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• Last week we discussed the clock frequency required in different places 
in the design.

• Crossing clock domains requires careful handling
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• Why do we care about clock domain crossing?

• Adds latency

• The latency is not deterministic

• But bounded

• Crossing clock domains multiple times increases the jitter 

• Using a single clock is often not an option:

• Insufficient packet processing rate

• Multiple interface clocks

• Need speed up (e.g., to handle control events)

Crossing Clock Domains



Flow Control

• The flow of the data through the device (the network) needs to be 
regulated

• Different events may lead to stopping the data:

• An indication from the destination to stop

• Congestion (e.g. 2 ports sending to 1 port)

• Crossing clock domains

• Rate control

• …

Data

Back pressure



Flow Control

• Providing back pressure is not always allowed

• In such cases, need to make amendments in the design

NIF

NIF

NIF

NIF

NIF

NIF

NIF

NIF

OQ

OQ

OQ

OQ

Sc
he

du
le

r

PP

IQ

IQ

IQ

IQ



Flow Control

• What to do if an output queue is congested? 
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Flow Control and Buffering

• Back pressure may take time

• Need to either:

• Assert back pressure sufficient time before traffic needs to stop
OR

• Provide sufficient buffering

time
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Flow Control and Buffering

Calculating buffer size:

Intuitively: 

Nearby sender: Buffer size ≥ Reaction time × Data rate

Remote sender: Buffer size ≥ RTT × Data rate

Buffer size ≥ (RTT + Reaction time) × Data rate

3. In-flight 
data arrives

2. Data stops 1. Stop
triggered

BufferSender



Flow Control and Buffering

Calculating buffer size:

2 switches, connected using 100m fibre, 10G port, instantaneous 
response time:
Propagation delay in a fibre is 5ns/m

Buffer size ≥ 1us × 10Gbps = ~1.25KB

3. In-flight 
data arrives

2. Data stops 1. Stop
triggered

BufferSender



DMA



Host architecture

Legacy vs. Recent (courtesy of Intel)



Interconnecting components

• Need interconnections between
– CPU, memory, storage, network, I/O controllers

• Shared Bus: shared communication channel
– A set of parallel wires for data and synchronization of 

data transfer

– Can become a bottleneck

• Performance limited by physical factors

– Wire length, number of connections

• More recent alternative: high-speed serial  connections with switches
– Like networks



I/O System Characteristics

• Performance measures
– Latency (response time)
– Throughput (bandwidth)
– Desktops & embedded systems

• Mainly interested in response time & diversity of devices
– Servers

• Mainly interested in throughput & expandability of devices

• Reliability
– Particularly for storage devices (fault avoidance,  fault tolerance, fault

forecasting)



I/O Management and strategies

• I/O is mediated by the OS
– Multiple programs share I/O resources

• Need protection and scheduling
– I/O causes asynchronous interrupts

• Same mechanism as exceptions
– I/O programming is fiddly

• OS provides abstractions to programs
Strategies characterize the amount of work done by the  CPU in the I/O
operation:

• Polling
• Interrupt Driven
• Direct Memory Access



The I/O Access Problem

• Question: how to transfer data from I/O devices to memory 
(RAM)?

• Trivial solution:
• Processor individually reads or writes every word
• Transferred to/from I/O through an internal register to memory

• Problems:
• Extremely inefficient – can occupy a processor for 1000’s of cycles
• Pollute cache 



DMA

• DMA – Direct Memory Access
• A modern solution to the I/O access problem
• The peripheral I/O can issue read/write commands directly to 

the memory
• Through the main memory controller
• The processor does not need to execute any operation

• Write: The processor is notified when a transaction is 
completed (interrupt)

• Read: The processor issues a signal to the I/O when the data 
is ready in memory



Example – Intel Xeon D



1

1. Message arrives on I/O 
interface.
Message is decoded to 
Mem read/write.
Address is converted to 
internal address.

2

2. Mem Read/Write 
command goes through 
the switch to the internal 
bus and memory 
controller.

3

3. Memory controller 
executes the command 
to the DRAM.
Returns data if required 
in the same manner.

Memory Mapped Access

Example (Embedded Processor)



DMA

• DMA accesses are usually handled in buffers
• Single word/block is typically inefficient

• The processors assigns the peripheral unit the buffers in 
advance

• The buffers are typically handled by buffer descriptors
• Pointer to the buffer in the memory
• May point to the next buffer as well
• Indicates buffer status: owner, valid etc.
• May include additional buffer properties as well



Transfers blocks of data 
between external interfaces 
and local address space

DMA Access

1
1. A transfer is started by SW 

writing to DMA engine 
configuration registers

3

3. DMA engine fetches a 
descriptor from memory

4. DMA engine reads block of 
data from source

4

2

2. SW Polls DMA channel 
state to idle and sets trigger

5. DMA engine writes data to 
destination

5

Example (Embedded Processor)



Intel Data Direct I/O (DDIO)

• Data is written and read directly to/from the last level cache 
(LLC)



PCIe introduction

• PCIe is a serial point-to-point interconnect between two devices

• Implements packet based protocol (TLPs) for information transfer
• Scalable performance based on # of signal Lanes implemented on the  PCIe

interconnect
• Supports credit-based point-to-point flow control (not end-to-end)

Provides:
• Processor independence &  

buffered isolation

• Bus mastering

• Plug and Play operation



PCIe transaction types

• Memory Read or Memory Write. Used to transfer data from or  to a
memory mapped location

• I/O Read or I/O Write. Used to transfer data from or to an I/O 
location

• Configuration Read or Configuration Write. Used to  discover device 
capabilities, program features, and check status in the  4KB PCI 
Express configuration space.

• Messages. Handled like posted writes. Used for event signaling and 
general purpose messaging.



PCIe architecture



Interrupt Model

PCI Express supports three interrupt reporting  
mechanisms:

1. Message Signaled Interrupts (MSI)
- interrupt the CPU by writing to a specific address in memory with a  
payload of 1 DW

2. Message Signaled Interrupts - X (MSI-X)
- MSI-X is an extension to MSI, allows targeting individual interrupts to  
different processors

3. INTx Emulation
four physical interrupt signals INTA-INTD are messages upstream

- ultimately be routed to the system interrupt controller



NetFPGA Reference Projects
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Processing Overheads

• Processing in the kernel takes a lot of time…

Source: Yasukata et al. “StackMap: Low-Latency Networking with the OS Stack and 
Dedicated NICs”, Usenix ATC 2016

Component Time [us]
Driver RX 0.60
Ethernet & IPv4 RX 0.19
TCP RX 0.53
Socket Enqueue 0.06
TCP TX 0.70
IPv4 & Ethernet TX 0.06
Driver TX 0.43



Processing Overheads

• Processing in the kernel takes a lot of time…

• Order of microseconds (~2-4us on Xeon E5-v4)

• ×10 the time through a switch

• Solution: don’t go through the kernel!



Kernel Bypass

• The Kernel is slow – lets bypass the Kernel!

• There are many ways to achieve kernel bypass

• Some examples:

• Device drivers:

• Customized kernel device driver. E.g. Netmap forks standard Intel 
drivers with extensions to map I/O memory into userspace.

• Custom hardware and use bespoke device drivers for the 
specialized hardware.

• Userspace library: anything from basic I/O to the entire TCP/IP stack



Kernel Bypass - Examples
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DPDK

• DPDK is a popular set of libraries and drivers for fast packet 
processing.

• Originally designed for Intel processors

• Now running also on ARM and Power CPUs

• Runs mostly in Linux User space.

• Main libraries: multicore framework, huge page memory, ring buffers, 
poll-mode drivers (networking, crypto etc)

• It is not a networking stack 



DPDK

• Usage examples:

• Send and receive packets within minimum number of CPU cycles

• E.g. less than 80 cycles

• Fast packet capture algorithms 

• Running third-party stacks

• Some projects demonstrated 100’s of millions packets per seconds

• But with limited functionality

• E.g. as a software switch / router 
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