
Lecture 7
Redundancy elimination



Motivation

Some expressions in a program may cause redundant 
recomputation of values.

If such recomputation is safely eliminated, the program 
will usually become faster.

There exist several redundancy elimination optimisations 
which attempt to perform this task in different ways 
(and for different specific meanings of “redundancy”).



Common subexpressions

Common-subexpression elimination is a transformation 
which is enabled by available-expression analysis (AVAIL), 
in the same way as LVA enables dead-code elimination.

Since AVAIL discovers which expressions will have been 
computed by the time control arrives at an instruction in 

the program, we can use this information to spot and 
remove redundant computations.



Common subexpressions

Recall that an expression is available at an instruction if its 
value has definitely already been computed and not been 

subsequently invalidated by assignments to any of the 
variables occurring in the expression.

If the expression e is available on entry to an instruction 
which computes e, the instruction is performing a 

redundant computation and can be modified or removed.



Common subexpressions

We consider this redundantly-computed expression 
to be a common subexpression: it is common to more 
than one instruction in the program, and in each of 
its occurrences it may appear as a subcomponent of 

some larger expression.

x = (a*b)+c; 
⋮  
print a * b; a*b AVAILABLE



Common subexpressions

We can eliminate a common subexpression by 
storing its value into a new temporary variable 

when it is first computed, and reusing that variable 
later when the same value is required.



Algorithm

• Find a node n which computes an already-
available expression e

• Replace the occurrence of e with a new 
temporary variable t

• On each control path backwards from n, find 
the first instruction calculating e and add a 
new instruction to store its value into t

• Repeat until no more redundancy is found



Algorithm

a = y * z b = y * z c = y * z

y*z AVAILABLEx = t



Algorithm

a = y * z b = y * z c = y * zt = y * z 
a = t

t = y * z 
b = t

t = y * z 
c = t

x = t



Common subexpressions

Our transformed program performs (statically) 
fewer arithmetic operations: y*z is now 

computed in three places rather than four.

However, three register copy instructions have 
also been generated; the program is now larger, 

and whether it is faster depends upon 
characteristics of the target architecture.



Common subexpressions

The program might have “got worse” as a result of 
performing common-subexpression elimination.

In particular, introducing a new variable increases 
register pressure, and might cause spilling.

Memory loads and stores are much more expensive 
than multiplication of registers!



Copy propagation
This simple formulation of CSE is fairly careless, and 
assumes that other compiler phases are going to tidy 

up afterwards.

In addition to register allocation, a transformation 
called copy propagation is often helpful here.

In copy propagation, we scan forwards from an x=y 
instruction and replace x with y wherever it appears 

(as long as neither x nor y have been modified).



Copy propagation

c = y * z

d = y * z

b = y * z

a = y * z



Copy propagation

c = y * z

b = y * z

a = y * zt3 = y * z 
a = t3

t2 = y * z 
b = t2

d = t1

t1 = t2 
c = t1



t3 = y * z 
a = t3

Copy propagation

t2 = t3 
b = t3

t1 = t3 
c = t3

d = t3



Code motion

Transformations such as CSE are known collectively 
as code motion transformations: they operate by 
moving instructions and computations around 
programs to take advantage of opportunities 
identified by control- and data-flow analysis.

Code motion is particularly useful in eliminating 
different kinds of redundancy.

It’s worth looking at other kinds of code motion.



Code hoisting

Code hoisting reduces the size of a program by moving 
duplicated expression computations to the same place, 
where they can be combined into a single instruction.

Hoisting relies on a data-flow analysis called very busy 
expressions (a backwards version of AVAIL) which finds 

expressions that are definitely going to be evaluated later in 
the program; these can be moved earlier and possibly 

combined with each other.



b = x + ya = x + y

x = 19 
y = 23

Code hoisting

x+y VERY BUSY



x = 19 
y = 23 
t1 = x + y

Code hoisting

b = t1a = t1



Code hoisting

Hoisting may have a different effect on execution 
time depending on the exact nature of the code. 

The resulting program may be slower, faster, or just 
the same speed as before.



Loop-invariant code motion

Some expressions inside loops are redundant in the 
sense that they get recomputed on every iteration even 

though their value never changes within the loop.

Loop-invariant code motion recognises these redundant 
computations and moves such expressions outside of 

loop bodies so that they are only evaluated once.



Loop-invariant code motion

a = ...; 
b = ...; 
while (...) { 
  x = a + b; 
  ... 
} 
print x;

a = ...; 
b = ...; 
x = a + b; 
while (...) { 
  ... 
} 
print x;



Loop-invariant code motion

This transformation depends upon a data-flow analysis 
to discover which assignments may affect the value of a 

variable (“reaching definitions”).

If none of the variables in the expression are redefined 
inside the loop body (or are only redefined by 

computations involving other invariant values), the 
expression is invariant between loop iterations and may 

safely be relocated before the beginning of the loop.



Partial redundancy

Partial redundancy elimination combines common-
subexpression elimination and loop-invariant 

code motion into one optimisation which 
improves the performance of code.

An expression is partially redundant when it is 
computed more than once on some (vs. all) paths 

through a flowgraph; this is often the case for 
code inside loops, for example.



Partial redundancy

a = ...; 
b = ...; 
while (...) { 
  ... = a + b; 
  a = ...; 
  ... = a + b; 
}

a = ...; 
b = ...; 
... = a + b; 
while (...) { 
  ... = a + b; 
  a = ...; 
  ... = a + b; 
}



Partial redundancy

This example gives a faster program of the same size.

Partial redundancy elimination can be achieved in its 
own right using a complex combination of several 

forwards and backwards data-flow analyses in order to 
locate partially redundant computations and discover 

the best places to add and delete instructions.



Putting it all together
a = x + y; 
b = x + y; 
r = z; 
if (a == 42) { 
  r = a + b; 
  s = x + y; 
} else { 
  s = a + b; 
} 
t = b + r; 
u = x + y; 
⋮ 
return r+s+t+u;

ADD a,x,y 
ADD b,x,y 
MOV r,z

ADD r,a,b 
ADD s,x,y

ADD s,a,b

ADD t,b,r 
ADD u,x,y



Putting it all together

ADD a,x,y 
ADD b,x,y 
MOV r,z 

ADD r,a,b 
ADD s,x,y

ADD s,a,b

ADD t,b,r 
ADD u,x,y

x+y COMMON



ADD t1,x,y 
MOV a,t1 
MOV b,t1 
MOV r,z

Putting it all together

ADD r,a,b 
ADD s,x,y

ADD s,a,b

ADD t,b,r 
ADD u,x,y x+y COMMON

x+y COMMON



COPIES OF t3 

ADD t3,x,y 
MOV t2,t3 
MOV t1,t2 
MOV a,t1 
MOV b,t1 
MOV r,z

Putting it all together

ADD r,a,b 
MOV s,t2

ADD s,a,b

ADD t,b,r 
MOV u,t3



Putting it all together
ADD t3,x,y 
MOV t2,t3 
MOV t1,t3 
MOV a,t3 
MOV b,t3 
MOV r,z

ADD r,a,b 
MOV s,t2

ADD s,a,b

ADD t,b,r 
MOV u,t3

COPIES OF t3 



Putting it all together
ADD t3,x,y 
MOV t2,t3 
MOV t1,t3 
MOV a,t3 
MOV b,t3 
MOV r,z

ADD r,t3,t3 
MOV s,t3

ADD s,t3,t3

ADD t,t3,r 
MOV u,t3

t1, t2 DEAD



Putting it all together

ADD t3,x,y 
MOV a,t3 
MOV b,t3 
MOV r,z

ADD r,t3,t3 
MOV s,t3

ADD s,t3,t3

ADD t,t3,r 
MOV u,t3

t3+t3 VERY BUSY



a, b DEAD

Putting it all together

MOV r,t4 
MOV s,t3

MOV s,t4

ADD t,t3,r 
MOV u,t3

ADD t3,x,y 
MOV a,t3 
MOV b,t3 
MOV r,z 
ADD t4,t3,t3



Putting it all together

MOV r,t4 
MOV s,t3

MOV s,t4

ADD t,t3,r 
MOV u,t3

ADD t3,x,y 
MOV r,z 
ADD t4,t3,t3



Summary
• Some optimisations exist to reduce or remove 

redundancy in programs

• One such optimisation, common-subexpression 
elimination, is enabled by AVAIL

• Copy propagation makes CSE practical

• Other code motion optimisations can also help to 
reduce redundancy

• These optimisations work together to improve 
code


	Lecture 1 short
	Lecture 2 short
	Lecture 3 short
	Lecture 4 short
	Lecture 5 short
	Lecture 6 short
	Lecture 7 short
	Lecture 8 short
	Lecture 9 short
	Lecture 10 short
	Lecture 11 short
	Lecture 12 short
	Lecture 13 short
	Lecture 14 short
	Lecture 15 short
	Lecture 16 short



