
P51 - Lab 1, Introduction to NetFPGA

Dr Noa Zilberman

Lent, 2017/18

The goal of this lab is to introduce you to NetFPGA, and to provide hands on experience
both in using the platform and developing for it.

1 Background

The demand-led growth of cloud computing and datacenter networks has meant that
many constituent technologies are beyond the budget of the research community. In
order to make and validate timely, relevant research contributions, the wider research
community requires accessible evaluation, experimentation and demonstration environ-
ments with specification comparable to the subsystems of the most massive datacenter
networks.

The NetFPGA is an open platform enabling researchers and instructors to build high-
speed, hardware-accelerated networking systems. The most prominent NetFPGA success
is OpenFlow, which in turn has reignited the Software Defined Networking movement.
NetFPGA enabled OpenFlow by providing a widely available open-source development
platform capable of line-rate operation and was, until its commercial uptake, the refer-
ence platform for OpenFlow.

NetFPGA enables rapid prototyping of high bandwidth devices, using flexible, open-
source IPs. Specifically, we use NetFPGA SUME, an open-source FPGA-based PCIe
board, designed for the research community. NetFPGA SUME has I/O capabilities for
100Gbps operation as a networking device, stand alone computing unit or for test and
measurement.

2 Development Machines

During the course you will use an assigned development machine. Each pair will be
assigned a different machine. All the machines are located in the Practical Classroom
(SW02). This provides access to the machines, so you can change the physical connec-
tivity according to the experiment.

You will interact with the machines via ssh:

1

1. On a computer in the Practical Classroom, log in using your own UIS credentials.

2. ssh -X root@<hostname>.nf.cl.cam.ac.uk and enter the password. Hosts end-
ing in .cl.cam.ac.uk are permitted to ssh into these machines. -X enables X11
forwarding, allowing you to run graphical applications.
To ssh to the machines from outside the lab, follow the instructions on
https://www.cl.cam.ac.uk/local/sys/ssh/.

Hostname IP Address

nf-test101 128.232.82.84

nf-test108 128.232.82.78

nf-test110 128.232.82.93

nf-test111 128.232.82.81

Important: The IP addresses noted above should not be used for anything
except for communication with the machines. The network interfaces as-
signed for the tests use different IP addresses.

3 Test Setup

Each of the development machines is equipped as follows:

• NetFPGA SUME board, used as the development platform
NetFPGA network ports are marked nf0 to nf3.

• Solarflare network interface cards (NIC) - SFN6122F
Solarflare network ports are marked slf0 and slf1.

• Optical fibers - duplex fibres with separate strands for transmitting and receiving.

• Optical 10G transceivers (SFP+) - converting electrical signals to optical signals
and vice versa.

The network port markings noted above apply only to Figure 1. The name of the port
on each machine may differ, (e.g.,eth1).
In a typical setup, each NIC port will be connected to a NetFPGA SUME port, e.g. slf0
to nf0, and slf1 to nf1.

2

Figure 1: Development Platform

4 Saving Your Work

Make sure to frequently back up your work.
The most recommended way to back up your work is using frequent commits to a git
repository. Please do not push any changes, data or results directly to the NetFPGA
repository. You can fork the repository to your own user and push changes there. If
you would like to suggest a correction or an enhancement to the code, please follow the
instructions in:
https://github.com/NetFPGA/NetFPGA-SUME-public/wiki/Contributing-Code.

To copy a remote directory onto your local machine:
sftp root@<hostname>.nf.cl.cam.ac.uk and get -r <directory>.
There are also other ways to copy a remote directory, you are welcome to use those as
well.

3

5 Using NetFPGA

This section provides step-by-step instructions how to access and test a NetFPGA design.
To this end, we will be using the Reference Switch design studied in class.

5.1 Accessing and programming the board

1. Login to the development machine:

$ ssh root@<hostname>.nf.cl.cam.ac.uk

2. $ cd ~/P51/NetFPGA-SUME-live/tools/

$ vim settings.sh

3. Make sure that NF PROJECT NAME is set to “reference switch”

4. Load the environment settings:

$ source settings.sh

5. Compile the driver (one time only):

cd $DRIVER_FOLDER

make

6. Compile register access application (one time only):

cd $APPS_FOLDER

make

7. Program the NetFPGA board:

$ cd $SUME_FOLDER/tools/scripts

$./run_load_image.sh $NF_DESIGN_DIR/bitfiles/reference_switch.bit

Note that you may need to reset the machine if this is the first time the board is
programmed after power up. This allows the PCIe bus to properly identify and
enumerate the board. The first time the board is programmed after reset (not
power up!), you may see a message “rmmod: ERROR: Module sume riffa is not
currently loaded”. It can be ignored.

8. The board is now programmed and ready.

4

5.2 Simple Debug

• Check if the board is recognized by the host:

lspci -v |grep Xilinx

The expected result is:

01:00.0 Memory controller: Xilinx Corporation Device 7028

Subsystem: Xilinx Corporation Device 0007

• Check if simple register access works:

cd $APPS_FOLDER

./rwaxi

The expected result is:

WARNING: using default test address 0x44020000

READ 0x44020000 = 0x0001da02

Note that the return value may change - 0x0001da02 is the ID of the output port
lookup module. You module(s) may use a different value.

• Reading all the design registers:

cd $APPS_FOLDER

make register_read

cd $NF_DESIGN_DIR/sw/host/apps/

./register_read.sh

• Reading a specific register (e.g. address 0x44010004):

cd $APPS_FOLDER

./rwaxi -a 0x44010008

• Writing to a specific register (e.g. address 0x44010010, value 0xabcdabcd):

cd $APPS_FOLDER

./rwaxi -a 0x44010010 -w 0xabcdabcd

• Making sure that register access reaching the module:
To make sure that a register access reaches the hardware and is not replied by
some cache, most NetFPGA modules implement a “FLIP” register (typically at
offset 0xc). The FLIP register returns the inverse of the value written to it. For
example:

5

cd $APPS_FOLDER

./rwaxi -a 0x4401000C -w 0x55555555

./rwaxi -a 0x4401000C

Will return:

READ 0x4401000c = 0xaaaaaaaa

• Making a file (e.g., sh) executable:

chmod +x <filename>

5.3 Testing a design

This section covers simple design testing of the NetFPGA platform, focusing on func-
tionality. Performance testing will be discussed later in the course.

For each NetFPGA design, functional tests need to be written. The tests are located
under $NF DESIGN DIR/test. Each test has a dedicated folder called hw/sim/both major minor,
for example both simple broadcast or both learning sw. The test itself is written in
python, in a file called run.py. The NetFPGA test environment (python based as well)
calls this file when invoked.

The NetFPGA Reference Switch is a Learning Switch, meaning that forwarding is
done based on MAC addresses that the switch sees in incoming packets and associates
with ports. For example, is a packet with source MAC address aa : bb : cc : dd : ee : ff
is received on Port 1, the switch will save in its lookup table an entry equivalent to
“aa : bb : cc : dd : ee : ff , Port 1”, and the next time a packet arrives with a destination
MAC address aa : bb : cc : dd : ee : ff it will know to send it to port 1. When the
destination MAC address is not in the lookup table, the switch uses broadcast: it sends
the packet on all ports (except for the incoming port).

The test both simple broadcast tests the switch’s broadcast operation, and the test
both learning sw tests both broadcast and learning. Read the file run.py under each test
to learn how exactly it is done.

The following describes the steps for running a simulation, without GUI:

cd $SUME_FOLDER/tools/scripts

./nf_test.py sim --major learning --minor sw

The following describes the steps for running a simulation, with GUI (Vivado xsim):

cd $SUME_FOLDER/tools/scripts

./nf_test.py sim --major learning --minor sw --gui

Note that using xsim is not mandatory. You can also change the environment and use
Modelsim, and a license for that is available.

The following describes the steps for running a hardware test:

6

1. Connect port 0 of the NIC to port 0 of NetFPGA using a fibre.

2. Connect port 1 of the NIC to port 1 of NetFPGA using a fibre.

3. Check what are the interfaces names of your NIC (These can also be config-
ures/modified, but it is not mandatory):

ifconfig -a

4. Update interface names in the project test configuration files:

vim $NF_DESIGN_DIR/test/global/setup

vim $NF_DESIGN_DIR/test/connections/conn

Note that connections/conn file reflects the physical (external) connectivity be-
tween the NIC’s ports and NetFPGA’s ports.

5. Run the hardware test:

cd $SUME_FOLDER/tools/scripts

./nf_test.py hw --major learning --minor sw

The Reference Switch also works as a normal switch, enabling to connect multiple
devices. For the following exercise you should work with another team, so two machines
are used. We refer to those as Machine A and machine B.

1. On Machine A, Connect port 0 of the NIC to port 0 of NetFPGA using a fibre.

2. On Machine B, Connect port 0 of the NIC to port 1 of NetFPGA on Machine A
using a fibre.

3. On Machine A, configure NIC port 0 (lets assume it is called eth1):

ifconfig eth1 10.0.0.100 up

4. On Machine B, configure NIC port 0 (lets assume it is called eth1):

ifconfig eth1 10.0.0.101 up

5. Check that the connectivity between both machines works. From Machine A ping
Machine B:

ping 10.0.0.101

6. You can also check the same in the opposite direction. From Machine B ping
Machine A:

ping 10.0.0.100

7

6 Building a project

The following steps are typically required when building a project:

• Compiling an IP core:

cd $IP_FOLDER/<ip core name>

make

This step is required only for new IP cores or when changes are made to the tcl
file of the core. There is no need to run make if only the HDL files were modified.

• Compiling CAM/TCAM cores:
Follows the instructions on https://github.com/NetFPGA/NetFPGA-SUME-public/

wiki/NetFPGA-SUME-TCAM-IPs

The CAM core is required for building the NetFPGA project. You only need to
run this step once.

• Compiling all cores and building libraries:

cd $SUME_FOLDER

make

This step if typically required only once: after the git repository is cloned or pulled.
It is also required if the make clean command was called.

• Building a project:

cd $NF_DESIGN_DIR

make

The result of this step is the programming (bit) file.

7 Useful links

• NetFPGA Repository: https://github.com/NetFPGA/NetFPGA-SUME-live/

• NetFPGA Wiki: https://github.com/NetFPGA/NetFPGA-SUME-public/wiki

• NetFPGA registration page: https://netfpga.org/site/#/SUME_reg_form/

8

