one time step = one output word), we want to be able to
“attend” to different words in the source sentence

« We need a weight for every column: this is an |f-length vector a;
 Here is a simplified version of Bahdanau et al.’s solution

e Use an RNN to predict model output, call the hidden states sy
(st has a fixed dimensionality, call it m)

Computing attention

« At each time step (one time step = one output word), we want to be able to
“attend” to different words in the source sentence

« We need a weight for every column: this is an |f-length vector a;
 Here is a simplified version of Bahdanau et al.’s solution
e Use an RNN to predict model output, call the hidden states sy
(st has a fixed dimensionality, call it m)

« Attime t compute the query key embedding r: = Vs;_1
(V is a learned parameter)

Computing attention

« At each time step (one time step = one output word), we want to be able to
“attend” to different words in the source sentence

« We need a weight for every column: this is an |f-length vector a;
 Here is a simplified version of Bahdanau et al.’s solution

e Use an RNN to predict model output, call the hidden states sy
(st has a fixed dimensionality, call it m)
« Attime t compute the query key embedding r: = Vs;_1
(V is a learned parameter)
o Take the dot product with every column in the source matrix to compute
the attention energy. u; = FTrt (called e; in the paper)
(Since F has |fi columns, u;has |fj rows)

Computing attention

« At each time step (one time step = one output word), we want to be able to
“attend” to different words in the source sentence

« We need a weight for every column: this is an |f-length vector a;
 Here is a simplified version of Bahdanau et al.’s solution

e Use an RNN to predict model output, call the hidden states sy
(st has a fixed dimensionality, call it m)
« Attime t compute the query key embedding r: = Vs;_1
(V is a learned parameter)
o Take the dot product with every column in the source matrix to compute
the attention energy. u; = FTrt (called e; in the paper)
(Since F has |fi columns, u;has |fj rows)

- Exponentiate and normalize to 1: a; = softmax(u;)
(called oy in the paper)

Computing attention

« At each time step (one time step = one output word), we want to be able to
“attend” to different words in the source sentence

« We need a weight for every column: this is an |f-length vector a;
 Here is a simplified version of Bahdanau et al.’s solution

e Use an RNN to predict model output, call the hidden states sy
(st has a fixed dimensionality, call it m)

At time t compute the query key embedding r: = Vs;_1

(V is a learned parameter)
Take the dot product with every column in the source matrix to compute
the attention energy. u; = FTrt (called e; in the paper)

(Since F has |fi columns, u;has |fj rows)
Exponentiate and normalize to 1: a; = softmax(uy)
(called oy in the paper)

Finally, the input source vector for time tis ¢; = Fay

Computing attention

* |n the actual model, Bahdanau et al. replace the dot
product between the columns of F and r; with an MLP:

w, =F'r, (simple model)

Computing attention
Nonlinear additive attention model

* |n the actual model, Bahdanau et al. replace the dot
product between the columns of F and r; with an MLP:

=1y (stmple-modeh
u; = v' tanh(WF +r,) (Bahdanau et al)

Computing attention
Nonlinear additive attention model

* |n the actual model, Bahdanau et al. replace the dot
product between the columns of F and r; with an MLP:

=T "r; (simple-modeh

u; =v' tanh(WF +r;) (Bahdanau et al)

 Here, W and v are learned parameters of appropriate
dimension and + “broadcasts” over the |fi columns in WF

e [his can learn more complex interactions

e |tis unclear if the added complexity is necessary for
good performance

Putting it all together

F = EncodeAsMatrix(f) (Part 1 of lecture)
€o = (s)

so = w (Learned initial state; Bahdanau uses Uil)
t =20
while e; # (/s) :
t=t+1
r = Vs;_1
u; =v ' tanh(WF + 1)
a; = softmax(uy)
c; — Fay
s; = RNN(s;_1, |e:_1;¢¢])
y: = softmax(Ps; + b)

(Compute attention; part 2 of lecture)

(e;_; Is a learned embedding of ¢;)

(P and b are learned parameters)
e; | e« ~ Categorical(yy)

Putting it all together

F = EncodeAsMatrix(f) (Part 1 of lecture)

€ — <S>

so = w (Learned initial state; Bahdanau uses Url)

t=20

while e; # (/s) :
t=1t+1
r: = Vs;_q

(»does { depend on output decisions

u=v' tanh@ (Compute attention; part 2 of lecture)
a; = softmax(uy)
Fat

= RNN(s;_1,|e;—15¢¢]) (e;_; is a learned embedding of e;)

y: = softmax(Ps; + b) (P and b are learned parameters)
e; | e« ~ Categorical(yy)

Putting it all together

F = EncodeAsMatrix(f) (Part 1 of lecture)
eo = ()
so = w (Learned initial state; Bahdanau uses Uil)

t =(
WD
while e; #£ (/s) :

t=1t+4+1
I't:VSt_l

W =v' tanh(lg*%Jr r) (Compute attention; part 2 of lecture)
a; = softmax(uy)

c; — Fay

s; = RNN(s;—1, [e:—15¢¢]) (e, is a learned embedding of e;)
y: = softmax(Ps; + b) (P and b are learned parameters)

e; | e« ~ Categorical(yy)

Putting it all together

F = EncodeAsMatrix(f) (Part 1 of lecture)

eo = (s)

so = w (Learned initial state; Bahdanau uses Uil)
t=20

X =WF
while e; #£ (/s) :
t=1t+1

r: = Vs;_q

u; = v ' tanh(X + ry) (Compute attention; part 2 of lecture)
a; = softmax(uy)

c; — Fay

s; = RNN(s;—1, [e:—15¢¢]) (e, is a learned embedding of e;)

y: = softmax(Ps; + b) (P and b are learned parameters)
e; | e« ~ Categorical(yy)

Attention in MT: Results

Add attention to seg2seq translation: +11 BLEU

accord

sur

la

zone
dconomique
européenne

Q
Y =
—

agreement

on

the

European

Fconomirc

Area

was

signed
in

August
1992

<end>

should
marine

be
noted

that
the

-l

|

convient

de

noter

que

I
environnement
marin

est

le

moimns

connu

de

t
environnement

<end=>

(b)

envirorment

1S
the
least

known
of

envirorments

<end>

A word about gradients

I'd

like

Q

beer

e

Ich mochte ein Bier

Attention history:

I'd

00¢
@

B A A

1

like

Q

beer

e

Attention history:

Ich mochte ein Bier

I'd

00¢
@

B A A

1

&

Ich mochte ein Bier

I'd

Attention and translation

 Cho’s question: does a translator read and memorize

the input sentence/document and then generate the
output?

 Compressing the entire input sentence into a vector
basically says "memorize the sentence”

« Common sense experience says translators refer
back and forth to the input. (also backed up by eye-
tracking studies)

 Should humans be a model for machines”?

Summary

o Attention

e provides the ability to establish information flow directly from distant

» closely related to “pooling” operations in convnets (and other architectures)
e TJraditional attention model seems to only cares about “content”

e No obvious bias in favor of diagonals, short jumps, fertility, etc.

 Some work has begun to add other “structural” biases (Luong et al., 2015;
Cohn et al., 2016), but there are lots more opportunities

* Factorization into keys and values (Miller et al., 2016; Ba et al., 2016,
Gulcehre et al., 2016)

e Attention weights provide interpretation you can look at

Questions?

