8: Hidden Markov Models Machine Learning and Real-world Data

Helen Yannakoudakis¹

Computer Laboratory University of Cambridge

Lent 2018

¹Based on slides created by Simone Teufel

- So far we've looked at (statistical) classification.
- Experimented with different ideas for sentiment detection.

■ Let us now talk about ...

- So far we've looked at (statistical) classification.
- Experimented with different ideas for sentiment detection.

■ Let us now talk about ... the weather!

- Two types of weather: rainy and cloudy
- The weather doesn't change within the day

- Two types of weather: rainy and cloudy
- The weather doesn't change within the day
- Can we guess what the weather will be like tomorrow?

- Two types of weather: rainy and cloudy
- The weather doesn't change within the day
- Can we guess what the weather will be like tomorrow?
- We can use a history of weather observations:
- $\begin{array}{l} P(w_t = Rainy \, | \, w_{t-1} = Rainy, w_{t-2} = Cloudy, w_{t-3} = Cloudy, w_{t-4} = Rainy) \end{array}$

- Two types of weather: rainy and cloudy
- The weather doesn't change within the day
- Can we guess what the weather will be like tomorrow?
- We can use a history of weather observations:
- $\begin{array}{l} P(w_t = Rainy \, | \, w_{t-1} = Rainy, w_{t-2} = Cloudy, w_{t-3} = Cloudy, w_{t-4} = \\ Rainy) \end{array}$

Markov Assumption (first order):

$$P(w_t | w_{t-1}, w_{t-2}, \dots, w_1) \approx P(w_t | w_{t-1})$$

- Two types of weather: rainy and cloudy
- The weather doesn't change within the day
- Can we guess what the weather will be like tomorrow?
- We can use a history of weather observations:

 $\begin{array}{l} P(w_t = Rainy \, | \, w_{t-1} = Rainy, w_{t-2} = Cloudy, w_{t-3} = Cloudy, w_{t-4} = Rainy) \end{array}$

Markov Assumption (first order):

$$P(w_t | w_{t-1}, w_{t-2}, \dots, w_1) \approx P(w_t | w_{t-1})$$

The joint probability of a sequence of observations / events is then:

$$P(w_1, w_2, \dots, w_t) = \prod_{t=1}^n P(w_t \mid w_{t-1})$$

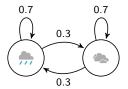
 $\begin{array}{c|c} & \mathsf{Tomorrow} \\ Rainy & Cloudy \\ \mathsf{Today} \begin{array}{c} Rainy \\ Cloudy \end{array} \begin{bmatrix} 0.7 & 0.3 \\ 0.3 & 0.7 \end{bmatrix}$

Transition probability matrix

<ロト < 部 ト < 注 ト < 注 ト 三 三 のへで</p>

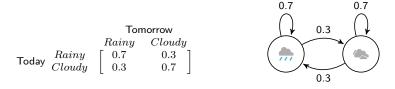
 $\begin{array}{c} {} \\ {} \\ Rainy & Cloudy \\ \\ {} \\ {} \\ \\ Today \begin{array}{c} Rainy \\ Cloudy \end{array} \left[\begin{array}{c} 0.7 & 0.3 \\ 0.3 & 0.7 \end{array} \right] \end{array}$

Transition probability matrix



Two states: rainy and cloudy

<ロト < 母 ト < 臣 ト < 臣 ト 三 三 の < ()</p>



Transition probability matrix

Two states: rainy and cloudy

- A Markov Chain is a stochastic process that embodies the Markov Assumption.
- Can be viewed as a probabilistic finite-state automaton.
- States are fully observable, finite and discrete; transitions are labelled with transition probabilities.
- Models sequential problems your current situation depends on what happened in the past

Useful for modeling the probability of a sequence of events

- Valid phone sequences in speech recognition
- Sequences of speech acts in dialog systems (answering, ordering, opposing)

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト ○ ○ ○ ○ ○ ○

Predictive texting

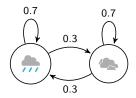
- Useful for modeling the probability of a sequence of events that can be unambiguously observed
 - Valid phone sequences in speech recognition
 - Sequences of speech acts in dialog systems (answering, ordering, opposing)

Predictive texting

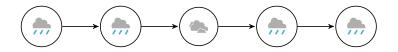
- Useful for modeling the probability of a sequence of events that can be unambiguously observed
 - Valid phone sequences in speech recognition
 - Sequences of speech acts in dialog systems (answering, ordering, opposing)

- Predictive texting
- What if we are interested in events that are not unambiguously observed?

Markov Model

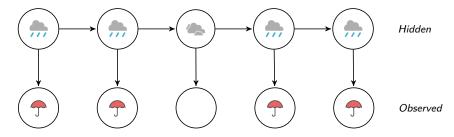


Markov Model: A Time-elapsed view



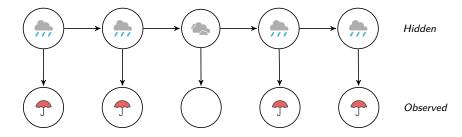
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○ ○ ○ ○

Hidden Markov Model: A Time-elapsed view



- Underlying Markov Chain over hidden states.
- We only have access to the observations at each time step.
- There is no 1:1 mapping between observations and hidden states.
- A number of hidden states can be associated with a particular observation, but the association of states and observations is governed by statistical behaviour.
- We now have to *infer* the sequence of hidden states that correspond to a sequence of observations.

Hidden Markov Model: A Time-elapsed view



	Rainy	Cloudy	Um	ıbrella I	Vo umbrella
Rainy	[0.7	0.3 ັ]	Rainy	0.9	0.1
Cloudy	0.3	0.7	Cloudy	0.2	0.8

Transition probabilities $P(w_t|w_{t-1})$

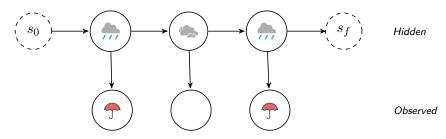
Emission probabilities $P(o_t|w_t)$ (Observation likelihoods)

 \equiv

500

・ロト ・ 同ト ・ ヨト ・ ヨト

Hidden Markov Model: A Time-elapsed view – start and end states



- Could use initial probability distribution over hidden states.
- Instead, for simplicity, we will also model this probability as a transition, and we will explicitly add a special start state.
- Similarly, we will add a special end state to explicitly model the end of the sequence.
- Special start and end states not associated with "real" observations.

More formal definition of Hidden Markov Models; States and Observations

$$\begin{split} S_e = \{s_1, \dots, s_N\} & \text{ a set of } N \text{ emitting hidden states,} \\ s_0 & \text{ a special start state,} \\ s_f & \text{ a special end state.} \end{split}$$

$$K = \{k_1, \dots, k_M\}$$
 an output alphabet of M observations ("vocabulary").

- k_0 a special start symbol,
- k_f a special end symbol.
- $O = O_1 \dots O_T$ a sequence of T observations, each one drawn from K.
- $X = X_1 \dots X_T$ a sequence of T states, each one drawn from S_e .

More formal definition of Hidden Markov Models; First-order Hidden Markov Model

Markov Assumption (Limited Horizon): Transitions depend only on current state:

$$P(X_t|X_1...X_{t-1}) \approx P(X_t|X_{t-1})$$

2 Output Independence: Probability of an output observation depends only on the current state and not on any other states or any other observations:

$$P(O_t|X_1...X_t, ..., X_T, O_1, ..., O_t, ..., O_T) \approx P(O_t|X_t)$$

More formal definition of Hidden Markov Models; State Transition Probabilities

A: a state transition probability matrix of size $(N+2) \times (N+2)$.

$$A = \begin{bmatrix} - & a_{01} & a_{02} & a_{03} & . & . & . & a_{0N} & - \\ - & a_{11} & a_{12} & a_{13} & . & . & . & a_{1N} & a_{1f} \\ - & a_{21} & a_{22} & a_{23} & . & . & . & a_{2N} & a_{2f} \\ - & . & . & . & . & . & . \\ - & . & . & . & . & . & . \\ - & . & . & . & . & . & . \\ - & a_{N1} & a_{N2} & a_{N3} & . & . & a_{NN} & a_{Nf} \\ - & - & - & - & - & - & - & - \end{bmatrix}$$

 a_{ij} is the probability of moving from state s_i to state s_j :

$$a_{ij} = P(X_t = s_j | X_{t-1} = s_i)$$

$$\forall_i \sum_{j=0}^{N+1} a_{ij} = 1$$

More formal definition of Hidden Markov Models; State Transition Probabilities

A: a state transition probability matrix of size $(N+2) \times (N+2)$.

$$A = \begin{bmatrix} - & a_{01} & a_{02} & a_{03} & . & . & . & a_{0N} & - \\ - & a_{11} & a_{12} & a_{13} & . & . & . & a_{1N} & a_{1f} \\ - & a_{21} & a_{22} & a_{23} & . & . & . & a_{2N} & a_{2f} \\ - & . & . & . & . & . & . \\ - & . & . & . & . & . & . \\ - & a_{N1} & a_{N2} & a_{N3} & . & . & . & a_{NN} & a_{Nf} \\ - & - & - & - & - & - & - & - \end{bmatrix}$$

 a_{ij} is the probability of moving from state s_i to state s_j :

$$a_{ij} = P(X_t = s_j | X_{t-1} = s_i)$$

$$\forall_i \sum_{j=0}^{N+1} a_{ij} = 1$$

More formal definition of Hidden Markov Models; Start state s_0 and end state s_f

- Not associated with "real" observations.
- *a*_{0*i*} describe transition probabilities out of the start state into state *s*_{*i*}.
- a_{if} describe transition probabilities into the end state.
- Transitions into start state (*a*_{*i*0}) and out of end state (*a*_{*fi*}) undefined.

More formal definition of Hidden Markov Models; Emission Probabilities

B: an emission probability matrix of size $(M+2) \times (N+2)$.

 $b_i(k_j)$ is the probability of emitting vocabulary item k_j from state s_i :

$$b_i(k_j) = P(O_t = k_j | X_t = s_i)$$

Our HMM is defined by its parameters $\mu = (A, B)$.

More formal definition of Hidden Markov Models; Emission Probabilities

B: an emission probability matrix of size $(M+2) \times (N+2)$.

 $b_i(k_j)$ is the probability of emitting vocabulary item k_j from state s_i :

$$b_i(k_j) = P(O_t = k_j | X_t = s_i)$$

Our HMM is defined by its parameters $\mu = (A, B)$.

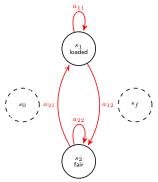
Examples where states are hidden

Speech recognition

- Observations: audio signal
- States: phonemes
- Part-of-speech tagging (assigning tags like Noun and Verb to words)

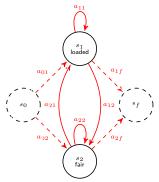
- Observations: words
- States: part-of-speech tags
- Machine translation
 - Observations: target words
 - States: source words

- Imagine a fraudulous croupier in a casino where customers bet on dice outcomes.
- She has two dice a fair one and a loaded one.
- The fair one has the normal distribution of outcomes $P(O) = \frac{1}{6}$ for each number 1 to 6.
- The loaded one has a different distribution.
- She secretly switches between the two dice.
- You don't know which dice is currently in use. You can only observe the numbers that are thrown.



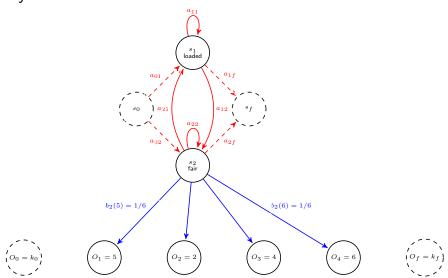
- There are two states (fair and loaded), and two special states (start s₀ and end s_f).
- Distribution of observations differs between the states.

<ロ> < 団> < 団> < 三> < 三> < 三</p>



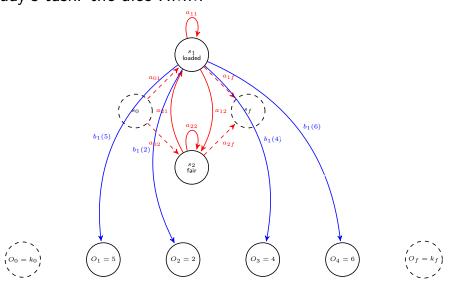
- There are two states (fair and loaded), and two special states (start s₀ and end s_f).
- Distribution of observations differs between the states.

<ロ> < 団> < 団> < 三> < 三> < 三</p>



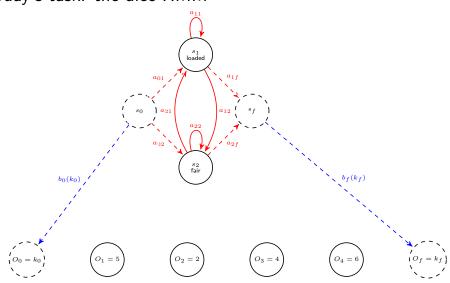
- There are two states (fair and loaded), and two special states (start s₀ and end s_f).
- Distribution of observations differs between the states.

<ロ> < 団> < 豆> < 豆> < 豆> < 豆> < 豆> < 豆</p>



- There are two states (fair and loaded), and two special states (start s₀ and end s_f).
- Distribution of observations differs between the states.

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 - つへ⊙



- There are two states (fair and loaded), and two special states (start s₀ and end s_f).
- Distribution of observations differs between the states.

<ロト < 団 ト < 三 ト < 三 ト < 三 の < ()</p>

Fundamental tasks with HMMs

- Problem 1 (Labelled Learning)
 - Given a parallel observation and state sequence O and X, learn the HMM parameters A and B. \rightarrow today
- Problem 2 (Unlabelled Learning)
 - Given an observation sequence O (and only the set of emitting states S_e), learn the HMM parameters A and B.
- Problem 3 (Likelihood)
 - Given an HMM $\mu = (A, B)$ and an observation sequence O, determine the likelihood $P(O|\mu)$.
- Problem 4 (Decoding)
 - Given an observation sequence O and an HMM $\mu = (A, B)$, discover the best hidden state sequence X. \rightarrow Task 8

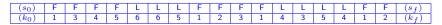
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Your Task today

Task 7:

Your implementation performs labelled HMM learning, i.e. it has

■ Input: dual tape of state and observation (dice outcome) sequences X and O.



• Output: HMM parameters A, B.

Note: you will in a later task use your code for an HMM with more than two states. Either plan ahead now or modify your code later.

Parameter estimation of HMM parameters A, B

Transition matrix A consists of transition probabilities a_{ij}

$$a_{ij} = P(X_{t+1} = s_j | X_t = s_i) \sim \frac{count_{trans}(X_t = s_i, X_{t+1} = s_j)}{count_{trans}(X_t = s_i)}$$

Emission matrix B consists of emission probabilities $b_i(k_j)$

$$b_i(k_j) = P(O_t = k_j | X_t = s_i) \sim \frac{count_{emission}(O_t = k_j, X_t = s_i)}{count_{emission}(X_t = s_i)}$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

(Add-one smoothed versions of these)

Literature

- Manning and Schutze (2000). Foundations of Statistical Natural Language Processing, MIT Press. Chapters 9.1, 9.2.
 - We use state-emission HMM instead of arc-emission HMM
 - We avoid initial state probability vector π by using explicit start and end states (s₀ and s_f) and incorporating the corresponding probabilities into the transition matrix A.
- (Jurafsky and Martin, 2nd Edition, Chapter 6.2 (but careful, notation!))
- Fosler-Lussier, Eric (1998). Markov Models and Hidden Markov Models: A Brief Tutorial. TR-98-041.
- Smith, Noah A. (2004). Hidden Markov Models: All the Glorious Gory Details.
- Bockmayr and Reinert (2011). Markov chains and Hidden Markov Models. Discrete Math for Bioinformatics WS 10/11.