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A conditional language model assigns probabilities to 
sequences of words,                                  , given some 
conditioning context,    .

w = (w1, w2, . . . , w`)

Conditional LMs

p(w | x) =
Ỳ

t=1

p(wt | x, w1, w2, . . . , wt�1)

As with unconditional models, it is again helpful to use  
the chain rule to decompose this probability:

What is the probability of the next word, given the history of  
previously generated words and conditioning context    ?
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Kalchbrenner and Blunsom 2013

c = embed(x)

s = Vc

Encoder

Recurrent decoder
Source sentence

Embedding of wt�1

Recurrent connection

Recall unconditional RNN
ht = g(W[ht�1;wt�1] + b])

Learnt bias
ht = g(W[ht�1;wt�1] + s+ b])

ut = Pht + b0

p(Wt | x,w<t) = softmax(ut)
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K&B 2013: Encoder
How should we define                        ?c = embed(x)

The simplest model possible:

x1

x1 x2 x3 x4 x5 x6

x2 x3 x4 x5 x6

c =
X

i

xi



• The bag of words assumption is really bad (part 1) 
 
         Alice saw Bob.  
         Bob saw Alice.  
 
         I would like some fresh bread with aged cheese.  
         I would like some aged bread with fresh cheese.

• We are putting a lot of information inside a single 
vector (part 2)

K&B 2013: Problems



Sutskever et al. (2014)
LSTM encoder

LSTM decoder

(c0,h0) are parameters

The encoding is               where             .

w0 = hsi

(ci,hi) = LSTM(xi, ci�1,hi�1)

(ct+`,ht+`) = LSTM(wt�1, ct+`�1,ht+`�1)

(c`,h`) ` = |x|

ut = Pht+` + b

p(Wt | x,w<t) = softmax(ut)



Aller Anfang ist schwer         STOP

         START

c

Sutskever et al. (2014)
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Sutskever et al. (2014)

• Good

• RNNs deal naturally with sequences of various lengths 

• LSTMs in principle can propagate gradients a long 
distance 

• Very simple architecture! 

• Bad 

• The hidden state has to remember a lot of information!
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Aller Anfang ist schwer

are

        STOP

         START

difficult          STOPBeginnings
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Sutskever et al. (2014): Tricks
Read the input sequence “backwards”: +4 BLEU



Sutskever et al. (2014): Tricks

Ensemble of 2 models: +3 BLEU

Decoder:

u(j)
t = Ph(j)

t + b(j)

ut =
1

J

JX

j0=1

u(j0)

p(Wt | x,w<t) = softmax(ut)

Ensemble of 5 models: +4.5 BLEU

Use an ensemble of J independently trained models.

(c(j)t+`,h
(j)
t+`) = LSTM(j)(wt�1, c

(j)
t+`�1,h

(j)
t+`�1)



Sutskever et al. (2014): Tricks

Use beam search: +1 BLEU

hsi
logprob=0

logprob=-2.11

x = Bier trinke ich
beer drink I

logprob=-1.82
beer

logprob=-8.66

logprob=-2.87

logprob=-6.93

logprob=-5.80

logprob=-3.04

logprob=-5.12

logprob=-6.28

logprob=-7.31

I

drink

I

drink

beer beer

wine

drink

like

w0 w1 w2 w3



Sutskever et al. (2014): Tricks

Use beam search: +1 BLEU
Make the beam really big: -1 BLEU

(Koehn and Knowles, 2017)



Conditioning with vectors

We are compressing a lot of information in a finite-sized  
vector.



Conditioning with vectors

We are compressing a lot of information in a finite-sized  
vector.

“You can't cram the meaning of a whole %&!$# 
sentence into a single $&!#* vector!”

Prof. Ray Mooney



We are compressing a lot of information in a finite-sized  
vector.

Gradients have a long way to travel. Even LSTMs forget!

Conditioning with vectors



We are compressing a lot of information in a finite-sized  
vector.

Gradients have a long way to travel. Even LSTMs forget!

Conditioning with vectors

What is to be done?



• Represent a source sentence as a matrix 

• Generate a target sentence from a matrix 

• This will 

• Solve the capacity problem 

• Solve the gradient flow problem

Solving the vector bottleneck



• Problem with the fixed-size vector model 

• Sentences are of different sizes but vectors are of 
the same size 

• Solution: use matrices instead 

• Fixed number of rows, but number of columns 
depends on the number of words 

• Usually |f| = #cols

Sentences as vectors matrices



Ich möchte ein Bier

Sentences as matrices



Ich möchte ein Bier Mach’s gut

Sentences as matrices



Ich möchte ein Bier Mach’s gut Die Wahrheiten der Menschen sind die unwiderlegbaren Irrtümer

Sentences as matrices



Ich möchte ein Bier Mach’s gut Die Wahrheiten der Menschen sind die unwiderlegbaren Irrtümer

Question: How do we build these matrices?

Sentences as matrices



• Each word type is represented by an n-dimensional 
vector 

• Take all of the vectors for the sentence and 
concatenate them into a matrix 

• Simplest possible model 

• So simple, no one has bothered to publish how 
well/badly it works!

Sentences as matrices
With concatenation



Ich möchte ein Bier

x1 x2 x3 x4



fi = xi

Ich möchte ein Bier

x1 x2 x3 x4



Ich möchte ein Bier

fi = xi

F 2 Rn⇥|f |

Ich möchte ein Bier

x1 x2 x3 x4



• By far the most widely used matrix representation, due to 
Bahdanau et al (2015)  

• One column per word 

• Each column (word) has two halves concatenated together: 

• a “forward representation”, i.e., a word and its left context 

• a “reverse representation”, i.e., a word and its right context 

• Implementation: bidirectional RNNs (GRUs or LSTMs) to read 
f from left to right and right to left, concatenate representations

Sentences as matrices
With bidirectional RNNs
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• There are lots of ways to construct F 

• More exotic architectures coming out daily 

• Increasingly common goal: get rid of O(|f|) sequential processing 
steps, i.e., RNNs during training 

• syntactic information can help (Sennrich & Haddow, 2016; Nadejde 
et al., 2017), but many more integration strategies are possible 

• try something with phrase types instead of word types?

Multi-word expressions are a pain in the neck .

Sentences as matrices
Where are we in 2018?



• We have a matrix F representing the input, now we need to generate from it 

• Bahdanau et al. (2015) and Luong et al. (2015) concurrently proposed using attention for 
translating from matrix-encoded sentences 

• High-level idea 

• Generate the output sentence word by word using an RNN 

• At each output position t, the RNN receives two inputs (in addition to any recurrent inputs) 

• a fixed-size vector embedding of the previously generated output symbol et-1 

• a fixed-size vector encoding a “view” of the input matrix 

• How do we get a fixed-size vector from a matrix that changes over time? 

• Bahdanau et al: do a weighted sum of the columns of F (i.e., words) based on how 
important they are at the current time step. (i.e., just a matrix-vector product Fat) 

• The weighting of the input columns at each time-step (at) is called attention

Conditioning on matrices
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• How do we know what to attend to at each time-
step? 

• That is, how do we compute     ?at

Attention



• At each time step (one time step = one output word), we want to be able to 
“attend” to different words in the source sentence 

• We need a weight for every column: this is an |f|-length vector at  

• Here is a simplified version of Bahdanau et al.’s solution 

• Use an RNN to predict model output, call the hidden states 

• At time t compute the expected input embedding 

• Take the dot product with every column in the source matrix to compute 
the attention energy. 

• Exponentiate and normalize to 1: 

• Finally, the input source vector for time t is

at = softmax(ut)

ct = Fat

(called     in the paper)

(called      in the paper)

st

ut = F>rt

rt = Vst�1
(     is a learned parameter)V

et

↵t

(Since F has |f| columns,     has |f| rows)ut

(st has a fixed dimensionality, call it m)

Computing attention
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• In the actual model, Bahdanau et al. replace the dot 
product between the columns of F and rt with an MLP: 

• Here, W and v are learned parameters of appropriate 
dimension and + “broadcasts” over the |f| columns in WF 

• This can learn more complex interactions 

• It is unclear if the added complexity is necessary for 
good performance

ut = F>rt

ut = tanh (WF+ rt)v

(simple model)
(Bahdanau et al)

Computing attention
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Nonlinear additive attention model
Computing attention



• In the actual model, Bahdanau et al. replace the dot 
product between the columns of F and rt with an MLP: 

• Here, W and v are learned parameters of appropriate 
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e0 = hsi

while et 6= h/si :

F = EncodeAsMatrix(f) (Part 1 of lecture)

rt = Vst�1

s0 = w (Learned initial state; Bahdanau uses           )U
 �
h 1

at = softmax(ut)
ct = Fat
st = RNN(st�1, [et�1; ct])

yt = softmax(Pst + b)

et | e<t ⇠ Categorical(yt)

}(Compute attention; part 2 of lecture)

t = 0

t = t+ 1

(        is a learned embedding of    )et�1 et

(    and    are learned parameters)P b

ut = v> tanh(WF+ rt)

Putting it all together
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ut = v> tanh(WF+ rt)

Putting it all together
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Add attention to seq2seq translation: +11 BLEU

Attention in MT: Results





A word about gradients
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• Cho’s question: does a translator read and memorize 
the input sentence/document and then generate the 
output? 

• Compressing the entire input sentence into a vector 
basically says “memorize the sentence” 

• Common sense experience says translators refer 
back and forth to the input. (also backed up by eye-
tracking studies) 

• Should humans be a model for machines?

Attention and translation



• Attention  

• provides the ability to establish information flow directly from distant 

• closely related to “pooling” operations in convnets (and other architectures) 

• Traditional attention model seems to only cares about “content” 

• No obvious bias in favor of diagonals, short jumps, fertility, etc. 

• Some work has begun to add other “structural” biases (Luong et al., 2015; 
Cohn et al., 2016), but there are lots more opportunities 

• Factorization into keys and values (Miller et al., 2016; Ba et al., 2016, 
Gulcehre et al., 2016) 

• Attention weights provide interpretation you can look at

Summary



Questions?


