
P51: High Performance Networking
Lecture 4: Low Latency Devices

Dr Noa Zilberman
noa.zilberman@cl.cam.ac.uk Lent 2017/18

• Last week we discussed the clock frequency required in different places
in the design.

• Crossing clock domains requires careful handling

Crossing Clock Domains

Data In

Data Out

Clk In

Clk Out

Asynchronous FIFO

4 x 25G

10 x 10G
Gear Box

Write Clk
Write Ptr

Read Clk
Read Ptr

Synchronizer

• Why do we care about clock domain crossing?

• Adds latency

• The latency is not deterministic

• But bounded

• Crossing clock domains multiple times increases the jitter

• Using a single clock is often not an option:

• Insufficient packet processing rate

• Multiple interface clocks

• Need speed up (e.g., to handle control events)

Crossing Clock Domains

Flow Control

• The flow of the data through the device (the network) needs to be
regulated

• Different events may lead to stopping the data:

• An indication from the destination to stop

• Congestion (e.g. 2 ports sending to 1 port)

• Crossing clock domains

• Rate control

• …

Data

Back pressure

Flow Control

• Providing back pressure is not always allowed

• In such cases, need to make amendments in the design

NIF

NIF

NIF

NIF

NIF

NIF

NIF

NIF

OQ

OQ

OQ

OQ

Sc
he

du
le

r

PP

IQ

IQ

IQ

IQ

Flow Control

• What to do if an output queue is congested?

NIF

NIF

NIF

NIF

NIF

NIF

NIF

NIF

OQ

OQ

OQ

OQ

Sc
he

du
le

r

PP

IQ

IQ

IQ

IQ

Flow Control and Buffering

• Back pressure may take time

• Need to either:

• Assert back pressure sufficient time before traffic needs to stop
OR

• Provide sufficient buffering

time

Data
stops

Stop
triggered

Flow Control and Buffering

Calculating buffer size:

Intuitively:

Nearby sender: Buffer size ≥ Reaction time × Data rate

Remote sender: Buffer size ≥ RTT × Data rate

Buffer size ≥ (RTT + Reaction time) × Data rate

3. In-flight
data arrives

2. Data stops 1. Stop
triggered

BufferSender

Flow Control and Buffering

Calculating buffer size:

2 switches, connected using 100m fibre, 10G port, instantaneous
response time:
Propagation delay in a fibre is 5ns/m

Buffer size ≥ 1us × 10Gbps = ~1.25KB

3. In-flight
data arrives

2. Data stops 1. Stop
triggered

BufferSender

DMA

Host architecture

Legacy vs. Recent (courtesy of Intel)

Interconnecting components

• Need interconnections between
– CPU, memory, storage, network, I/O controllers

• Shared Bus: shared communication channel
– A set of parallel wires for data and synchronization of

data transfer

– Can become a bottleneck

• Performance limited by physical factors

– Wire length, number of connections

• More recent alternative: high-speed serial connections with switches
– Like networks

I/O System Characteristics

• Performance measures
– Latency (response time)
– Throughput (bandwidth)
– Desktops & embedded systems

• Mainly interested in response time & diversity of devices
– Servers

• Mainly interested in throughput & expandability of devices

• Reliability
– Particularly for storage devices (fault avoidance, fault tolerance, fault

forecasting)

I/O Management and strategies

• I/O is mediated by the OS
– Multiple programs share I/O resources

• Need protection and scheduling
– I/O causes asynchronous interrupts

• Same mechanism as exceptions
– I/O programming is fiddly

• OS provides abstractions to programs
Strategies characterize the amount of work done by the CPU in the I/O
operation:

• Polling
• Interrupt Driven
• Direct Memory Access

The I/O Access Problem

• Question: how to transfer data from I/O devices to memory
(RAM)?

• Trivial solution:
• Processor individually reads or writes every word
• Transferred to/from I/O through an internal register to memory

• Problems:
• Extremely inefficient – can occupy a processor for 1000’s of cycles
• Pollute cache

DMA

• DMA – Direct Memory Access
• A modern solution to the I/O access problem
• The peripheral I/O can issue read/write commands directly to

the memory
• Through the main memory controller
• The processor does not need to execute any operation

• Write: The processor is notified when a transaction is
completed (interrupt)

• Read: The processor issues a signal to the I/O when the data
is ready in memory

Example – Intel Xeon D

1

1. Message arrives on I/O
interface.
Message is decoded to
Mem read/write.
Address is converted to
internal address.

2

2. Mem Read/Write
command goes through
the switch to the internal
bus and memory
controller.

3

3. Memory controller
executes the command
to the DRAM.
Returns data if required
in the same manner.

Memory Mapped Access

Example (Embedded Processor)

DMA

• DMA accesses are usually handled in buffers
• Single word/block is typically inefficient

• The processors assigns the peripheral unit the buffers in
advance

• The buffers are typically handled by buffer descriptors
• Pointer to the buffer in the memory
• May point to the next buffer as well
• Indicates buffer status: owner, valid etc.
• May include additional buffer properties as well

Transfers blocks of data
between external interfaces
and local address space

DMA Access

1
1. A transfer is started by SW

writing to DMA engine
configuration registers

3

3. DMA engine fetches a
descriptor from memory

4. DMA engine reads block of
data from source

4

2

2. SW Polls DMA channel
state to idle and sets trigger

5. DMA engine writes data to
destination

5

Example (Embedded Processor)

Intel Data Direct I/O (DDIO)

• Data is written and read directly to/from the last level cache
(LLC)

PCIe introduction

• PCIe is a serial point-to-point interconnect between two devices

• Implements packet based protocol (TLPs) for information transfer
• Scalable performance based on # of signal Lanes implemented on the PCIe

interconnect
• Supports credit-based point-to-point flow control (not end-to-end)

Provides:
• Processor independence &

buffered isolation

• Bus mastering

• Plug and Play operation

PCIe transaction types

• Memory Read or Memory Write. Used to transfer data from or to a
memory mapped location

• I/O Read or I/O Write. Used to transfer data from or to an I/O
location

• Configuration Read or Configuration Write. Used to discover device
capabilities, program features, and check status in the 4KB PCI
Express configuration space.

• Messages. Handled like posted writes. Used for event signaling and
general purpose messaging.

PCIe architecture

Interrupt Model

PCI Express supports three interrupt reporting
mechanisms:

1. Message Signaled Interrupts (MSI)
- interrupt the CPU by writing to a specific address in memory with a
payload of 1 DW

2. Message Signaled Interrupts - X (MSI-X)
- MSI-X is an extension to MSI, allows targeting individual interrupts to
different processors

3. INTx Emulation
four physical interrupt signals INTA-INTD are messages upstream

- ultimately be routed to the system interrupt controller

NetFPGA Reference Projects
H

os
ts

ys
te

m
PC

Ie
nd

po
in

t

D
ire

ct

M
em

or
y

Ac
ce

ss
10GE

10GE

10GE

10GE

In
pu

t
Ar

bi
te

r

O
ut

pu
t

Po
rt

Lo
ok

up

O
ut

pu
t

Q
ue

ue
s

AX
I

In
te

rc
on

ne
ct

Processing Overheads

• Processing in the kernel takes a lot of time…

Source: Yasukata et al. “StackMap: Low-Latency Networking with the OS Stack and
Dedicated NICs”, Usenix ATC 2016

Component Time [us]
Driver RX 0.60
Ethernet & IPv4 RX 0.19
TCP RX 0.53
Socket Enqueue 0.06
TCP TX 0.70
IPv4 & Ethernet TX 0.06
Driver TX 0.43

Processing Overheads

• Processing in the kernel takes a lot of time…

• Order of microseconds (~2-4us on Xeon E5-v4)

• ×10 the time through a switch

• Solution: don’t go through the kernel!

Kernel Bypass

• The Kernel is slow – lets bypass the Kernel!

• There are many ways to achieve kernel bypass

• Some examples:

• Device drivers:

• Customized kernel device driver. E.g. Netmap forks standard Intel
drivers with extensions to map I/O memory into userspace.

• Custom hardware and use bespoke device drivers for the
specialized hardware.

• Userspace library: anything from basic I/O to the entire TCP/IP stack

Kernel Bypass - Examples

NIC

Device driver

OS packet I/O
TCP/IP/ETH

Socket API

Application

Kernel

User
space

Hardware

Framework

NIC

Device driver

TCP/IP/
ETH

Application

Kernel

User
space

Hardware

Buffers

NIC

Device driver

ApplicationUser
space

Hardware

Library

No Bypass Partly within Kernel Completely in
User Space

DPDK

• DPDK is a popular set of libraries and drivers for fast packet
processing.

• Originally designed for Intel processors

• Now running also on ARM and Power CPUs

• Runs mostly in Linux User space.

• Main libraries: multicore framework, huge page memory, ring buffers,
poll-mode drivers (networking, crypto etc)

• It is not a networking stack

DPDK

• Usage examples:

• Send and receive packets within minimum number of CPU cycles

• E.g. less than 80 cycles

• Fast packet capture algorithms

• Running third-party stacks

• Some projects demonstrated 100’s of millions packets per seconds

• But with limited functionality

• E.g. as a software switch / router

	P51: High Performance Networking
	Crossing Clock Domains
	Crossing Clock Domains
	Flow Control
	Flow Control
	Flow Control
	Flow Control and Buffering
	Flow Control and Buffering
	Flow Control and Buffering
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	The I/O Access Problem
	DMA
	Example – Intel Xeon D
	Example (Embedded Processor)
	DMA
	Example (Embedded Processor)
	Intel Data Direct I/O (DDIO)
	Slide Number 22
	Slide Number 23
	PCIe architecture
	Slide Number 25
	NetFPGA Reference Projects
	Processing Overheads
	Processing Overheads
	Kernel Bypass
	Kernel Bypass - Examples
	DPDK
	DPDK

