

P51: High Performance Networking

Lecture 4: Low Latency Devices

Dr Noa Zilberman noa.zilberman@cl.cam.ac.uk

Lent 2017/18

Crossing Clock Domains

- Last week we discussed the clock frequency required in different places in the design.
- Crossing clock domains requires careful handling

Crossing Clock Domains

- Why do we care about clock domain crossing?
- Adds latency
- The latency is not deterministic
 - But bounded
- Crossing clock domains multiple times increases the jitter
- Using a single clock is often not an option:
 - Insufficient packet processing rate
 - Multiple interface clocks
 - Need speed up (e.g., to handle control events)

Flow Control

- The flow of the data through the device (the network) needs to be regulated
- Different events may lead to stopping the data:
 - An indication from the destination to stop
 - Congestion (e.g. 2 ports sending to 1 port)
 - Crossing clock domains
 - Rate control

Data Back pressure

Flow Control

- Providing back pressure is not always allowed
- In such cases, need to make amendments in the design

Flow Control

• What to do if an output queue is congested?

Flow Control and Buffering

• Back pressure may take time

- Need to either:
 - Assert back pressure sufficient time before traffic needs to stop OR
 - Provide sufficient buffering

Flow Control and Buffering

Calculating buffer size:

Intuitively:

Nearby sender: Buffer size \geq Reaction time \times Data rate

Remote sender: Buffer size \ge RTT \times Data rate

Buffer size \geq (RTT + Reaction time) \times Data rate

Flow Control and Buffering

Calculating buffer size:

response time:

Propagation delay in a fibre is 5ns/m

Buffer size \geq 1us \times 10Gbps = ~1.25KB

DMA

Host architecture

UNIVERSITY OF

Legacy vs. Recent (courtesy of Intel)

Interconnecting components

- Need interconnections between
 - CPU, memory, storage, network, I/O controllers

Shared Bus: shared communication channel

- A set of parallel wires for data and synchronization of data transfer
- Can become a bottleneck
- Performance limited by physical factors
 - Wire length, number of connections
- More recent alternative: high-speed serial connections with switches

I/O System Characteristics

• Performance measures

- Latency (response time)
- Throughput (bandwidth)
- Desktops & embedded systems
 - Mainly interested in response time & diversity of devices
- Servers
 - Mainly interested in throughput & expandability of devices

Reliability

Particularly for storage devices (fault avoidance, fault tolerance, fault forecasting)

I/O Management and strategies

I/O is mediated by the OS

- Multiple programs share I/O resources
 - Need protection and scheduling
- I/O causes asynchronous interrupts
 - Same mechanism as exceptions
- I/O programming is fiddly
 - OS provides abstractions to programs

Strategies characterize the *amount of work* done by the CPU in the I/O operation:

- Polling
- Interrupt Driven
- Direct Memory Access

The I/O Access Problem

- Question: how to transfer data from I/O devices to memory (RAM)?
- Trivial solution:
 - Processor individually reads or writes every word
 - Transferred to/from I/O through an internal register to memory
- Problems:
 - Extremely inefficient can occupy a processor for 1000's of cycles
 - Pollute cache

DMA

- DMA Direct Memory Access
- A modern solution to the I/O access problem
- The peripheral I/O can issue read/write commands directly to the memory
 - Through the main memory controller
 - The processor does not need to execute any operation
- Write: The processor is notified when a transaction is completed (interrupt)
- Read: The processor issues a signal to the I/O when the data is ready in memory

Example – Intel Xeon D

Example (Embedded Processor)

- Message arrives on I/O interface.
 Message is decoded to Mem read/write.
 Address is converted to internal address.
- 2. Mem Read/Write command goes through the switch to the internal bus and memory controller.
- Memory controller executes the command to the DRAM. Returns data if required in the same manner.

UNIVERSITY OF CAMBRIDGE

DMA

- DMA accesses are usually handled in *buffers*
 - Single word/block is typically inefficient
- The processors assigns the peripheral unit the buffers in advance
- The buffers are typically handled by *buffer descriptors*
 - Pointer to the buffer in the memory
 - May point to the next buffer as well
 - Indicates buffer status: owner, valid etc.
 - May include additional buffer properties as well

Example (Embedded Processor)

Transfers blocks of data between external interfaces and local address space

- 1. A transfer is started by SW writing to DMA engine configuration registers
- 2. SW Polls DMA channel state to idle and sets trigger
- 3. DMA engine fetches a descriptor from memory
- 4. DMA engine reads block of data from source
- 5. DMA engine writes data to destination

Intel Data Direct I/O (DDIO)

• Data is written and read directly to/from the last level cache

PCIe introduction

- PCIe is a *serial point-to-point interconnect* between two devices
- Implements packet based protocol (TLPs) for information transfer
- Scalable performance based on # of signal Lanes implemented on the PCIe interconnect
- Supports credit-based point-to-point flow control (not end-to-end)

Provides:

- Processor independence & buffered isolation
- Bus mastering
- Plug and Play operation

PCIe transaction types

- Memory Read or Memory Write. Used to transfer data from or to a memory mapped location
- I/O Read or I/O Write. Used to transfer data from or to an I/O location
- Configuration Read or Configuration Write. Used to discover device capabilities, program features, and check status in the 4KB PCI Express configuration space.
- Messages. Handled like posted writes. Used for event signaling and general purpose messaging.

PCIe architecture

Interrupt Model

PCI Express supports three interrupt reporting mechanisms:

- 1. Message Signaled Interrupts (MSI)
 - interrupt the CPU by writing to a specific address in memory with a payload of 1 DW
- 2. Message Signaled Interrupts X (MSI-X)
 - MSI-X is an extension to MSI, allows targeting individual interrupts to different processors
- 3. INTx Emulation four physical interrupt signals INTA-INTD are messages upstream
 - ultimately be routed to the system interrupt controller

NetFPGA Reference Projects

Processing Overheads

• Processing in the kernel takes a lot of time...

Component	Time [us]
Driver RX	0.60
Ethernet & IPv4 RX	0.19
TCP RX	0.53
Socket Enqueue	0.06
TCP TX	0.70
IPv4 & Ethernet TX	0.06
Driver TX	0.43

Source: Yasukata *et al.* "StackMap: Low-Latency Networking with the OS Stack and Dedicated NICs", Usenix ATC 2016

Processing Overheads

- Processing in the kernel takes a lot of time...
- Order of microseconds (~2-4us on Xeon E5-v4)
- ×10 the time through a switch

• Solution: don't go through the kernel!

Kernel Bypass

- The Kernel is slow lets bypass the Kernel!
- There are many ways to achieve kernel bypass
- Some examples:
 - Device drivers:
 - Customized kernel device driver. E.g. Netmap forks standard Intel drivers with extensions to map I/O memory into userspace.
 - Custom hardware and use bespoke device drivers for the specialized hardware.
 - Userspace library: anything from basic I/O to the entire TCP/IP stack

Kernel Bypass - Examples

- DPDK is a popular set of **libraries and drivers** for fast packet processing.
- Originally designed for Intel processors
 - Now running also on ARM and Power CPUs
- Runs mostly in Linux User space.
- Main libraries: multicore framework, huge page memory, ring buffers, poll-mode drivers (networking, crypto etc)
- It is *not* a networking stack

DPDK

- Usage examples:
 - Send and receive packets within minimum number of CPU cycles
 - E.g. less than 80 cycles
 - Fast packet capture algorithms
 - Running third-party stacks
- Some projects demonstrated 100's of millions packets per seconds
 - But with limited functionality
 - E.g. as a software switch / router

