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Robots and Mobile Systems
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truck platoons / long-haul transportdrone swarms / surveillance

connected vehicles / automated highwayssmart infrastructure / mobility-on-demand



In this Lecture

• Overview of mobile robot control

‣ Basic principles of kinematics

‣ Overview of classical control architectures

• Coordination in systems with multiple robots

‣ Taxonomy

‣ Distributed estimation

‣ Distributed control
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Autonomous Robots

• What is a robot? 
 
 
 
 
 

• Challenges:

‣ How to model and perceive the world?

‣ How to process information and exert control?

‣ How to reason and plan in the face of uncertainty?
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consumer-grade droneslightweight aerial robots 
[Kumar et al.; UPenn]

autonomous vehicles 
[Google]

microrobots 
[Wood, Harvard]

self-foldable / self-actuated  
[Sung and Rus; MIT]



Perception-Action Loop
• Basic building block of autonomy!
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perception

action

Three main variants:
1. Reactive (e.g., nonlinear transform of sensor readings)
2. Reactive + memory (eg., filter, state variables)
3. Deliberative (e.g., planning)

decision-making and control interaction with the world



Sensors for Robots
• Proprioceptive vs. exteroceptive

‣ Proprioceptive: “body” sensors, e.g., motor speed, 
battery voltage, joint angle

‣ Exteroceptive: “environment” sensors, e.g., distance 
measurement, light intensity

• Passive vs. active

‣ Passive: “measure ambient energy”, e.g., temperature 
probes, cameras, microphones

‣ Active: “emit energy, and measure the environmental 
reaction”, e.g., infrared proximity sensors, ultrasound 
sensors
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Sensor and Actuators
• Actuators

‣ For different purposes: e.g., locomotion, control of a body 
part, heating, sound emission.

‣ Examples of electrical-to-mechanical actuators: DC motors, 
stepper motors, servos, loudspeakers.

• Uncertainty and disturbances

‣ Causes for actuation noise:  e.g., wheel slip, slack in 
mechanism

‣ Causes for sensor noise: e.g., environmental factors, cheap 
circuitry 
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Degrees of Freedom
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• Most actuators control a single degree of freedom (DOF)

‣ a motor shaft controls one rotational DOF

‣ a sliding part on a plotter controls one translational DOF

• Every robot has a specific number of DOF

• If there is an actuator for every DOF, then all of the DOF are 
controllable

• Usually not all DOF are controllable

‣ Holonomic robot:  When the number of controllable 
DOF is equal to robot’s total DOF

‣ Non-holonomic robot: When the number of 
controllable DOF is less than robot’s total DOF

‣ When it is larger, the robot is ‘redundant’
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Forward Kinematics
• Differential equations describe robot motion

• How does robot state change over time as a function of control inputs?
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differential-drive
3 DOF (2 controllable)

Bicycle
3 DOF (2 controllable)

Quadrotor
6 DOF (4 controllable)
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Forward Kinematics (body frame)
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Actuators of differential-drive:
• Left wheel speed
• Right wheel speed

axle length
d
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Motion: ẋB = u
ẏB = 0

θ̇B = ω



Forward Kinematics (world frame)
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Inverse Kinematics I
• We would like to control the robot velocities:

• We inverse the previous equations: 
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• yielding  

• under the constraint (remember than our robot is non-holonomic):  

u = ẋ cos θ + ẏ sin θ

ω = θ̇

ẋ sin θ = ẏ cos θ

• and finally φ̇l = u−
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Inverse Kinematics II
• We would like to control the robot to reach a goal pose:
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• To satisfy our constraint, we need to be creative. Cubic Bézier 
curves, for example, would satisfy our constraint if we set
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ẋÿ − ẍẏ
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Closed-Loop vs Open-Loop

• Once we have a path that enables the robot to reach its goal, 
we need to follow that path:

‣ Open-loop: Robot follows path blindly by applying the 
pre-computed control inputs

‣ Closed-loop: Robot can follow path for a small duration, 
then observe if anything changed in the world, recompute a 
new adapted path (repeatedly)

• Closed-loop is much more robust to external perturbations:

‣ Noisy sensors: wrong estimate of the goal position, wrong 
estimate of the robot position.

‣ Unforeseen events, dynamic obstacles, e.g., someone walks 
in front of the robot.
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Control Architectures
• Sensing: proximal vs. distal

‣ Proximal architectures are close to sensor input (e.g., 
Braitenberg; ANN), whereas distal are composed of 
behavioral blocks (e.g., rule-based, motor-schema).

• Planning: reactive vs. deliberative

‣ Reactive: control uses current estimate of world, time-
invariant rules produce action; simple and fast to compute

‣ Deliberative: predictions of future states are made; 
sequences of actions are planned that minimize some 
metric (e.g., collisions, energy consumption); 
computationally involved
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Braitenberg  Vehicle I

17Valentino Braitenberg: Vehicles: Experiments in Synthetic Psychology, MIT Press,1986

light sensors

motors
+ + + + - - - -

symmetry axis

• Difference (gradient) between sensors (across symmetry axis)

• Sensors can (+) excite or (-) inhibit motors

• Original idea worked with light sensors



Braitenberg Vehicle II
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Inhibitory connectionsExcitatory connections



Neural Network
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Ex. 2: Artificial Neural NetworkEx. 2: Artificial Neural Network
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Rule-Based
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forever do:
rule 1:
if (proximity sensors on left active) then:
turn right

rule 2:
if (proximity sensors on right active) then:
turn left

rule 3:
if (no proximity sensors active) then:

move forwards



Other Classical Paradigms
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Visualization of Vector field for Ex 4Visualization of Vector field for Ex. 4
Avoid-static-obstacle
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R = radius of the obstacle
G = gain
D = distance robot to obstacle’s center

Vdirection = radially along a line 
between robot and

D = distance robot to obstacle s center

between robot and 
obst. center, directed 
away from the obstacle

A Robust Layert>d Control Sy.stem fc·r a \ofobile Rvb(•t 

I J level S r--l 

.J )eve) e "I J 

..1 level 1 lr.. 
1. I 

Senaors --1 level 0 I _.. 
"l I 

Actuators 

Figure 3. Control il! layered with higher level layers subsuming the roles of lower level 
layers when they wish to take control. The l'ystern can be partioned at any level, and 
the below form a complete operational control syHem. 

7 

5. Reason about the world in terms of identifiable objects and perform tasks related to 
certain objects. 

6. Formulat-e and execute plans which involve changing the state of the world in some 
desirable way. 

7. Reason about the behavior of objects in the world and modify plans accordingly. 
Notice that each level of competence includes as a subset each earlier level of competence. 
Since a level of competence defines a class of valid behaviors it can be seen that higher levels 
of competence provide additional constraints on that class. 

2.2 Layers of Coutrol 

The key idea of levels of competence is that we can build layers of a control system corre-
sponding to each !eve) of competence and simply add a new layer to an existing set to move 
to the next higher level of overall competence. 

We start by building a complete robot control system which achieves level 0 compe-
tence. It is debugged thoroughly. We never alter that system. We call it the zeroth level 
control system, Next we build a another control layer, which we call the first level control 
system. It is able to examine data from the level 0 system and is also permitted to inject 
data into the internal interfaces of level 0 suppressing the normal data flow. This layer, 
with the aid of the zerot.h , achieves level 1 competence. The zeroth layer continues to run 
unaware of the layer above it which somet imes interfNes with its data paths. 

The same process is repeated to achieve higher levels of competence. See figure 3. 
We call this architecture a subsumption architecture. 
In such a scheme we havE' a working control system for the robot very early in the 

piece- as soon as we have built the first layer. Additional layers can be added later, and 
the initial working system need never be changed. 

• Potential Field (Khatib, 1986)

• Motor Schema (Arkin, 1989)

• Subsumption Architecture (Brooks, 1986)

potential field

subsumption architecturemotor schema



Multi-Robot Systems
• Terms used: robot swarms / robot teams / robot networks

• Why?

‣ Distributed nature of many problems

‣ Overall performance greater than sum of individual efforts

‣ Redundancy

• Numerous commercial, civil, military applications
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Magnus Egerstedt - Aug. 2013 

Application Domains 

Sensor and 
communications networks Multi-agent robotics 

Coordinated control Biological networks 

surveillance / monitoring product pickup / deliverysearch & rescue



Taxonomy
• Architecture: centralized vs. decentralized

‣ Centralized: one control/estimation unit communicates 
with all robots to issue commands; requires synchronized, 
reliable communication channels; single-point failures

‣ Decentralized: scalable, robust to failure; often 
asynchronous; sub-optimal performance (w.r.t centralized)

• Communication: explicit vs. implicit

‣ Implicit: observable states; information exchanged 
through observation

‣ Explicit: unobservable states; need to be communicated 
explicitly

• Heterogeneity: homogenenous vs. heterogeneous

‣ Robot teams can leverage inter-robot complementarities
23



Communication Topologies
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fully connected star topology random mesh

centralized / decentralized
coordination

centralized / decentralized
coordination

decentralized
coordination



Decentralization

• Goal:   Achieve similar (or same) performance as would be 
achievable with an ideal, centralized system.

• Challenges:

‣ Communication: delays and overhead

‣ Input: asynchronous; with rumor propagation

‣ Sub-optimality with respect to the centralized solution

• Advantages:

‣ No single-point failure

‣ Can converge to optimum as time progresses

‣ ‘Any-comm’ algorithms exist (with graceful degradation)
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Distributed Estimation
• Goal: Estimate a local or global variable in distributed manner

• Filters can be distributed

‣ Examples: Kalman filter, particle filter

‣ Method: fuse relative observations of other robots

‣ Correct implementation considers relative observations as 
dependent measurements; the whole history of 
measurements needs to be tracked (to avoid rumor 
propagation)!

• Other mechanisms:

‣ Opportunistic mechanisms

‣ Consensus (agreement mechanism)
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Collaborative Localization I
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y

x
relative range

relative bearing

• Collaborative localization uses relative inter-robot observations
• Robots communicate their position estimate
• Fuse relative observation by transforming position into local frame



Collaborative Localization II
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• This example considers a particle filter (Kalman filter also possible)
• Detected robot weights its particles using belief of detecting robot
• Particles re-sampled according to new weights (standard filter)

13.2. Problem statement

R1

R2

e12

α12

ẽ12

α̃12

pdf
z

Figure 13.2: The range eij between two robots Ri and Rj is the
distance separating both robot’s centers and the bearing ↵ij in-
dicates the angle between the forward direction of Ri and the
line towards Rj . Each range and bearing measurement [ẽij , ↵̃ij ]

T

result from the addition of a noise vector ✏z (drawn from a prob-
ability density function pdfz) to the nominal range and bearing
values [eij ,↵ij ]

T.

13.2 Problem statement

We have a team of N point-sized, differential-wheeled robots R1, . . . , RN driven by the kine-
matic equations:

8
<

:

ẋi = ui cos ✓i
ẏi = ui sin ✓i
✓̇i = !i

(13.1)

where ui = [ui,!i]T is the vector of control inputs, with ui the linear translational speed and
!i the rotational speed, and the vector xi = [xi, yi, ✓i]T forms the triplet defining the absolute
pose or state of the robot Ri. The state and control inputs of all robots are stored in the vectors

x = [x1, y1, ✓1, . . . , xN , yN , ✓N ]T and (13.2)

u = [u1,!1, . . . , uN ,!N ]T , respectively. (13.3)

Each robot Ri has a set of neighbors Ni containing all robots Rj such that Ri can measure the
relative range eij and bearing ↵ij to Rj . Each observation zij of Rj at time t may be affected by
noise and, thus, is defined by the vector

zij =


ẽij
↵̃ij

�
=


eij
↵ij

�
+ ✏z (13.4)

where ✏z is a random noise vector sampled for each observation from a probability distribu-
tion given by its probability density function pdfz (i.e., all sampled ✏z are i.i.d.), as shown in
Figure 13.2. Hence at time t, a robot Ri gathers an observation list

Zi = {zij |Rj 2 Ni}. (13.5)

Finally, unless stated otherwise, all variables are time dependent. The goal is to drive all robots
to the same location regardless of their orientation.

107

detected robot
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Collaborative Localization III



Coordination 

30



Distributed Coordination
• Coordinated motion: formations, flocking

‣ Potential field (sum of local forces)

‣ Network control: Use graph as an abstraction of 
communication network; use proximity graphs 

‣ Leader-follower formations

• Allocation problems: role / resource distribution

‣ Market-based algorithms

‣ Threshold-based algorithms 

• Coverage: coverage of spatial areas

‣ Lloyds algorithm

31

disc-graph

SICE JCMSI, Vol. 10, No. 6, November 2017498

But, if the objective is not to assemble a particular shape, but
rather to spread the robots out to cover an area, modifications
to this construction are needed.

3. Coverage Control
Another example of the theme of formulating an error func-

tion and then flowing in a negative gradient direction involves
the problem of having the robots cover a planar area in an
optimal way [12],[20]. To this end, let the agents be tasked
with covering an area D, and let each robot be in charge of
all the points in D that are closest to it. This corresponds to
partitioning D into N Voronoi cells, with the robot locations
xi, i = 1, . . . ,N as seeds,

Vi(x) = {p∈ D | ∥xi − p∥ ≤ ∥x j − p∥, ∀ j ! i}.

Note that here we use the Euclidean distance to define what
it means to be “closest”. The concept of Voronoi partition
is flexible enough to allow for other notions of distance that
can be used to capture robot capabilities such as limited en-
ergy [53], different sensing ranges or footprints [54], or motion
constraints [55],[56].

3.1 Lloyd’s Algorithm and Locational Costs

If we moreover assume that points closer to Robot i are cov-
ered more effectively than point further away, we can write
down a so-called locational cost associated with the robot posi-
tions as

E(x) =
N∑

i=1

∫

Vi(x)
∥xi − p∥2ϕ(p)dp.

Here, the function ϕ : D→ R measures the relative importance
of points in the environment, i.e., if ϕ(p) > ϕ(q), then the point
pis more important than the point qfor the robot ensemble. As
before, taking the partial derivative of this locational cost gives

∂E
∂xi
= 2

∫

Vi(x)
(xi − p)ϕ(p)dp.

The reason why the application of Leibniz rule at the area
over which the integral is evaluated does not seem to matter
is because whatever area is moved into Vi by the infinitesimal
movement of xi, exactly the same area is lost in some other cell,
i.e., the effects cancel out.

Following the program laid out in the previous paragraphs
of using a gradient descent flow as a way of enabling LaSalle
Invariance Principle to be applicable, gives us

ẋi = 2
∫

Vi(x)
(p− xi)ϕ(p)dp= 2mi(x)(xi − ρi(x)),

where mi(x) =
∫
Vi(x) ϕ(p)dp and ρi(x) are, respectively, the

mass and center of mass of the i:th Voronoi cell.
One can also scale the control action by a positive gain, and,

as such, consider a scaled descent flow. Using a particular
choice of gain, the new flow is given by

1
2mi(x)

∂E
∂xi
= xi − ρi(x).

The resulting control law is a continuous-time version of
Lloyd’s Algorithm for coverage control,

ẋi = ρi(x) − xi.

This law reaches [20] asymptotically the set of so-called Cen-
troidal Voronoi Tessellations, whereby xi = ρi(x), i = 1, . . . ,N.
An example of this algorithm in action is shown in Fig. 2.

Fig. 2 Gradient-based coverage control: (a) initial configuration, (b) evo-
lution of the ensemble, and (c) final configuration. The intensity
of the gray scale of the points in the environment corresponds to
their importance.

The simplicity of this coordination law makes it especially
appealing and, in fact, numerous extensions have been inves-
tigated. We discuss below two of these extensions to time-
varying scenarios and problems that involve specifications in
terms of equitable partitions of the overall load among the
robots. The common denominator of these extensions is that
their synthesis follows the optimization-based approach to de-
sign of coordination laws that we advocate in this survey.

3.2 Time-Varying Locational Optimization and General-
ized Voronoi Partitions

Consider the scenario where the function ϕ measuring the
relative importance of points in the environment changes with
time [20],[57], e.g., according to the preferences specified by a
human operator. Formally, we have ϕ : D×R → R, (p, t) (→
ϕ(p, t). Based on the discussion above, robots should seek to
achieve a centroidal Voronoi configuration. One can formalize
this by writing the error function

E(x, t) =
1
2

N∑

i=1

∥xi − ρi(x, t)∥2.

Note that the evolution of this function along the robot trajec-
tories can be written as

d
dt

(E(x, t)) =

N∑

i=1

(xi − ρi(x, t))(ẋi −
∂ρi

∂t
(x, t) −

N∑

j=1

∂ρi

∂x j
(x, t)ẋ j) =

(x − ρ(x, t))
((

IN −
∂ρ

∂x
(x, t)

)
ẋ − ∂ρ

∂t
(x, t)

)
,

where, for simplicity, we use the short-hand notation ρ(x, t) =
(ρ1(x, t), . . . , ρN(x, t)). This computation reveals how the design
of the coordination strategy above should be modified to deal
with time-varying functions ϕ. Specifically, if one sets

((
IN −

∂ρ

∂x
(x, t)

)
ẋ − ∂ρ

∂t
(x, t)

)
= k(ρ(x) − x),

then the evolution of the error function E takes the form

d
dt

(E(x(t), t)) = − (x − ρ(x, t))k(x − ρ(x, t)) = −2kE(x(t), t),

and hence E(x(t), t) = E(x(0), 0) exp(−2kt), guaranteeing expo-
nential convergence. The implementation of this design, how-
ever, is challenging from a distributed viewpoint, because it re-
quires the inversion of the matrix

(
IN − ∂ρ

∂x (x, t)
)

to compute the

gradient-based coverage control



Formation Control / Flocking

32Reynolds, C. W. ; Flocks, Herds, and Schools: A Distributed Behavioral Model, SIGGRAPH 1987

separation alignment cohesion

Reynolds’ boids (1987)

• A boid reacts only to its neighbors
• Neighborhood defined by distance and angle (region of influence)
• Each boid follows 3 steering rules based on positions and 

velocities of neighbors



• Aim of consensus: 

‣ Reach decentralized agreement

‣ Purely based on local interactions

• Consensus applications

‣ Motion coordination

‣ Cooperative estimation

‣ Synchronization

• Consensus update:  

• Consensus outcome:

‣ All robots converge to same value (at exponential rate)

The Consensus Algorithm

33

robustness properties hold in various models for large-scale
networks [7], ensuring that they hold in general time-varying
networks (such as those containing mobile nodes) can be
challenging.

Most similarly to our work, the recent work in [8], [9]
considers asynchronous networks with information delays.
That work considers the problem of finding a condition
on the graph topology under which the cooperative agents
reach resilient consensus with delayed information. Our work
differs from the latter in that we provide an alternate (novel)
update algorithm that allows nodes to compute updates at
every time-step (regardless of what information has been
received), and we prove that this algorithm reaches resilient
consensus. Also, we provide an active control strategy that
allows the network to achieve the required graph topological
properties.

B. Contributions

The main contribution of this paper is a method that allows
networks of dynamic agents to achieve resilient consensus
when their communication graphs are time-varying. First,
we demonstrate that if a team of cooperative and non-
cooperative agents are linked together across a time interval
by a r-robust network topology (for sufficiently large r),
then the cooperative agents can achieve resilient asymptotic
consensus. Second, we take advantage of the agents’ motion
capabilities to selectively activate communication links. We
propose a control policy that moves the agents over a Jordan
curve in order to ensure the robustness of the system’s
communication graph.

II. PRELIMINARIES

Consider a network composed of a set of nodes V =
{1, 2, ..., n}. The ability to communicate with adjacent nodes
defines the set of connections E ✓ V ⇥ V . Therefore, we
model the network as an undirected graph G = (V, E). The
neighbors of node i are Ni = {j|(i, j) 2 E}. For a node
subset S ⇢ V , we denote its complement by S̄ = V\S.

A. Consensus

We consider networks of agents, where each node is an
autonomous entity that can adapt to changing conditions
based on incoming data streams originating from neighboring
nodes. As there is no central master, the nodes need to
reach an agreement with respect to the shared information
in order to make unified decisions. The question of how do
this is solved by consensus algorithms [10], [11], [12], [13].
When performing a consensus algorithm, each node i has a
variable of interest xi, e.g., that describes the locations of the
nodes, or that measures local temperatures. Subsequently, the
whole network may want to estimate a global variable, such
as the centroid of the network, or the average temperature
of the environment, respectively, based on the distributed
information available to the network as a whole. This goal
can be achieved by local interaction, where each node i

updates its own value at time-step t based on some specified
function f :

xi[t+ 1] = f(xi[t], {xj [t]|j 2 Ni}). (1)

In [11], the authors show that, if the function f represents
a convex combination, then given a connected and balanced
graph G, every node i 2 V reaches a consensus value that
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the consensus update rule and communicates its value to its

neighbors at every time-step. It is called non-cooperative if it

applies a different update rule at any time step. We denote the

set of cooperative agents by C ✓ V and the non-cooperative

agents by C̄ ✓ V\C.
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values are removed). The same removal process is applied
to the smaller values. The remaining nodes in the list are
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X

j2Ri[t]
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P

j wij [t] = 1. An extended explana-
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Definition 2. A set S ✓ V is a r-reachable set if there exists
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Fig. 1 Variations on the consensus equation: (a) rendezvous, (b) cyclic
pursuit, (c) flocking, and (d) formation control. In these figures,
the robots start randomly in the environment and asymptotically
achieve the corresponding tasks.

sufficient condition is that the necessary and sufficient condi-
tions for the static case holds at each point in time, regardless
of whether the graph is undirected or directed. (The purpose
of this survey is not to cover all of the intricacies of the sta-
bility analysis of the consensus equation – for derivations and
full characterizations of these results, see for example [14] and
the references therein.) But, the consensus equation is not safe!
In fact, rendezvous is by design achieving a massive collision
among all the robots. To remedy this and turn the consensus
equation into a truly useful multi-robot coordination law, we
need to augment it to ensure that the robots do not get too close
to each other.

2.2 Weighted Protocols

The construction in Section 2.1 can be generalized by defin-
ing a symmetric, pairwise performance cost between robots i
and j as Ei j(∥xi − x j∥) = E ji(∥x j − xi∥), with the global perfor-
mance cost being defined by

E(x) =
N∑

i=1

∑

( j,i)∈E
Ei j(∥xi − x j∥).

The Chain Rule tells us that

∂Ei j(∥xi − x j∥)
∂xi

=
∂Ei j(∥xi − x j∥)
∂∥xi − x j∥

(xi − x j)
∥xi − x j∥

= wi j(∥xi − x j∥)(xi − x j),

i.e., the partial derivative is a scalar function of the inter-robot
distance times the relative displacement. As such, the gradient
descent rule is given by a weighted consensus protocol,

ẋi = −
∂E
∂xi
= −

∑

( j,i)∈E
wi j(∥xi − x j∥)(xi − x j).

The reason why this construction is systematic and theoret-
ically justified is that if we restrict E to positive semi-definite
functions that are 0 only at the desired, global configuration, we
note that

dE
dt
=
∂E
∂x

ẋ =
N∑

i=1

∂E
∂xi

ẋi = −
∥∥∥∥∥
∂E
∂x

∥∥∥∥∥
2

.

In other words, E is a Lyapunov function and, with bounded
trajectories, one can resort to the LaSalle Invariance Princi-
ple [42] to ensure that the desired configuration is at least a
locally asymptotically stable equilibrium point as long as the
edge set E does not change. If E does change, i.e., edges come
and go, then E will experience discontinuities, and either a hy-
brid version of the LaSalle Invariance Principle must be used,
or arguments must be employed that establish that sooner or
later, the edge set becomes static, see e.g., [43]–[45].

A number of examples of this construction have been dis-
cussed in the literature. First, the standard consensus equation
covered above can be derived from

Ei j(∥xi − x j∥) =
1
2
∥xi − x j∥2 ⇒ wi j = 1.

If the error is just the norm, as opposed to the square of the
norm, then

Ei j(∥xi − x j∥) = ∥xi − x j∥ ⇒ wi j =
1

∥xi − x j∥
,

which is a form that has been used in [25] to describe coordi-
nated behaviors among schooling fish. The interpretation here
is that, as fish pay more attention to near-by fish, the square
norm counter-acts this by penalizing far-away fish in an overly
aggressive manner.

If the robots are supposed to arrange themselves at a pre-
scribed inter-robot distance δ, we obtain a formation control
protocol, [16],[24],[46]–[49], as opposed to a rendezvous pro-
tocol. An example of this found in [14] is given by

Ei j(∥xi − x j∥) =
1
2

(∥xi − x j∥ − δ)2 ⇒ wi j =
∥xi − x j∥ − δ
∥xi − x j∥

.

The interpretation here is that the weight is negative if the
robots are closer than δ apart, thereby repelling away from each
other, while agents that are further than δ apart are attracted
through the corresponding positive weight.

An additional complication associated with multi-robot net-
works is that, throughout the maneuvers, the robot network
should stay connected, [15],[50]–[52]. One way of ensuring
this connectivity maintenance property is to ensure that the
weights become sufficiently large as the inter-robot distance
approaches ∆, which is the distance where the robots are no
longer able to sense each other. In [15], the following choices
were shown to guarantee connectivity maintenance

Ei j(∥xi − x j∥) =
∥xi − x j∥2
∆ − ∥xi − x j∥

⇒ wi j =
2∆ − ∥xi − x j∥

(∆ − ∥xi − x j∥)2 .

A combined formation control and connectivity maintenance
protocol could thus become

Ei j(∥xi − x j∥) =
1

2(∆ − δ)

( ∥xi − x j∥ − δ
∆ − ∥xi − x j∥

)2

⇒ wi j =
1 − δ

∥xi−x j∥

(∆ − ∥xi − x j∥)3 ,

as seen in Fig. 1 (d).
What all of these constructions show is that it is possible to

achieve rich and diverse multi-robot responses through a sys-
tematic selection of scalar weights in the consensus equation.
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pursuit, (c) flocking, and (d) formation control. In these figures,
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of this survey is not to cover all of the intricacies of the sta-
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the references therein.) But, the consensus equation is not safe!
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i.e., the partial derivative is a scalar function of the inter-robot
distance times the relative displacement. As such, the gradient
descent rule is given by a weighted consensus protocol,

ẋi = −
∂E
∂xi
= −

∑
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wi j(∥xi − x j∥)(xi − x j).

The reason why this construction is systematic and theoret-
ically justified is that if we restrict E to positive semi-definite
functions that are 0 only at the desired, global configuration, we
note that
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.

In other words, E is a Lyapunov function and, with bounded
trajectories, one can resort to the LaSalle Invariance Princi-
ple [42] to ensure that the desired configuration is at least a
locally asymptotically stable equilibrium point as long as the
edge set E does not change. If E does change, i.e., edges come
and go, then E will experience discontinuities, and either a hy-
brid version of the LaSalle Invariance Principle must be used,
or arguments must be employed that establish that sooner or
later, the edge set becomes static, see e.g., [43]–[45].

A number of examples of this construction have been dis-
cussed in the literature. First, the standard consensus equation
covered above can be derived from

Ei j(∥xi − x j∥) =
1
2
∥xi − x j∥2 ⇒ wi j = 1.

If the error is just the norm, as opposed to the square of the
norm, then

Ei j(∥xi − x j∥) = ∥xi − x j∥ ⇒ wi j =
1

∥xi − x j∥
,

which is a form that has been used in [25] to describe coordi-
nated behaviors among schooling fish. The interpretation here
is that, as fish pay more attention to near-by fish, the square
norm counter-acts this by penalizing far-away fish in an overly
aggressive manner.

If the robots are supposed to arrange themselves at a pre-
scribed inter-robot distance δ, we obtain a formation control
protocol, [16],[24],[46]–[49], as opposed to a rendezvous pro-
tocol. An example of this found in [14] is given by

Ei j(∥xi − x j∥) =
1
2

(∥xi − x j∥ − δ)2 ⇒ wi j =
∥xi − x j∥ − δ
∥xi − x j∥

.

The interpretation here is that the weight is negative if the
robots are closer than δ apart, thereby repelling away from each
other, while agents that are further than δ apart are attracted
through the corresponding positive weight.

An additional complication associated with multi-robot net-
works is that, throughout the maneuvers, the robot network
should stay connected, [15],[50]–[52]. One way of ensuring
this connectivity maintenance property is to ensure that the
weights become sufficiently large as the inter-robot distance
approaches ∆, which is the distance where the robots are no
longer able to sense each other. In [15], the following choices
were shown to guarantee connectivity maintenance

Ei j(∥xi − x j∥) =
∥xi − x j∥2
∆ − ∥xi − x j∥

⇒ wi j =
2∆ − ∥xi − x j∥

(∆ − ∥xi − x j∥)2 .

A combined formation control and connectivity maintenance
protocol could thus become

Ei j(∥xi − x j∥) =
1

2(∆ − δ)

( ∥xi − x j∥ − δ
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)2

⇒ wi j =
1 − δ

∥xi−x j∥

(∆ − ∥xi − x j∥)3 ,

as seen in Fig. 1 (d).
What all of these constructions show is that it is possible to

achieve rich and diverse multi-robot responses through a sys-
tematic selection of scalar weights in the consensus equation.
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tions for the static case holds at each point in time, regardless
of whether the graph is undirected or directed. (The purpose
of this survey is not to cover all of the intricacies of the sta-
bility analysis of the consensus equation – for derivations and
full characterizations of these results, see for example [14] and
the references therein.) But, the consensus equation is not safe!
In fact, rendezvous is by design achieving a massive collision
among all the robots. To remedy this and turn the consensus
equation into a truly useful multi-robot coordination law, we
need to augment it to ensure that the robots do not get too close
to each other.
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mance cost being defined by
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i.e., the partial derivative is a scalar function of the inter-robot
distance times the relative displacement. As such, the gradient
descent rule is given by a weighted consensus protocol,

ẋi = −
∂E
∂xi
= −

∑

( j,i)∈E
wi j(∥xi − x j∥)(xi − x j).

The reason why this construction is systematic and theoret-
ically justified is that if we restrict E to positive semi-definite
functions that are 0 only at the desired, global configuration, we
note that
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In other words, E is a Lyapunov function and, with bounded
trajectories, one can resort to the LaSalle Invariance Princi-
ple [42] to ensure that the desired configuration is at least a
locally asymptotically stable equilibrium point as long as the
edge set E does not change. If E does change, i.e., edges come
and go, then E will experience discontinuities, and either a hy-
brid version of the LaSalle Invariance Principle must be used,
or arguments must be employed that establish that sooner or
later, the edge set becomes static, see e.g., [43]–[45].

A number of examples of this construction have been dis-
cussed in the literature. First, the standard consensus equation
covered above can be derived from

Ei j(∥xi − x j∥) =
1
2
∥xi − x j∥2 ⇒ wi j = 1.

If the error is just the norm, as opposed to the square of the
norm, then

Ei j(∥xi − x j∥) = ∥xi − x j∥ ⇒ wi j =
1

∥xi − x j∥
,

which is a form that has been used in [25] to describe coordi-
nated behaviors among schooling fish. The interpretation here
is that, as fish pay more attention to near-by fish, the square
norm counter-acts this by penalizing far-away fish in an overly
aggressive manner.

If the robots are supposed to arrange themselves at a pre-
scribed inter-robot distance δ, we obtain a formation control
protocol, [16],[24],[46]–[49], as opposed to a rendezvous pro-
tocol. An example of this found in [14] is given by

Ei j(∥xi − x j∥) =
1
2

(∥xi − x j∥ − δ)2 ⇒ wi j =
∥xi − x j∥ − δ
∥xi − x j∥

.

The interpretation here is that the weight is negative if the
robots are closer than δ apart, thereby repelling away from each
other, while agents that are further than δ apart are attracted
through the corresponding positive weight.

An additional complication associated with multi-robot net-
works is that, throughout the maneuvers, the robot network
should stay connected, [15],[50]–[52]. One way of ensuring
this connectivity maintenance property is to ensure that the
weights become sufficiently large as the inter-robot distance
approaches ∆, which is the distance where the robots are no
longer able to sense each other. In [15], the following choices
were shown to guarantee connectivity maintenance

Ei j(∥xi − x j∥) =
∥xi − x j∥2
∆ − ∥xi − x j∥

⇒ wi j =
2∆ − ∥xi − x j∥
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What all of these constructions show is that it is possible to
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In other words, E is a Lyapunov function and, with bounded
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locally asymptotically stable equilibrium point as long as the
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and go, then E will experience discontinuities, and either a hy-
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or arguments must be employed that establish that sooner or
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.

The interpretation here is that the weight is negative if the
robots are closer than δ apart, thereby repelling away from each
other, while agents that are further than δ apart are attracted
through the corresponding positive weight.

An additional complication associated with multi-robot net-
works is that, throughout the maneuvers, the robot network
should stay connected, [15],[50]–[52]. One way of ensuring
this connectivity maintenance property is to ensure that the
weights become sufficiently large as the inter-robot distance
approaches ∆, which is the distance where the robots are no
longer able to sense each other. In [15], the following choices
were shown to guarantee connectivity maintenance
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Summary
• Mobile robot control

‣ Kinematic principles and control architectures

• Multi-robot systems: estimation and coordination

‣ Collaborative localization as an example

‣ Flocking / formation control as an example

• What we did not talk about (there is much more!):

‣ Noise and uncertainty

‣ Planning algorithms

‣ Learning algorithms (AI)
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