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Robots and Mobile Systems

smart infrastructure / mobility-on-demand  connected vehicles / automated highways

drone swarms / surveillance truck platoons / long-haul transport
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In this Lecture

¢ Overview of mobile robot control
» Basic principles of kinematics
» Overview of classical control architectures
¢ Coordination in systems with multiple robots
» Taxonomy
» Distributed estimation

» Distributed control
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Autonomous Robots

¢ What is a robot!?

microrobots self-foldable / self-actuated lightweight aerial robots consumer-grade drones autonomous vehicles
[Wood, Harvard] [Sung and Rus; MIT] [Kumar et al.; UPenn] [Google]

® Challenges:
» How to model and perceive the world?
» How to process information and exert control?

» How to reason and plan in the face of uncertainty?
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Perception-Action Loop

e Basic building block of autonomy!

m

decision-making and control W interaction with the world

Three main variants:

|. Reactive (e.g., nonlinear transform of sensor readings)
2. Reactive + memory (eg., filter, state variables)

3. Deliberative (e.g., planning)
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Sensors for Robots

® Proprioceptive vs. exteroceptive

» Proprioceptive: “body” sensors, e.g., motor speed,
battery voltage, joint angle

» EXxteroceptive: “environment” sensors, e.g., distance
measurement, light intensity

e Passive vs. active

» Passive: “measure ambient energy”, e.g., temperature
probes, cameras, microphones

» Active: “emit energy, and measure the environmental
reaction”, e.g., infrared proximity sensors, ultrasound
Sensors
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Sensor and Actuators

e Actuators

» For different purposes: e.g., locomotion, control of a body
part, heating, sound emission.

» Examples of electrical-to-mechanical actuators: DC motors,
stepper motors, servos, loudspeakers.

e Uncertainty and disturbances

» Causes for actuation noise: e.g., wheel slip, slack in
mechanism

» Causes for sensor noise: e.g., environmental factors, cheap
circuitry
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Degrees of Freedom

® Most actuators control a single degree of freedom (DOF)
» a motor shaft controls one rotational DOF
» a sliding part on a plotter controls one translational DOF

® Every robot has a specific number of DOF

e [f there is an actuator for every DOF then all of the DOF are
controllable

e Usually not all DOF are controllable

» Holonomic robot: When the number of controllable
DOF is equal to robot’s total DOF

» Non-holonomic robot: WWhen the humber of
controllable DOF is less than robot’s total DOF

» When it is larger, the robot is ‘redundant’
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Forward Kinematics

e Differential equations describe robot motion

e How does robot state change over time as a function of control inputs!?
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Forward Kinematics (body frame)

Y
Actuators of differential-drive: °

o |eft wheel speed C?z
e Right wheel speed 0,

Forward velocity:

U = 2 I 2 axle length r
wheel radius
Rotational velocity: Motion: rg = U
T¢r r¢l Y = O
W = .
d d 0 B — W
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Forward Kinematics (world frame)

e Rotation of coordinates Z
» From body to world frames,
the axes rotate by 0O

B - cosf —sinf O [ 2

y | = | sinf cosf O YB

0 0 0 1 (93 |
LY i 1L _ . e

T(0)

B - cosf —sinf O] [ w | - wcosf

g = | sinf cosf O 0O | = | usinf
0] 0 0 L] w. W ]
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Inverse Kinematics |

X

¢ We would like to control the robot velocities: J
e We inverse the previous equations: 0

U o - cos@ sinf O [ 2

0 | =770 y | = | —sinf cost 0 Y

W 0 ] 0 0 1|16

e yielding u = xcosf+ ysinb
w = 0

® under the constraint (remember than our robot is non-holonomic):

xsinf = ycosb

* and finally C;iz = u— %7 N b = fCOS@“ySine_g_ﬁ
O, = u—|-"§—g Op = j:cos@——ysin9+g—f
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e We would like to control the robot to reach a goal pose: | 1.

o |deally (if the robot would be
holonomic), we would set

i
y
/

Inverse Kinematics ||

>

TG — X -
Yo — Y
_HG_Q_

e To satisfy our constraint, we need to be creative. Cubic Beézier
curves, for example, would satisfy our constraint if we set

P1 —
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Closed-Loop vs Open-Loop

¢ Once we have a path that enables the robot to reach its goal,
we need to follow that path:

» Open=loop: Robot follows path blindly by applying the
pre-computed control inputs

» Closed-loop: Robot can follow path for a small duration,
then observe if anything changed in the world, recompute a
new adapted path (repeatedly)

e Closed-loop is much more robust to external perturbations:

» Noisy sensors: wrong estimate of the goal position, wrong
estimate of the robot position.

» Unforeseen events, dynamic obstacles, e.g., someone walks
in front of the robot.
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Control Architectures

e Sensing: proximal vs. distal

» Proximal architectures are close to sensor input (e.g.,
Braitenberg; ANN), whereas distal are composed of
behavioral blocks (e.g., rule-based, motor-schema).

¢ Planning: reactive vs. deliberative

» Reactive: control uses current estimate of world, time-
invariant rules produce action; simple and fast to compute

» Deliberative: predictions of future states are made;
sequences of actions are planned that minimize some
metric (e.g., collisions, energy consumption);
computationally involved
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Braitenberg Vehicle |

light sensors

\ o O

e )

symmetry axis

e Difference (gradient) between sensors (across symmetry axis)
e Sensors can (1) excite or (-) inhibit motors

¢ Original idea worked with light sensors

& UNIVERSITY OF
" CAMBRIDGE Valentino Braitenberg:Vehicles: Experiments in Synthetic Psychology, MIT Press, 1986



Braitenberg Vehicle |l

Excitatory connections Inhibitory connections
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Neural Network

S; S,
Oz — f(a?z) S, i S;
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N?:
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f(z) = tanh(z) T = E wizl; + 1o
j=1
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Rule-Based

forever do:
rule 1:
1f (proximity sensors on left active) then:
turn right
rule 2:
1f (proximity sensors on right active) then:
turn left
rule 3:
1f (no proximity sensors active) then:
move forwards
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Other Classical Paradigms

e Potential Field (Khatib, 1986)
e Motor Schema (Arkin, 1989)
e Subsumption Architecture (Brooks, 1986)
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motor schema subsumption architecture
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Multi-Robot Systems

e Terms used: robot swarms / robot teams / robot networks

e Why!
» Distributed nature of many problems
» Overall performance greater than sum of individual efforts
» Redundancy

¢ Numerous commercial, civil, military applications

Autapiay: On

search & rescue surveillance / monitoring product pickup / delivery
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Taxonomy

e Architecture: centralized vs. decentralized

» Centralized: one control/estimation unit communicates
with all robots to issue commands; requires synchronized,
reliable communication channels; single-point failures

» Decentralized: scalable, robust to failure; often
asynchronous; sub-optimal performance (w.r.t centralized)

e Communication: explicit vs. implicit

» Implicit: observable states; information exchanged
through observation

» Explicit: unobservable states; need to be communicated
explicitly
e Heterogeneity: homogenenous vs. heterogeneous

» Robot teams can leverage inter-robot complementarities

88 UNIVERSITY OF
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Communication Topologies

fully connected star topology random mesh
centralized / decentralized centralized / decentralized decentralized
coordination coordination coordination
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Decentralization

® Goal: Achieve similar (or same) performance as would be
achievable with an ideal, centralized system.

e Challenges:
» Communication: delays and overhead
» Input: asynchronous; with rumor propagation

» Sub-optimality with respect to the centralized solution

¢ Advantages:
» No single-point failure
» Can converge to optimum as time progresses

» ‘Any-comm’ algorithms exist (with graceful degradation)
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Distributed Estimation

e Goal: Estimate a local or global variable in distributed manner

e Filters can be distributed

4

4

4

Examples: Kalman filter, particle filter
Method: fuse relative observations of other robots

Correct implementation considers relative observations as
dependent measurements; the whole history of
measurements needs to be tracked (to avoid rumor
propagation)!

e Other mechanisms:

>

>
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Consensus (agreement mechanism)
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Collaborative Localization |

relative bearing
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e Collaborative localization uses relative inter-robot observations
¢ Robots communicate their position estimate
e Fuse relative observation by transforming position into local frame
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Collaborative Localization ||

detected robot

e This example considers a particle filter (Kalman filter also possible)
o Detected robot weights its particles using belief of detecting robot
e Particles re-sampled according to new weights (standard filter)
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Collaborative Localization Il

_ g

4 robots equipped with range & bearing modules
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Distributed Coordination

e Coordinated motion: formations, flocking
» Potential field (sum of local forces)

» Network control: Use graph as an abstraction of
communication network; use proximity graphs

» Leader-follower formations
disc-graph
e Allocation problems: role / resource distribution
» Market-based algorithms

» Threshold-based algorithms

e Coverage: coverage of spatial areas

» Lloyds algorithm

gradient-based coverage control
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Formation Control / Flocking

Reynolds’ boids (1987)
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separation alignment

® A boid reacts only to its neighbors

cohesion

®* Neighborhood defined by distance and angle (region of influence)
¢ Each boid follows 3 steering rules based on positions and

velocities of neighbors
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The Consensus Algorithm

¢ Aim of consensus:

» Reach decentralized agreement

» Purely based on local interactions
e Consensus applications

» Motion coordination

» Cooperative estimation

» Synchronization
e Consensus update: rit + 1) = f(ai(t], {z;[t]]|j € Ni})
e Consensus outcome: averaging function all neighbor values

» All robots converge to same value (at exponential rate)

@ 8 UNIVERSITY OF

% CAMBRIDGE Consensus and cooperation in networked multi-agent systems; Olfati-Saber, Fax, Murray; 2007
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Consensus for Flocking
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Applications of Consensus
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-Robot Systems: A Survey, 2017

Coordinated Control of Mult

Cortes and Egerstedt
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Summary

e Mobile robot control
» Kinematic principles and control architectures
e Multi-robot systems: estimation and coordination
» Collaborative localization as an example

» Flocking / formation control as an example

¢ What we did not talk about (there is much more!):

» Noise and uncertainty
» Planning algorithms

» Learning algorithms (Al)
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Internships:

If you are interested - contact me!
asp45@

Course:
Mobile Robot Systems

Lent 2018-19, as part of the new Paper 10

The course will be open to both Part Il and Part lll students (the
max. student number will be capped)
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