
Better Conditional
Language Modeling

Chris Dyer

A conditional language model assigns probabilities to
sequences of words, , given some
conditioning context, .

w = (w1, w2, . . . , w`)

Conditional LMs

p(w | x) =
Ỳ

t=1

p(wt | x, w1, w2, . . . , wt�1)

As with unconditional models, it is again helpful to use  
the chain rule to decompose this probability:

What is the probability of the next word, given the history of  
previously generated words and conditioning context ?

x

x

Kalchbrenner and Blunsom 2013

c = embed(x)

s = Vc

Encoder

Recurrent decoder
Source sentence

Embedding of wt�1

Recurrent connection

Recall unconditional RNN
ht = g(W[ht�1;wt�1] + b])

Learnt bias
ht = g(W[ht�1;wt�1] + s+ b])

ut = Pht + b0

p(Wt | x,w<t) = softmax(ut)

softmax

p̂1

h1

h0 x1

<s>

s

⇠

tom

p(tom | s, hsi)

K&B 2013: RNN Decoder

h2

softmax

x2

⇠
likes

⇥p(likes | s, hsi, tom)

x3

h3

softmax

⇠

beer

⇥p(beer | s, hsi, tom, likes)

x4

h4

softmax

⇠

</s>

⇥p(h\si | s, hsi, tom, likes, beer)

K&B 2013: Encoder
How should we define ?c = embed(x)

The simplest model possible:

x1

x1 x2 x3 x4 x5 x6

x2 x3 x4 x5 x6

c =
X

i

xi

• The bag of words assumption is really bad (part 1) 
 
 Alice saw Bob.  
 Bob saw Alice.  
 
 I would like some fresh bread with aged cheese.  
 I would like some aged bread with fresh cheese.

• We are putting a lot of information inside a single
vector (part 2)

K&B 2013: Problems

Sutskever et al. (2014)
LSTM encoder

LSTM decoder

(c0,h0) are parameters

The encoding is where .

w0 = hsi

(ci,hi) = LSTM(xi, ci�1,hi�1)

(ct+`,ht+`) = LSTM(wt�1, ct+`�1,ht+`�1)

(c`,h`) ` = |x|

ut = Pht+` + b

p(Wt | x,w<t) = softmax(ut)

Aller Anfang ist schwer STOP

 START

c

Sutskever et al. (2014)

Aller Anfang ist schwer STOP

 START

Beginnings

c

Sutskever et al. (2014)

Aller Anfang ist schwer

are

 STOP

 START

Beginnings

c

Sutskever et al. (2014)

Aller Anfang ist schwer

are

 STOP

 START

difficultBeginnings

c

Sutskever et al. (2014)

Aller Anfang ist schwer

are

 STOP

 START

difficult STOPBeginnings

c

Sutskever et al. (2014)

Sutskever et al. (2014)

• Good

• RNNs deal naturally with sequences of various lengths

• LSTMs in principle can propagate gradients a long
distance

• Very simple architecture!

• Bad

• The hidden state has to remember a lot of information!

Aller Anfang ist schwer

are

 STOP

 START

difficult STOPBeginnings

c

Sutskever et al. (2014): Tricks

Aller Anfang ist schwer

are

 STOP

 START

difficult STOPBeginnings

c

Sutskever et al. (2014): Tricks
Read the input sequence “backwards”: +4 BLEU

Sutskever et al. (2014): Tricks

Ensemble of 2 models: +3 BLEU

Decoder:

u(j)
t = Ph(j)

t + b(j)

ut =
1

J

JX

j0=1

u(j0)

p(Wt | x,w<t) = softmax(ut)

Ensemble of 5 models: +4.5 BLEU

Use an ensemble of J independently trained models.

(c(j)t+`,h
(j)
t+`) = LSTM(j)(wt�1, c

(j)
t+`�1,h

(j)
t+`�1)

Sutskever et al. (2014): Tricks

Use beam search: +1 BLEU

hsi
logprob=0

logprob=-2.11

x = Bier trinke ich
beer drink I

logprob=-1.82
beer

logprob=-8.66

logprob=-2.87

logprob=-6.93

logprob=-5.80

logprob=-3.04

logprob=-5.12

logprob=-6.28

logprob=-7.31

I

drink

I

drink

beer beer

wine

drink

like

w0 w1 w2 w3

Sutskever et al. (2014): Tricks

Use beam search: +1 BLEU
Make the beam really big: -1 BLEU

(Koehn and Knowles, 2017)

Conditioning with vectors

We are compressing a lot of information in a finite-sized  
vector.

Conditioning with vectors

We are compressing a lot of information in a finite-sized  
vector.

“You can't cram the meaning of a whole %&!$# 
sentence into a single $&!#* vector!”

Prof. Ray Mooney

We are compressing a lot of information in a finite-sized  
vector.

Gradients have a long way to travel. Even LSTMs forget!

Conditioning with vectors

We are compressing a lot of information in a finite-sized  
vector.

Gradients have a long way to travel. Even LSTMs forget!

Conditioning with vectors

What is to be done?

• Represent a source sentence as a matrix

• Generate a target sentence from a matrix

• This will

• Solve the capacity problem

• Solve the gradient flow problem

Solving the vector bottleneck

• Problem with the fixed-size vector model

• Sentences are of different sizes but vectors are of
the same size

• Solution: use matrices instead

• Fixed number of rows, but number of columns
depends on the number of words

• Usually |f| = #cols

Sentences as vectors matrices

Ich möchte ein Bier

Sentences as matrices

Ich möchte ein Bier Mach’s gut

Sentences as matrices

Ich möchte ein Bier Mach’s gut Die Wahrheiten der Menschen sind die unwiderlegbaren Irrtümer

Sentences as matrices

Ich möchte ein Bier Mach’s gut Die Wahrheiten der Menschen sind die unwiderlegbaren Irrtümer

Question: How do we build these matrices?

Sentences as matrices

• Each word type is represented by an n-dimensional
vector

• Take all of the vectors for the sentence and
concatenate them into a matrix

• Simplest possible model

• So simple, no one has bothered to publish how
well/badly it works!

Sentences as matrices
With concatenation

Ich möchte ein Bier

x1 x2 x3 x4

fi = xi

Ich möchte ein Bier

x1 x2 x3 x4

Ich möchte ein Bier

fi = xi

F 2 Rn⇥|f |

Ich möchte ein Bier

x1 x2 x3 x4

• By far the most widely used matrix representation, due to
Bahdanau et al (2015)

• One column per word

• Each column (word) has two halves concatenated together:

• a “forward representation”, i.e., a word and its left context

• a “reverse representation”, i.e., a word and its right context

• Implementation: bidirectional RNNs (GRUs or LSTMs) to read
f from left to right and right to left, concatenate representations

Sentences as matrices
With bidirectional RNNs

Ich möchte ein Bier

x1 x2 x3 x4

Ich möchte ein Bier

x1 x2 x3 x4

�!
h 1

�!
h 2

�!
h 3

�!
h 4

Ich möchte ein Bier

x1 x2 x3 x4

�!
h 1

�!
h 2

�!
h 3

�!
h 4

 �
h 1

 �
h 2

 �
h 3

 �
h 4

Ich möchte ein Bier

x1 x2 x3 x4

�!
h 1

�!
h 2

�!
h 3

�!
h 4

 �
h 1

 �
h 2

 �
h 3

 �
h 4

fi = [
 �
h i;
�!
h i]

Ich möchte ein Bier

x1 x2 x3 x4

�!
h 1

�!
h 2

�!
h 3

�!
h 4

 �
h 1

 �
h 2

 �
h 3

 �
h 4

fi = [
 �
h i;
�!
h i]

Ich möchte ein Bier

x1 x2 x3 x4

�!
h 1

�!
h 2

�!
h 3

�!
h 4

 �
h 1

 �
h 2

 �
h 3

 �
h 4

fi = [
 �
h i;
�!
h i]

Ich möchte ein Bier

x1 x2 x3 x4

�!
h 1

�!
h 2

�!
h 3

�!
h 4

 �
h 1

 �
h 2

 �
h 3

 �
h 4

fi = [
 �
h i;
�!
h i]

Ich möchte ein Bier

x1 x2 x3 x4

�!
h 1

�!
h 2

�!
h 3

�!
h 4

 �
h 1

 �
h 2

 �
h 3

 �
h 4

Ich möchte ein Bier

F 2 R2n⇥|f |

fi = [
 �
h i;
�!
h i]

• There are lots of ways to construct F

• More exotic architectures coming out daily

• Increasingly common goal: get rid of O(|f|) sequential processing
steps, i.e., RNNs during training

• syntactic information can help (Sennrich & Haddow, 2016; Nadejde
et al., 2017), but many more integration strategies are possible

• try something with phrase types instead of word types?

Multi-word expressions are a pain in the neck .

Sentences as matrices
Where are we in 2018?

• We have a matrix F representing the input, now we need to generate from it

• Bahdanau et al. (2015) and Luong et al. (2015) concurrently proposed using attention for
translating from matrix-encoded sentences

• High-level idea

• Generate the output sentence word by word using an RNN

• At each output position t, the RNN receives two inputs (in addition to any recurrent inputs)

• a fixed-size vector embedding of the previously generated output symbol et-1

• a fixed-size vector encoding a “view” of the input matrix

• How do we get a fixed-size vector from a matrix that changes over time?

• Bahdanau et al: do a weighted sum of the columns of F (i.e., words) based on how
important they are at the current time step. (i.e., just a matrix-vector product Fat)

• The weighting of the input columns at each time-step (at) is called attention

Conditioning on matrices

Recall RNNs…

 →

Recall RNNs…

 →

Recall RNNs…

I'd

 →

Recall RNNs…

I'd

 → I'd

Recall RNNs…

I'd

 →

like

I'd

Recall RNNs…

 →

 →

Ich möchte ein Bier

 →

Ich möchte ein Bier

 →

Ich möchte ein Bier

Attention history:
a>1

a>2

a>3

a>4

a>5

 →

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

c1 = Fa1

 →

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

c1 = Fa1

I'd

 →

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

c1 = Fa1

I'd

 →

Ich möchte ein Bier

Attention history:
a>1

a>2

a>3

a>4

a>5

I'd

I'd

 →

Ich möchte ein Bier

Attention history:
a>1

a>2

a>3

a>4

a>5

I'd

I'd

I'd →

Ich möchte ein Bier

Attention history:
a>1

a>2

a>3

a>4

a>5

I'd

I'd →

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

c2 = Fa2

I'd

I'd →

like

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

c2 = Fa2

I'd

I'd →

like

like

a

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

I'd

I'd →

like

like

a

a

beer

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

I'd

I'd →

like

like

a

a

beer

beer

stopSTOP

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

• How do we know what to attend to at each time-
step?

• That is, how do we compute ?at

Attention

• At each time step (one time step = one output word), we want to be able to
“attend” to different words in the source sentence

• We need a weight for every column: this is an |f|-length vector at

• Here is a simplified version of Bahdanau et al.’s solution

• Use an RNN to predict model output, call the hidden states

• At time t compute the expected input embedding

• Take the dot product with every column in the source matrix to compute
the attention energy.

• Exponentiate and normalize to 1:

• Finally, the input source vector for time t is

at = softmax(ut)

ct = Fat

(called in the paper)

(called in the paper)

st

ut = F>rt

rt = Vst�1
(is a learned parameter)V

et

↵t

(Since F has |f| columns, has |f| rows)ut

(st has a fixed dimensionality, call it m)

Computing attention

• At each time step (one time step = one output word), we want to be able to
“attend” to different words in the source sentence

• We need a weight for every column: this is an |f|-length vector at

• Here is a simplified version of Bahdanau et al.’s solution

• Use an RNN to predict model output, call the hidden states

• At time t compute the query key embedding

• Take the dot product with every column in the source matrix to compute
the attention energy.

• Exponentiate and normalize to 1:

• Finally, the input source vector for time t is

at = softmax(ut)

ct = Fat

(called in the paper)

(called in the paper)

st

ut = F>rt

rt = Vst�1
(is a learned parameter)V

et

↵t

(Since F has |f| columns, has |f| rows)ut

(st has a fixed dimensionality, call it m)

Computing attention

• At each time step (one time step = one output word), we want to be able to
“attend” to different words in the source sentence

• We need a weight for every column: this is an |f|-length vector at

• Here is a simplified version of Bahdanau et al.’s solution

• Use an RNN to predict model output, call the hidden states

• At time t compute the query key embedding

• Take the dot product with every column in the source matrix to compute
the attention energy.

• Exponentiate and normalize to 1:

• Finally, the input source vector for time t is

at = softmax(ut)

ct = Fat

(called in the paper)

(called in the paper)

st

ut = F>rt

rt = Vst�1
(is a learned parameter)V

et

↵t

(Since F has |f| columns, has |f| rows)ut

(st has a fixed dimensionality, call it m)

Computing attention

• At each time step (one time step = one output word), we want to be able to
“attend” to different words in the source sentence

• We need a weight for every column: this is an |f|-length vector at

• Here is a simplified version of Bahdanau et al.’s solution

• Use an RNN to predict model output, call the hidden states

• At time t compute the query key embedding

• Take the dot product with every column in the source matrix to compute
the attention energy.

• Exponentiate and normalize to 1:

• Finally, the input source vector for time t is

at = softmax(ut)

ct = Fat

(called in the paper)

(called in the paper)

st

ut = F>rt

rt = Vst�1
(is a learned parameter)V

et

↵t

(Since F has |f| columns, has |f| rows)ut

(st has a fixed dimensionality, call it m)

Computing attention

• At each time step (one time step = one output word), we want to be able to
“attend” to different words in the source sentence

• We need a weight for every column: this is an |f|-length vector at

• Here is a simplified version of Bahdanau et al.’s solution

• Use an RNN to predict model output, call the hidden states

• At time t compute the query key embedding

• Take the dot product with every column in the source matrix to compute
the attention energy.

• Exponentiate and normalize to 1:

• Finally, the input source vector for time t is

at = softmax(ut)

ct = Fat

(called in the paper)

(called in the paper)

st

ut = F>rt

rt = Vst�1
(is a learned parameter)V

et

↵t

(Since F has |f| columns, has |f| rows)ut

(st has a fixed dimensionality, call it m)

Computing attention

• In the actual model, Bahdanau et al. replace the dot
product between the columns of F and rt with an MLP:

• Here, W and v are learned parameters of appropriate
dimension and + “broadcasts” over the |f| columns in WF

• This can learn more complex interactions

• It is unclear if the added complexity is necessary for
good performance

ut = F>rt

ut = tanh (WF+ rt)v

(simple model)
(Bahdanau et al)

Computing attention

• In the actual model, Bahdanau et al. replace the dot
product between the columns of F and rt with an MLP:

• Here, W and v are learned parameters of appropriate
dimension and + “broadcasts” over the |f| columns in WF

• This can learn more complex interactions

• It is unclear if the added complexity is necessary for
good performance

ut = F>rt (simple model)
(Bahdanau et al)ut = v> tanh(WF+ rt)

Nonlinear additive attention model
Computing attention

• In the actual model, Bahdanau et al. replace the dot
product between the columns of F and rt with an MLP:

• Here, W and v are learned parameters of appropriate
dimension and + “broadcasts” over the |f| columns in WF

• This can learn more complex interactions

• It is unclear if the added complexity is necessary for
good performance

ut = F>rt (simple model)
(Bahdanau et al)ut = v> tanh(WF+ rt)

Nonlinear additive attention model
Computing attention

e0 = hsi

while et 6= h/si :

F = EncodeAsMatrix(f) (Part 1 of lecture)

rt = Vst�1

s0 = w (Learned initial state; Bahdanau uses)U
 �
h 1

at = softmax(ut)
ct = Fat
st = RNN(st�1, [et�1; ct])

yt = softmax(Pst + b)

et | e<t ⇠ Categorical(yt)

}(Compute attention; part 2 of lecture)

t = 0

t = t+ 1

(is a learned embedding of)et�1 et

(and are learned parameters)P b

ut = v> tanh(WF+ rt)

Putting it all together

e0 = hsi

while et 6= h/si :

F = EncodeAsMatrix(f) (Part 1 of lecture)

rt = Vst�1

s0 = w (Learned initial state; Bahdanau uses)U
 �
h 1

at = softmax(ut)
ct = Fat
st = RNN(st�1, [et�1; ct])

yt = softmax(Pst + b)

et | e<t ⇠ Categorical(yt)

}(Compute attention; part 2 of lecture)

t = 0

t = t+ 1

(is a learned embedding of)et�1 et

(and are learned parameters)P b

doesn’t depend on output decisions
ut = v> tanh(WF+ rt)

Putting it all together

e0 = hsi

while et 6= h/si :

F = EncodeAsMatrix(f) (Part 1 of lecture)

rt = Vst�1

s0 = w (Learned initial state; Bahdanau uses)U
 �
h 1

at = softmax(ut)
ct = Fat
st = RNN(st�1, [et�1; ct])

yt = softmax(Pst + b)

et | e<t ⇠ Categorical(yt)

}(Compute attention; part 2 of lecture)

t = 0

t = t+ 1

(is a learned embedding of)et�1 et

(and are learned parameters)P b

X = WF

X
ut = v> tanh(WF+ rt)

Putting it all together

e0 = hsi

while et 6= h/si :

F = EncodeAsMatrix(f) (Part 1 of lecture)

rt = Vst�1

s0 = w (Learned initial state; Bahdanau uses)U
 �
h 1

at = softmax(ut)
ct = Fat
st = RNN(st�1, [et�1; ct])

yt = softmax(Pst + b)

et | e<t ⇠ Categorical(yt)

}(Compute attention; part 2 of lecture)

t = 0

t = t+ 1

(is a learned embedding of)et�1 et

(and are learned parameters)P b

X = WF

ut = v> tanh(X+ rt)

Putting it all together

Add attention to seq2seq translation: +11 BLEU

Attention in MT: Results

A word about gradients

I'd

I'd →

like

like

a

a

beer

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

I'd

I'd →

like

like

a

a

beer

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

I'd

I'd →

like

like

a

a

beer

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

• Cho’s question: does a translator read and memorize
the input sentence/document and then generate the
output?

• Compressing the entire input sentence into a vector
basically says “memorize the sentence”

• Common sense experience says translators refer
back and forth to the input. (also backed up by eye-
tracking studies)

• Should humans be a model for machines?

Attention and translation

• Attention

• provides the ability to establish information flow directly from distant

• closely related to “pooling” operations in convnets (and other architectures)

• Traditional attention model seems to only cares about “content”

• No obvious bias in favor of diagonals, short jumps, fertility, etc.

• Some work has begun to add other “structural” biases (Luong et al., 2015;
Cohn et al., 2016), but there are lots more opportunities

• Factorization into keys and values (Miller et al., 2016; Ba et al., 2016,
Gulcehre et al., 2016)

• Attention weights provide interpretation you can look at

Summary

Questions?

