
Lecture 6
Register allocation



Motivation
Normal form is convenient for intermediate code.

However, it’s extremely wasteful.

Real machines only have a small finite number of registers, 
so at some stage we need to analyse and transform the 
intermediate representation of a program so that it only 
requires as many (architectural) registers as are really 

available.

This task is called register allocation.



Graph colouring

Register allocation depends upon the solution of a 
closely related problem known as graph colouring.





Graph colouring



Graph colouring

For general (non-planar) graphs, however, 
four colours are not sufficient; there is no 

bound on how many may be required.



✗

Graph colouring

?

red

green

blue

yellow



✓
Graph colouring

red

green

blue

yellow

purple

brown



Allocation by colouring

This is essentially the same problem that 
we wish to solve for clash graphs.

• How many colours (i.e. architectural registers) are 
necessary to colour a clash graph such that no 
two connected vertices have the same colour 
(i.e. such that no two simultaneously live virtual 
registers are stored in the same arch. register)?

• What colour should each vertex be?



MOV x,#11 
MOV y,#13 
ADD t1,x,y 
MUL z,t1,#2 
MOV a,#17 
MOV b,#19 
MUL t2,a,b 
ADD z,z,t2

MOV x,#11 
MOV y,#13 
ADD t1,x,y 
MUL z,t1,#2 
MOV a,#17 
MOV b,#19 
MUL t2,a,b 
ADD z,z,t2

MOV x,#11 
MOV y,#13 
ADD t1,x,y 
MUL z,t1,#2 
MOV a,#17 
MOV b,#19 
MUL t2,a,b 
ADD z,z,t2

MOV x,#11 
MOV y,#13 
ADD t1,x,y 
MUL z,t1,#2 
MOV a,#17 
MOV b,#19 
MUL t2,a,b 
ADD z,z,t2

MOV x,#11 
MOV y,#13 
ADD t1,x,y 
MUL z,t1,#2 
MOV a,#17 
MOV b,#19 
MUL t2,a,b 
ADD z,z,t2

MOV x,#11 
MOV y,#13 
ADD t1,x,y 
MUL z,t1,#2 
MOV a,#17 
MOV b,#19 
MUL t2,a,b 
ADD z,z,t2

MOV x,#11 
MOV y,#13 
ADD t1,x,y 
MUL z,t1,#2 
MOV a,#17 
MOV b,#19 
MUL t2,a,b 
ADD z,z,t2

MOV x,#11 
MOV y,#13 
ADD t1,x,y 
MUL z,t1,#2 
MOV a,#17 
MOV b,#19 
MUL t2,a,b 
ADD z,z,t2

MOV r0,#11 
MOV r1,#13 
ADD r0,r0,r1 
MUL r2,r0,#2 
MOV r0,#17 
MOV r1,#19 
MUL r0,r0,r1 
ADD r2,r2,r0

Allocation by colouring

z

x y t1

t2 ba

x t1

t2 a

y

b

z



Algorithm

Finding the minimal colouring for a graph is NP-hard, and 
therefore difficult to do efficiently. 

However, we may use a simple heuristic algorithm which 
chooses a sensible order in which to colour vertices and 

usually yields satisfactory results on real clash graphs.



Algorithm

• Choose a vertex (i.e. virtual register) which has 
the least number of incident edges (i.e. clashes).

• Remove the vertex and its edges from the 
graph, and push the vertex onto a LIFO stack.

• Repeat until the graph is empty.

• Pop each vertex from the stack and colour it in 
the most conservative way which avoids the 
colours of its (already-coloured) neighbours.



Algorithm

z

a

x

z

yw

b

c d

x

y

w

a

b

c

d



Algorithm

a

x

z

yw

b

c ddc

a b

w

x

y

z

r0 
r1 
r2 
r3



Algorithm

Bear in mind that this is only a heuristic.

a

b c

x

y z

a

b c

x

y z



Algorithm

Bear in mind that this is only a heuristic.

a

b c

x

y z

a

b c

x

y z

A better (more minimal) colouring may exist.

a

b



Spilling

This algorithm tries to find an approximately minimal 
colouring of the clash graph, but it assumes new 

colours are always available when required.

In reality we will usually have a finite number of 
colours (i.e. architectural registers) available; how 

should the algorithm cope when it runs out of colours?



Spilling

The quantity of architectural registers is strictly 
limited, but it is usually reasonable to assume that 
fresh memory locations will always be available.

So, when the number of simultaneously live values 
exceeds the number of architectural registers, we 

may spill the excess values into memory.

Operating on values in memory is of course much 
slower, but it gets the job done.



Spilling

ADD a,b,c

LDR t1,#0xFFA4 
LDR t2,#0xFFA8 
ADD t3,t1,t2 
STR t3,#0xFFA0

vs.



Algorithm
• Choose a vertex with the least number of edges.

• If it has fewer edges than there are colours,

• remove the vertex and push it onto a stack,

• otherwise choose a register to spill — e.g. the 
least-accessed one — and remove its vertex.

• Repeat until the graph is empty.

• Pop each vertex from the stack and colour it.

• Any uncoloured vertices must be spilled.



Algorithm

a

x

z

y

a: 3, b: 5, c: 7, d: 11, w: 13, x: 17, y: 19, z: 23

b

c d

w

b

d



Algorithm

z

a

x

z

yw

b

c d

x

y

c

d

w



Algorithm

a

x

z

yw

b

c ddc

x

y

z

a: 3, b: 5, c: 7, d: 11, w: 13, x: 17, y: 19, z: 23

r0 
r1
a and b

spilled to memory

w



Algorithm
Choosing the right virtual register to spill will 

result in a faster, smaller program.

The static count of “how many accesses?” is a 
good start, but doesn’t take account of more 
complex issues like loops and simultaneous 

liveness with other spilled values.

One easy heuristic is to treat one static access 
inside a loop as (say) 4 accesses; this generalises 
to 4n accesses inside a loop nested to level n.



Algorithm
“Slight lie”: when spilling to memory, we (normally) need 
one free register to use as temporary storage for values 

loaded from and stored back into memory.

If any instructions operate on two spilled values 
simultaneously, we may need two such temporary 

registers to store both values.

So, in practise, when a spill is detected we may need to 
restart register allocation with one (or two) fewer 
architectural registers available so that these can be 
kept free for temporary storage of spilled values.



Algorithm
When we are popping vertices from the stack and 

assigning colours to them, we sometimes have more 
than one colour to choose from.

If the program contains an instruction “MOV a,b” then 
storing a and b in the same arch. register (as long as 

they don’t clash) will allow us to delete that instruction.

We can construct a preference graph to show which 
pairs of registers appear together in MOV instructions, 

and use it to guide colouring decisions.



Non-orthogonal instructions
We have assumed that we are free to choose 

architectural registers however we want to, but this is 
simply not the case on some architectures.

• The x86 MUL instruction expects one of its 
arguments in the AL register and stores its result into 
AX.

• The VAX MOVC3 instruction zeroes r0, r2, r4 and 
r5, storing its results into r1 and r3.

We must be able to cope with such irregularities.



Non-orthogonal instructions

We can handle the situation tidily by pre-allocating a 
virtual register to each of the target machine’s arch. 

registers, e.g. keep v0 in r0, v1 in r1, ..., v31 in r31.

When generating intermediate code in normal form, we 
avoid this set of registers, and use new ones (e.g. v32, 

v33, ...) for temporaries and user variables.

In this way, each architectural register is explicitly 
represented by a unique virtual register.



Non-orthogonal instructions
We must now do extra work when generating 

intermediate code:

• When an instruction requires an operand in a 
specific arch. register (e.g. x86 MUL), we generate a 
preceding MOV to put the right value into the 
corresponding virtual register.

• When an instruction produces a result in a specific 
arch. register (e.g. x86 MUL), we generate a trailing 
MOV to transfer the result into a new virtual register.



Non-orthogonal instructions

x = 19; 
y = 23; 
z = x + y;

MOV v32,#19 
MOV v33,#23 
MOV v1,v32 
MOV v2,v33 
ADD v0,v1,v2 
MOV v34,v0

If (hypothetically) ADD on the target architecture 
can only perform r0 = r1 + r2:



preference graph

Non-orthogonal instructions
This may seem particularly wasteful, but many of 
the MOV instructions will be eliminated during 
register allocation if a preference graph is used.

MOV v32,#19 
MOV v33,#23 
MOV v1,v32 
MOV v2,v33 
ADD v0,v1,v2 
MOV v34,v0

v32 v33v34

v0 v1 v2



clash graph

Non-orthogonal instructions
This may seem particularly wasteful, but many of 
the MOV instructions will be eliminated during 
register allocation if a preference graph is used.

v32 v33v34

v0 v1 v2

v32 v33v34

preference graph

v34 v32 v33

v0 v1 v2



clash graph

MOV v32,#19 
MOV v33,#23 
MOV v1,v32 
MOV v2,v33 
ADD v0,v1,v2 
MOV v34,v0

MOV v32,#19 
MOV v33,#23 
MOV v1,v32 
MOV v2,v33 
ADD v0,v1,v2 
MOV v34,v0

MOV r1,#19 
MOV r2,#23 
MOV r1,r1 
MOV r2,r2 
ADD r0,r1,r2 
MOV r0,r0

Non-orthogonal instructions
This may seem particularly wasteful, but many of 
the MOV instructions will be eliminated during 
register allocation if a preference graph is used.

v34 v32 v33

v0 v1 v2



Non-orthogonal instructions

And finally, 

• When we know an instruction is going to corrupt 
the contents of an architectural register, we insert 
an edge on the clash graph between the 
corresponding virtual register and all other virtual 
registers live at that instruction — this prevents 
the register allocator from trying to store any live 
values in the corrupted register.



MOV v32,#6 
MOV v33,#7 
MUL v34,v32,v33 
⋮

MOV v32,#6 
MOV v33,#7 
MUL v34,v32,v33 
⋮

MOV r1,#6 
MOV r2,#7 
MUL r0,r1,r2 
⋮

clash graph

Non-orthogonal instructions

If (hypothetically) MUL on the target architecture 
corrupts the contents of r0:

v32 v33 v34v34v32 v33

v1v0 v2



Procedure calling standards

This final technique of synthesising edges on the clash 
graph in order to avoid corrupted registers is helpful 
for dealing with the procedure calling standard of the 

target architecture.

Such a standard will usually dictate that procedure calls 
(e.g. CALL and CALLI instructions in our 3-address 
code) should use certain registers for arguments and 
results, should preserve certain registers over a call, 

and may corrupt any other registers if necessary.



Procedure calling standards

• Arguments should be placed in r0-r3 before a 
procedure is called.

• Results should be returned in r0 and r1.

• r4-r8, r10 and r11 should be preserved 
over procedure calls, and r9 might be 
depending on the platform.

• r12-r15 are special registers, including the 
stack pointer and program counter.

On the ARM, for example:



Procedure calling standards
Since a procedure call instruction may corrupt some 

of the registers (r0-r3 and possibly r9 on the 
ARM), we can synthesise edges on the clash graph 

between the corrupted registers and all other 
virtual registers live at the call instruction.

As before, we may also synthesise MOV instructions 
to ensure that arguments and results end up in the 
correct registers, and use the preference graph to 

guide colouring such that most of these MOVs can be 
deleted again.



Procedure calling standards

x = 7; 
y = 11; 
z = 13; 
a = f(x,y)+z;

MOV v32,#7 
MOV v33,#11 
MOV v34,#13 
MOV v0,v32 
MOV v1,v33 
CALL f 
MOV v35,v0 
ADD v36,v34,v35



MOV v32,#7 
MOV v33,#11 
MOV v34,#13 
MOV v0,v32 
MOV v1,v33 
CALL f 
MOV v35,v0 
ADD v36,v34,v35

v34

Procedure calling standards

v32 v33

v0 v1 v2 v3 v9

v36v35

v4 ...v5



MOV v32,#7 
MOV v33,#11 
MOV v34,#13 
MOV v0,v32 
MOV v1,v33 
CALL f 
MOV v35,v0 
ADD v36,v34,v35

MOV v32,#7 
MOV v33,#11 
MOV v34,#13 
MOV v0,v32 
MOV v1,v33 
CALL f 
MOV v35,v0 
ADD v36,v34,v35

MOV r0,#7 
MOV r1,#11 
MOV r4,#13 
MOV r0,r0 
MOV r1,r1 
CALL f 
MOV r0,r0 
ADD r0,r4,r0

v34

Procedure calling standards

v32 v33

v0 v1 v2 v3 v9

v36v35v34v32 v33 v36v35

v4 ...v5



Summary
• A register allocation phase is required to assign 

each virtual register to an architectural one during 
compilation

• Registers may be allocated by colouring the 
vertices of a clash graph

• When the number of arch. registers is limited, 
some virtual registers may be spilled to memory

• Non-orthogonal instructions may be handled with 
additional MOVs and new edges on the clash graph

• Procedure calling standards also handled this way


	Lecture 1 short
	Lecture 2 short
	Lecture 3 short
	Lecture 4 short
	Lecture 5 short
	Lecture 6 short
	Lecture 7 short
	Lecture 8 short
	Lecture 9 short
	Lecture 10 short
	Lecture 11 short
	Lecture 12 short
	Lecture 13 short
	Lecture 14 short
	Lecture 15 short
	Lecture 16 short



