Programming Exercise
Getting started

In this exercise you are required to understand, modify and write code in C and/or C++. To start
this exercise download the starter pack from the following URL:

http://www.cl.cam.ac.uk/teaching/current/CandC++/
This ZIP file should contain the following files:

server.c
client.c
rfc0791.txt
rfc0793.txt
messagel
message?2
message3d
message4

Important: You should avoid the use of any compiler-specific features in the exercise. Code
written for this exercise should conform to 1S09899:1999 (“C99”) or ISO14882:1998 (“C++98”)
and use standard libraries. The code should compile and run correctly using gcc or g++ as available
on PWF linux. Your code should not generate any warnings, even with all warnings turned on; in
other words

gcc -std=c99 -Wall --pedantic sourcefile.c
or
g++ -std=c++98 -Wall --pedantic sourcefile.cc

should produce no warnings for all source files you submit.

Exercise — Part 1

The exercise starter pack contains two computer programs written in C. The first program, server.c
transmits data and the second program, client.c receives data. There are a few mistakes in these
programs which prevent the code from compiling or functioning correctly. Do the following:

1. Describe in fewer than 100 words the intended functionality of the two programs server.c
and client.c. Write this description into the file answers.txt. The format of this file should
be plain ASCII text.

2. Find and list three programming errors in the code. (There are in fact more than three errors,
but you only need to find three.) Modify the code to correct the errors. Compile and execute
the code with suitable test data. (Hint: the IP address 127.0.0.1 can be used as a suitable
IP address if you want to run both the client and server components on the same machine.)
A list of the three errors should be appended to the file answers.txt. Your corrected code
should be saved into serverl.c and clientl.c.

Exercise — Part 2

A computer scientist writes a packet inspector to record every bit of data sent by (a corrected
version of) server.c on machine A and received by (a corrected version of) client.c on machine
B. The recorded data contains all the TCP/IP packets and includes the TCP and IP headers in
network byte order together with the actual message payload.

The files r£c0791.txt and rfc0793.txt contain the specification of IP and TCP headers respec-
tively. Your attention is drawn in particular to the layout, in bytes, of the contents of the header
files as expressed in these documents. For convenience, the layouts are also shown in the Appendix.

The computer scientist invokes the server program on machine A and the client program on machine
B once, and generates a log file of all the packets sent between the two machines. The log file contains
the raw packet data in the order in which the packets were transmitted on machine A. Therefore
the first packet is at the start of the file, and this is immediately followed by data from the second
packet, and so on.

An example log file is messagel. Your next task is to write a C or C++ program to read in any
log file in this format and determine the following facts:

The IP addresses of machines A and B (source and destination)

e The value of the first IP packet’s header size field (IHL — IP header length)

The length of the first IP packet in bytes (total length)

The value of the first TCP packet’s header size field (data offset)

e The total number of IP packets in the trace

You should save your program into a file called summary.c or summary.cc. Your program should
output the above details in the same order as shown above by printing to stdout on a single line,
using spaces to separate the fields. For example, if the IP addresses of machines A and B are
192.168.1.1 and 192.168.1.2, the header length field value is 6, the length of the IP packet is 52
bytes, the value in the TCP header length is 5, and the total number of packets in the trace is 20,
your program should output:

192.168.1.1 192.168.1.2 6 52 5 20

Exercise — Part 3

Your final task is to write a second program in C or C++ to remove the IP and TCP headers
from any log file conforming to the format described above and extract the data transmitted from
machine A to machine B. The source code for this program should be saved in extract.c or
extract.cc. Your program must take two arguments on the command line, and open and read log
data from the filename passed as the first argument, and write data into a file whose name will be
passed as the second argument. Your program should print an error message if a file with the name
of the first argument does not exist. Your program should overwrite the data in any file with the
same name as the second argument, or create a file of this name if it does not exist. For example,
if an executable form of your program was called extract then the following execution

./extract messagel messagel.txt

will extract the data held in messagel and write it into the file messagel.txt.

Use your program to do the following:

e Extract the data from messagel and save this data into a new file called messagel.txt. View
this image Does the message make sense? (If not, you probably need to debug your code!)

e Extract the data from message2 and save this data into a new file called message2. jpg. By
using a web-browser or otherwise, view this image. What does the image show? (If you
cannot view the image you probably need to debug your code!)

e (Optional) Decipher the contents of message3 and message4 to claim the prize.

Submission

By the end of this tick you should have generated the following files: (No core files, temporary files,
or Makefiles. All of these files and only these files to be submitted, please.)

answers.txt

clientl.c

serverl.c

summary.c OR summary.cc
extract.c OR extract.cc
messagel.txt
message2. jpg

Once you have correctly completed the exercise you should make a new ZIP file containing these
files. This ZIP file should be named with your CRSID and end with the extension .zip. So if your
CRSID is awm22, your ZIP file should be called awm22.zip. To submit your tick, email this file as
an attachment to:

c-tick@cl.cam.ac.uk

Appendix

RFC 791 (http://www.ietf.org/rfc/rfc0791.txt) specifies the layout of packets in the IP Pro-
tocol. You may need to read portions of this document in order to complete this exercise. Of
particular interest is the position of the packets in the Internet Protocol header:

0 1 2 3
01234567890123456789012345678901
tot—+—+

|Version| IHL |Type of Servicel Total Length |
S S o St et St S B e ot Tt R
| Identification |Flags| Fragment Offset |

B T .- -_h i R B
| Time to Live | Protocol | Header Checksum

B e T T e . s e T e T ot T ST
| Source Address
S SRR
| Destination Address

B T T T T o T s T B s T ot Sae
| Options | Padding |
B T T S e s e T S e T

RFC 793 (http://www.ietf.org/rfc/rfc793.html) specifies the layout of packets using the TCP
protocol. You may need to read portions of this document in order to complete this exercise. Of
particular interest is the position of the key data elements in the Transmission Control Protocol
header:

0 1 2 3
01234567890123456789012345678901
S S St S S o S S
| Source Port | Destination Port
tot—t—t—t—t—t bttt —t—t—t—t—t—t—t bttt =ttt —t—t—t—t—t—t—+—+
| Sequence Number
tot—t—t—t—t—t bttt ottt —t—t—t—t bttt =ttt —t—t—t—t—t—t—t—+
| Acknowledgment Number
s S St o S S S S S Tt Tt Tt S S
| Data | [UIAIPIRISIF]
| Offset| Reserved |RICISISIY|I] Window
| | [GIKIHITININ]|
S S St S B S S S s Tt et Tt S
| Checksum | Urgent Pointer |
tot—t—t—t—t—t bttt —t—t—t—t—t—t—t bbbttt —t—t—t—t—t—t—t—+—+
I Options I Padding I
tot—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t bttt =ttt —t—t—t—t—t—t—+—+
| data |
s S St et S S S s ot ot S S

