
Task 3: Statistical laws of language

This task is not automatically ticked. You should write down your observations
in the lab book and keep screenshots of your graphs so that you can show and
explain appropriate figures and data to your ticker.

Step 1: Zipf’s law

Zipf’s law says that there is a reverse exponential relationship between the
frequency of a word in a large natural language text fw, and its relative frequency
rank rw (position wrt frequency in comparison to the other words):

fw ≈ k

rwα

where k and α are constants that depend on the natural language. This means
that given the frequency of the most frequent word, the frequency of the next
most frequent word can be predicted (but not which word it will be). There are
factors in language that make this observation slightly surprising. Zipf’s Law is
one example of a power law in nature, and it has been found to be applicable to
many phenomena other than word frequencies, for instance global sizes of cities.

How does this apply to Task 2?

Download the large dataset, which contains about 35,000 assorted reviews, with
about 11 million words. To which degree does Zipf’s law hold in this sample of
text? And what are the parameters?

1. Find frequencies of all the tokens in the dataset and rank them.

2. Plot a frequency vs rank graph for the 10,000 highest-ranked tokens. You
can use ChartPlotter.java to get the plot. You can just use the count
of the words here for frequency.

3. In Task 1 you were asked to choose 10 words which might be good sentiment
indicators. What are their frequencies? Plot the Task 1 words on the
frequency-rank plot as a separate series (i.e., tell the plotter to draw it as
an additional graph in addition to the graph from 2. above). In which
region of the graph do they occur?

4. Plot the main graph on the log-log scale. (Why?) Note: some plotting
packages offer automatic conversion of datapoints to log scales when
plotting, but not the one we provide. You will have to convert the values
yourselves before plotting.

5. Fit a line to the log-log graph, using the least-squares algorithm provided
in BestFit.java. Weight each word by its frequency to avoid distortion
in favour of less common words. Add the line to the plot.

1



6. Use the best fit line to create a function which given a rank can output an
expected frequency. What frequencies does your estimate predict for the
Task 1 words? How do they compare with actual frequencies?

7. Use the best-fit line to estimate the Zipf’s law parameters k and α.

Step 2: Heaps’ law.

Heaps’ law relates unique and non-unique words in a text. In computational
linguistics, we refer to unique words as types and to non-unique words as tokens.
The law states that for a large text of size n, the number of types un in the text
approaches:

un ≈ knβ

with k and β < 1 constants dependent on the language. Surprisingly, this means
that no matter how many new documents we will include and compare to an
already existing set, we will continue to find new unseen words.

1. Count how many unique words the system finds in your input files for any
given number of tokens. Collect a datapoint every time the total number
of tokens you have read in reaches a power of two (20, 21, 22, etc. until
you reach the size of the dataset). Also provide a data point for the total
number of tokens in all texts (which does not correspond to a power of
two). Plot these datapoints on a logarithmic scale, as before.

What does the line look like?

Optional: What kinds of new tokens are collected in the last few documents (i.e.,
after all “obvious” tokens have already been seen)?

2


	Task 3: Statistical laws of language
	Step 1: Zipf's law
	Step 2: Heaps' law.


