2. Naive Bayes Classification
Machine Learning and Real-world Data (MLRD)

Paula Buttery
(based on slides created by Simone Teufel)

Lent 2018

Last session: we used a sentiment lexicon for
sentiment classification

m Movie review sentiment classification was based on
information in a sentiment lexicon.
m Possible problems with using a lexicon:
m built using human intuition
m required many hours of human labour to build
m is limited to the words the humans decided to include
m is static: bad, sick could have different meanings in different
demographics

Today we will build a machine learning classifier for sentiment
classification that makes decisions based on the data that it’s
been exposed to.

What is Machine Learning?

m a program that learns from data.

m a program that adapts after having been exposed to new
data.

m a program that learns implicitly from data.
m the ability to learn from data without explicit programming.

A Machine Learning approach to sentiment
classification

m The sentiment lexicon approach relied on a fixed set of
words that we made explicit reference to during
classification

m The words in the lexicon were decided independently from
our data before the experiment

m Instead we want to learn which words (out of all words we
encounter in our data) express sentiment

m That is, we want to implicitly learn how to classify from our
data (i.e use a machine learning approach)

Classifications are made from observations

First some terminology:

features are easily observable (and not necessarily
obviously meaningful) properties of the data.

In our case the features of a movie review will be the words
they contain.

classes are the meaningful labels associated with the data.
In our case the classes are our sentiments: POS and NEG.

Classification then is function that maps from features to a
target class.

For us, a function mapping from the words in a review to a
sentiment.

Probabilistic classifiers provide a distribution over
classes

m Given a set of input features a probabilistic classifier
returns the probability of each class.

m That is, for a set of observed features O and classes
c1...cp, € C gives P(¢|0) forall ¢; € C

m For us O is the set all the words in a review {wy, wa, ..., w, }
where w; is the ith word in a review, C' = {POS, NEG}

m We get: P(POS|wi,ws, ..., w,) and P(NEG|w1, wa, ..., wy,)

m We can decide on a single class by choosing the one with
the highest probability given the features:

¢ = argmax P(c|O)
ceC

Today we will build a Naive Bayes Classifier

m Naive Bayes classifiers are simple probabilistic classifiers
based on applying Bayes’ theorem.

Bayes Theorem:

P(c)P(Ole)

P(c|O) =])D(O)

P
enp = argmax P(c|O) = argmax P()P(Ol) = argmax P(c)P(O|c)
ceC ceC (0) ceC

m We can remove P(O) because it will be constant during a
given classification and not affect the result of argmax

Naive Bayes classifiers assume feature independence

cnp = argmax P(c|O) = argmax PP Olc) = argmax P(c)P(O|c)
ceC ceC P(O) ceC

m For us P(Olc) = P(wy,wa, ..., wy]c)
m Naive Bayes makes a strong (naive) independence
assumption between the observed features.
P(O|c) = P(w1,wa, ..., wy|c) = P(wi|c) x P(wa|c) x -+ - x P(wy|c)

so then:

n

cnp = argmax P(c) HP(wZ-]c)
ceC i1

The probabilities we need are derived during training

n

cnp = argmax P(c) HP(wi]c)
ceC i1

m In the training phase, we collect whatever information is
needed to calculate P(w;|c) and P(c).

m In the testing phase, we apply the above formula to derive
cn B, the classifier’s decision.

m This is supervised ML because you use information about
the classes during training.

Understand the distinction between testing and
training

m A machine learning algorithm has two phases: training and
testing.

m Training: the process of making observations about some
known data set

m In supervised machine learning you use the classes that
come with the data in the training phrase

m Testing: the process of applying the knowledge obtained in
the training stage to some new, unseen data

m We never test on data that we trained a system on

Task 2: Step 0 — Split the dataset from Task 1

m From last time, you have 1800 reviews which you used for
evaluation.

m We now perform a data split into 200 for this week’s testing
(actually development) and 1600 for training.

m There are a further 200 reviews that you will use for more
formal testing and evaluation in a subsequent session.

m You will compare the performance of the NB classifier you
build today with the sentiment lexicon classifier.

m i.e. the NB classifier and the sentiment lexicon classifier
will be evaluated on the same 200 reviews.

Task 2: Step 1 — Parameter estimation

m Write code that estimates P(w;|c) and P(c) using the
training data.

Maximum likelihood estimation (MLE) is a method of estimating
the parameters of a statistical model given observations

A count(w;, c
P(w;|c) = (wi,)
Y wey count(w, c)
where count(w;, ¢) is number of times w; occurs with class ¢
and V is vocabulary of all words.
. N,
P(c) = ==
) NT@’U
where N, is number of reviews with class ¢ and N,., is total
number of reviews

P(wj|c) =~ P(w;|c) and P(c) ~ P(c)

Task 2: Step 2 — Classification

In practice we use logs:

n
cnp = argmax logP(c) + Z log P(w;|c)
ceC i1
Problems you will notice:

m A certain word may not have occurred together with one of
the classes in the training data, so the count is 0.

m Understand why this is a problem
m Work out what you could do to deal with it

Task 2: Step 3 — Smoothing

Add-one (Laplace) smoothing is the simplest form of
smoothing:

~ t(w; 1 t(w; 1
Plwilc) = count(wj, c) + _ count(wj, c) +

Yowey(count(w,c) +1) (3_,ey count(w,c)) + |V|

where V is vocabulary of all distinct words, no matter which
class ¢ a word w occurred with.

See handbook and further reading:
https://web.stanford.edu/~jurafsky/slp3/6.pdf

https://web.stanford.edu/~jurafsky/slp3/6.pdf

Ticking today

m Task 1 — Sentiment Lexicon Classifier
m Be patient
m You may consult the wizard!

