
Natural Language Processing: Part II Overview of Natural Language Processing (L90): ACS

Outline of today’s lecture

Alternative forms of semantic representation
Logical form and lambda calculus
Dependency structures

Inference

Recognising Textual Entailment task

Natural Language Processing: Part II Overview of Natural Language Processing (L90): ACS

Alternative forms of semantic representation

Logical form and lambda calculus

Sentence meaning as logical form
Kitty chased Rover.
Rover was chased by Kitty.

Logical form (simplified!):

chase′(k , r)

k and r are constants (Kitty and Rover), chase′ is the predicate
corresponding to chase.

I Sentence structure conveys some meaning: obtained by
syntactic representation plus rules of semantic
composition.

I Principle of Compositionality: meaning of each whole
phrase derivable from meaning of its parts.

Natural Language Processing: Part II Overview of Natural Language Processing (L90): ACS

Alternative forms of semantic representation

Logical form and lambda calculus

Semantic composition rules are non-trivial

Ordinary pronouns contribute to the semantics:

It barked.
∃x [bark′(x) ∧ PRON(x)]

Pleonastic pronouns don’t:

It rained.
rain′

Similar syntactic structures may have different meanings.
Different syntactic structures may have the same meaning:

Kim seems to sleep.
It seems that Kim sleeps.

Differences in presentation but not in truth conditions.

Natural Language Processing: Part II Overview of Natural Language Processing (L90): ACS

Alternative forms of semantic representation

Logical form and lambda calculus

Lambda calculus and composition

I One semantic composition rule per syntax rule.
I S -> NP VP

VP′(NP′)

I Rover barks:
VP bark is λx [bark′(x)]
NP Rover is r
λx [bark′(x)](r) = bark′(r)

Natural Language Processing: Part II Overview of Natural Language Processing (L90): ACS

Alternative forms of semantic representation

Logical form and lambda calculus

Transitive verbs

Kitty chases Rover
I Transitive verbs: two arguments (NOTE the order)
λx [λy [chase′(y , x)]]

I VP -> Vtrans NP
Vtrans′(NP′)

I λxλy [chase′(y , x)](r) = λy [chase′(y , r)]
I S -> NP VP

VP′(NP′)

I λy [chase′(y , r)](k) = chase′(k , r)]

Natural Language Processing: Part II Overview of Natural Language Processing (L90): ACS

Alternative forms of semantic representation

Logical form and lambda calculus

Grammar fragment using lambda calculus
S -> NP VP
VP′(NP′)
VP -> Vtrans NP
Vtrans′(NP′)
VP -> Vintrans
Vintrans′

Vtrans -> chases
λxλy [chase′(y , x)]
Vintrans -> barks
λz[bark′(z)]
Vintrans -> sleeps
λw [sleep′(w)]
NP -> Kitty
k

Natural Language Processing: Part II Overview of Natural Language Processing (L90): ACS

Alternative forms of semantic representation

Logical form and lambda calculus

Beyond toy examples . . .

I Use first order logic where possible (e.g., event variables,
next slide).

I However, First Order Predicate Calculus (FOPC) is
sometimes inadequate: e.g., most, may, believe.

I Quantifier scoping multiplies analyses:
Every cat chased some dog:
∀x [cat′(x) =⇒ ∃y [dog′(y) ∧ chase′(x , y)]]
∃y [dog′(y) ∧ ∀x [cat′(x) =⇒ chase′(x , y)]]

I Often no straightforward logical analysis
e.g., Bare plurals such as Ducks lay eggs.

I Non-compositional phrases (multiword expressions): e.g.,
red tape meaning bureaucracy.

Natural Language Processing: Part II Overview of Natural Language Processing (L90): ACS

Alternative forms of semantic representation

Logical form and lambda calculus

Event variables

I Allow first order treatment of adverbs and PPs modifying
verbs by reifying the event.

I Rover barked
I instead of bark′(r) we have ∃e[bark′(e, r)]
I Rover barked loudly
I ∃e[bark′(e, r) ∧ loud′(e)]
I There was an event of Rover barking and that event was

loud.

Natural Language Processing: Part II Overview of Natural Language Processing (L90): ACS

Alternative forms of semantic representation

Dependency structures

Semantic dependencies

_some_q _big_a _angry_a _dog_n _bark_v _loud_a

ARG1/EQ ARG1/EQARG1/NEQ
ARG1/EQ

RSTR/H

It turns out this can be equivalent to:

_some_q (x, _big_a(x) ∧ _angry_a(x) ∧ _dog_n(x),
_bark_v(e3,x) ∧ _loud_a(e3))

which in this case can be converted into FOPC:

∃x [_big_a(x) ∧ _angry_a(x) ∧ _dog_n(x) ∧ _bark_v(e3,x) ∧
_loud_a(e3)]

Natural Language Processing: Part II Overview of Natural Language Processing (L90): ACS

Inference

Natural language inference

I Inference on a knowledge base: convert natural language
expression to KB expression, valid inference according to
KB.

+ Precise
+ Formally verifiable
+ Disambiguation using KB state
- Limited domain, requires KB to be formally encodable

I Language-based inference: does one utterance follow from
another?

+ Unlimited domain
+/- Human judgement
-/+ Approximate/imprecise

I Both approaches may use logical form of utterance.

Natural Language Processing: Part II Overview of Natural Language Processing (L90): ACS

Inference

Lexical meaning and meaning postulates

I Some inferences validated on logical representation
directly, most require lexical meaning.

I meaning postulates: e.g.,

∀x [bachelor′(x) → man′(x) ∧ unmarried′(x)]

I usable with compositional semantics and theorem provers
I e.g. from ‘Kim is a bachelor’, we can construct the LF

bachelor′(Kim) and then deduce unmarried′(Kim)

I Problematic in general, OK for narrow domains or
micro-worlds.

Natural Language Processing: Part II Overview of Natural Language Processing (L90): ACS

Recognising Textual Entailment task

Recognising Textual Entailment (RTE) shared tasks

T: The girl was found in Drummondville earlier this month.
H: The girl was discovered in Drummondville.

I DATA: pairs of text (T) and hypothesis (H). H may or may
not follow from T.

I TASK: label TRUE (if follows) or FALSE (if doesn’t follow),
according to human judgements.

Natural Language Processing: Part II Overview of Natural Language Processing (L90): ACS

Recognising Textual Entailment task

RTE using logical forms

I T sentence has logical form T′, H sentence has logical
form H′

I If T′ =⇒ H′ conclude TRUE, otherwise conclude FALSE.

T The girl was found in Drummondville earlier this month.
T′ ∃x ,u,e[girl′(x) ∧ find′(e,u, x) ∧ in′(e,Drummondville) ∧

earlier-this-month′(e)]
H The girl was discovered in Drummondville.
H′ ∃x ,u,e[girl′(x) ∧ discover′(e,u, x) ∧ in′(e,Drummondville)]

MP [find′(x , y , z) =⇒ discover′(x , y , z)]
I So T′ =⇒ H′ and we conclude TRUE

Natural Language Processing: Part II Overview of Natural Language Processing (L90): ACS

Recognising Textual Entailment task

More complex examples

T: Four Venezuelan firefighters who were traveling to a
training course in Texas were killed when their sport utility
vehicle drifted onto the shoulder of a highway and struck a
parked truck.

H: Four firefighters were killed in a car accident.

Systems using logical inference are not robust to missing
information: simpler techniques can be effective (partly
because of choice of hypotheses in RTE).

Natural Language Processing: Part II Overview of Natural Language Processing (L90): ACS

Recognising Textual Entailment task

More examples

T: Clinton’s book is not a big seller here.
H: Clinton’s book is a big seller.

T: After the war the city was briefly occupied by the Allies and
then was returned to the Dutch.

H: After the war, the city was returned to the Dutch.

T: Lyon is actually the gastronomic capital of France.
H: Lyon is the capital of France.

Natural Language Processing: Part II Overview of Natural Language Processing (L90): ACS

Recognising Textual Entailment task

Next time ...

I Lexical semantics and semantic relations
I Grounding

	Alternative forms of semantic representation
	Logical form and lambda calculus
	Dependency structures

	Inference
	Recognising Textual Entailment task

