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1 Basic probability: warm-up question

1. This question revisits the Wumpus World, but now our valiant hero, having learned the impor-
tance of probability by attending Machine Learning and Bayesian Inference, will use proba-
bilistic reasoning instead of the situation calculus.

Through careful consideration of the available knowledge on Wumpus caves, the explorer has
established that each square contains a pit with probability 0.3, and pits are independent of one-
another. Let Piti,j be a Boolean random variable (RV) having values in {>,⊥} and denoting
the presence of a pit at row i, column j. So for all (i, j)

Pr (Piti,j = >) = 0.3

Pr (Piti,j = ⊥) = 0.7.

In addition, after some careful exploration of the current cave, the explorer has discovered the
following:
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Pit1,1 = ⊥

Pit1,2 = ⊥

Pit1,3 = ⊥

Pit2,3 = ⊥

B denotes squares where a breeze is perceived. Let Breezei,j be a Boolean RV denoting the
presence of a breeze at (i, j)

Breeze1,2 = Breeze2,3 = >
Breeze1,1 = Breeze1,3 = ⊥.

He is considering whether to explore the square at (2, 4). He will do so if the probability that it
contains a pit is less than 0.4. Should he?

Hint: The RVs involved are Breeze1,2,Breeze2,3,Breeze1,1,Breeze1,3 and Piti,j for
all the (i, j). You need to calculate

Pr (Pit2,4|all the evidence you have so far) .
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2 Maximum likelihood and MAP

1. Several exercises in the problem sheet for Artificial Intelligence I in 2015-16 are relevant to the
initial lectures of this course. It is worth attempting them now.

2. Lecture notes slide 49: Complete the derivation of the MAP learning algorithm for regression

wopt = argmin
w

[
1

2σ2

m∑
i=1

(
(yi − hw(xi))

2
)
+
λ

2
||w||2

]
.

3. Lecture notes slide 56: Derive the maximum likelihood and MAP algorithms for classification.

3 Linear regression and classification

1. Show that if A ∈ Rn×n is symmetric then

∂xTAx

∂x
= 2Ax.

What is the corresponding result when A is not symmetric?

2. Lecture notes slide 81: Show that the optimum weight vector for ridge regression is

wopt = (ΦTΦ + λI)−1ΦTy.

3. Show that if A ∈ Rn×n then

AT


b1 0 · · · 0
0 b2 · · · 0
...

...
. . .

...
0 0 · · · bn

A = C

where

cij =

n∑
k=1

bkakiakj .

4. Lecture notes slide 88: Show that the Hessian matrix for iterative re-weighted least squares is

H(w) = ΦTZΦ.

Hint: you’ll need the previous result.
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4 Unsupervised learning and the EM algorithm

We’re going to need to enter a world of matrix calculus. We’ve already seen derivatives of scalars by
vectors, but now we need derivatives of scalars by matrices, and matrices by scalars. These have the
obvious interpretation: if x is a scalar and X is an n by m matrix then

∂x

∂X
=


∂x

∂X1,1

∂x
∂X1,2

· · · ∂x
∂X1,m

∂x
∂X2,1

∂x
∂X2,2

· · · ∂x
∂X2,m

...
... · · ·

...
∂x

∂Xn,1

∂x
∂Xn,2

· · · ∂x
∂Xn,m


so (

∂x

∂X

)
i,j

=
∂x

∂Xi,j

and similarly (
∂X

∂x

)
i,j

=
∂Xi,j

∂x
.

You can easily verify that the usual rules apply. For example

∂XY

∂x
= X

∂Y

∂x
+
∂X

∂x
Y. (1)

We’re specifically going to need derivatives involving inverses. To get started, note that using (1) and
the fact that XX−1 = X−1X = I we have

∂XX−1

∂x
= X

∂X−1

∂x
+
∂X

∂x
X−1 = 0

which can be re-arranged to get
∂X−1

∂x
= −X−1

∂X

∂x
X−1.

1. Let J(k, l) be an n by n matrix where

J(k, l)i,j =

{
1 if i = k and j = l

0 otherwise
.

(In other words, it has all zero elements except at row k, column l, which is 1.) Let K be an n
by n matrix. Show that

(KJ(k, l)K)i,j = Ki,kKl,j .

2. Show that (
∂X−1

∂Xk,l

)
i,j

= −X−1i,kX−1l,j .

3. Let y and z be n by 1 vectors. Show that

∂yTX−1z

∂X
= −X−TyzTX−T .
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4. Show that
∂ log |X|
∂X

= X−T .

(Hint: you might want to remind yourself of the full definition of |X|.)

5. Complete the derivation of the EM-based clustering algorithm based on a mixture of Gaussians
.

6. Implement the EM algorithm for clustering based on a mixture of Gaussians.

5 Support vector machines

1. Slide 105 provides an alternative formulation of the maximum margin classifier based on max-
imizing γ directly with suitable constraints.

Apply the KKT conditions to this version of the problem. What do they tell you about the
solution, and how does it differ from the version developed in the lectures?

2. Slide 116 states the dual optimization problem for the maximum margin classifier. Provide a
full derivation.

3. Slide 119 states the optimization problem that needs to be solved to train a support vector
machine

argmin
w,w0,ξ

1

2
||w||2 + C

∑
i

ξi such that yifw,w0(xi) ≥ 1− ξi and ξi ≥ 0 for i = 1, . . . ,m.

Apply the KKT conditions to this version of the problem. What do they tell you about the
solution?

6 Machine learning methods

1. Slide 146 uses the following estimate for the variance of a random variable:

σ2 ' σ̂2 = 1

n− 1

[
n∑

i=1

(Xi − X̂n)
2

]
.

Show that this estimate is unbiased; that is,

E
[
σ̂2
]
= σ2.

2. Show that if a random variable has zero mean then dividing it by its standard deviation σ results
in a new random variable having zero mean and variance 1. Show that in general multiplying a
random variable having mean µ and variance σ2 by

√
c alters its mean to

√
cµ and its variance

to cσ2.

3. Verify the expression in point 4 on slide 149.
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7 Making it all work

Probably the best way to get a feel for this material is to write some code that implements it. In
particular, can you reproduce something like the hyperparameter search graph?
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Using crossvalidation to optimize the hyperparameters C and σ
2.

log2 C

0.8

5 -5

log2 σ
2

1

0 -10

-5 -15

In order to do this I don’t suggest you attempt to implement SVMs from scratch—having said that, if
you can find a suitable, general constrained optimization library it’s not too hard. A quicker approach
initially is to find a good SVM library in a system such as Matlab or R. You will need to generate
the spiral data set and implement a search using cross-validation to assess possible hyperparameter
values.

8 The Bayesian approach to neural networks

1. Slide 176. Show that
∇∇1

2
||w||2 = I.

2. Slide 179. Show that
Z = (2π)W/2|A|−1/2 exp(−S(wMAP)).

3. For the next question we’re going to need something known variously as the matrix inversion
lemma, the Woodbury formula and the Sherman-Morrison formula, depending on the precise
form used. In order to derive this we’ll first need to know how to derive the formulae stated on
slide 205 for inverting a block matrix.

(a) We want to invert the block matrix

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
(2)
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to get

Σ−1 =

[
Λ11 Λ12

Λ21 Λ22

]
. (3)

Show that

Λ11 = (Σ11 −Σ12Σ
−1
22 Σ21)

−1

Λ12 = −Σ−111 Σ12Λ22

Λ21 = −Σ−122 Σ21Λ11

Λ22 = (Σ22 −Σ21Σ
−1
11 Σ12)

−1

(Hint: write ΣΣ−1 = I and solve the resulting equations. Note that these are different to
the ones on slide 205, but you can re-arrange one version into the other.)

(b) Now do the same thing again, this time solving Σ−1Σ = I. Show that

Λ12 = −Λ11Σ12Σ
−1
22

Λ21 = −Λ22Σ21Σ
−1
11 .

(c) The two expressions for Λ21 must be equal. Equate them to show that

(Σ11 −Σ12Σ
−1
22 Σ21)

−1 = Σ−121 Σ22(Σ22 −Σ21Σ
−1
11 Σ12)

−1Σ21Σ
−1
11 .

You may assume that Σ21 has an inverse1.
Now write Σ−121 Σ22 as

Σ−121 Σ22 = Σ−121 (Σ22 −Σ21Σ
−1
11 Σ12) + Σ−111 Σ12

and show that

(Σ11 −Σ12Σ
−1
22 Σ21)

−1 = Σ−111 + Σ−111 Σ12(Σ22 −Σ21Σ
−1
11 Σ12)

−1Σ21Σ
−1
11 .

This is the full version of the formula. Note that it is a method for updating an existing
inverse: provided we know the inverse of Σ11, it tells us how to update that inverse when
−Σ12Σ

−1
22 Σ21 is added to Σ11. We have to be able to calculate a different inverse, but

crucially the new inverse might be much simpler to calculate. We shall see the extreme
version of this in the last part of the question.

(d) Use the special case where y and z are vectors and

Σ =

[
X −y
zT 1

]
to show that

(X + yzT )−1 = X−1 − X−1yzTX−1

1 + zTX−1y
.

This is what we’ll actually need in the next question.
1The formula we are deriving is correct even for non-square Σ21. However a derivation that shows this is somewhat

more involved.
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4. Use the standard Gaussian integral to derive the final equation for Bayesian regression

p(Y |y;x,X) =
1√
2πσ2Y

exp

(
−(Y − hwMAP(x))

2

2σ2Y

)

where
σ2Y =

1

β
+ gTA−1g

given on slide 181. You might want to break this into steps:

(a) Write down the integral that needs to be evaluated. How does this compare to the standard
integral result presented in the lectures? Can you make an immediate simplification?
(Hint: the integral is over the whole of the space RW where W is the number of weights.
What happens to the value of an integral over all of R in 1 dimension if you just shift the
integrand a bit to the left? If you can’t see a simplification at this point you should still be
able to complete the question, but it might be more complex.)

(b) Use the integral identity from the lectures to evaluate the integral.

(c) Does the expression you now have for p(Y |y;x,X) look familiar? You should find that it
looks like a Gaussian density. Extract expressions for the mean and variance.

(d) Use the matrix inversion lemma derived above to simplify the expression for the variance
to give the final result presented in the lectures.

5. This question asks you to produce a version of the graph on slide 183, using the Metropolis
algorithm. Any programming language is fine, although Matlab is probably the most straight-
forward.

The data is simple artificial data for a one-input regression problem. Use the target function

f(x) =

(
x3 − 1

2
x2 − 7

2
x+ 2

)
× 0.35

and generate 30 examples in each of two clusters, one uniform in [−2.− 1] and one uniform in
[0, 1]. Then label these examples

yi = f(xi) + n

where n is Gaussian noise of variance 0.1. You should have something like this:

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3
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Let w be the weight vector and W the total number of weights in w. You should use the prior
and likelihood from the lectures, so

p(w) =

(
2π

α

)−W/2

exp
(
−α
2
||w||2

)
and

p(y|w;X) =

(
2π

β

)−m/2

exp

(
−β
2

m∑
i=1

(yi − hw(xi))2
)

where m is the number of examples and hw(x) is the function computed by a suitable neural
network with weights w. Note that we are assuming that hyperparameters α and β are known;
the values used to produce the lecture material were α = 1 and β = 10.

Complete the following steps:

(a) Write the code required to compute the prior and likelihood functions.

(b) Implement a multilayer perceptron with a single hidden layer, a basic feedforward struc-
ture as illustrated in the AI I lectures, and a single output node. The network should use
sigmoid activation functions for the hidden units and a linear activation function for its
output. (The lecture material was produced using 5 hidden units.)

(c) Starting with a weight vector chosen at random, use the Metropolis algorithm to sample
the posterior distribution p(w|y;X). You should generate a sequence w1,w2, . . . ,wN of
N weight vectors. The lecture material used N = 500, 000. However, note that you will
probably find some degree of experimentation is required here, and it may be a good idea
to start with a much smaller N while you explore parameter settings.
For example, you may find that an initial starting value for w1 is inappropriate, and you
will find that the algorithm behaves differently for different step sizes taken when updating
wi to wi+1—try varying it and seeing how the proportion of steps accepted is affected.
(The lecture material was produced using a step variance of 0.25.)

(d) Plot the function hwi(x) computed by the neural network for a few of the weight vectors
obtained. You may see a surprising amount of variation in areas where there was no
training data. (To see this it helps to take vectors from different areas in the sequence.)
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(e) It takes a while for the Markov chain to settle in. Discard an initial chunk of the vectors
generated. Using the remaining M , calculate the mean and variance of the corresponding
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functions using

mean(x) =
1

M

∑
i

hwi(x)

and a similar expression to estimate the variance. Plot the mean function along with error
bars at ±2σY .
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Typical behaviour of the Bayesian solution

9 Gaussian processes

1. Slide 201: Show that when Gaussian noise is added as described

p(y) = N (0,K + σ2I).

2. Slide 202, note 2: what difference is made by the inclusion or otherwise of σ2 in k?

3. Slide 206: provide the derivation for the final result

p(y′|y) = N (kTL−1y, k − kTL−1k).

10 Bayesian networks

1. Prove that the two definitions for conditional independence given in the lectures are equivalent.

2. Continuing with the running example of the roof-climber alarm...

The porter in lodge 1 has left and been replaced by a somewhat more relaxed sort of chap, who
doesn’t really care about roof-climbers and therefore acts according to the probabilities

Pr (l1|a) = 0.3 Pr (¬l1|a) = 0.7
Pr (l1|¬a) = 0.001 Pr (¬l1|¬a) = 0.999

.

Your intrepid roof-climbing buddy is on the roof. What is the probability that lodge 1 will report
him? Use the variable elimination algorithm to obtain the relevant probability. Do you learn
anything interesting about the variable L2 in the process?
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3. In designing a Bayesian network you wish to include a node representing the value reported
by a sensor. The quantity being sensed is real-valued, and if the sensor is working correctly it
provides a value close to the correct value, but with some noise present. The correct value is
provided by its first parent. A second parent is a Boolean random variable that indicates whether
the sensor is faulty. When faulty, the sensor flips between providing the correct value, although
with increased noise, and a known, fixed incorrect value, again with some added noise. Suggest
a conditional distribution that could be used for this node.

11 Old exam questions

Maximum likelihood, MAP, linear regression and classification: although this is a new course it
has some level of overlap with its predecessor Artificial Intelligence II. In particular it might be worth
attempting 2010, paper 8, question 2. Also, some old exam questions for Artificial Intelligence I are
usable warm-ups for the start of this course, so you may like to attempt:

• 2015, paper 4, question 1.

• 2013, paper 4, question 2.

• 2011, paper 4, question 1.

• 2007, paper 4, question 7.

Machine learning methods: most of the material here is quite new, so the only relevant past question
is:

• 2016, paper 8, question 2.

Bayesian Networks:

1. 2005, paper 8, question 2.

2. 2006, paper 8, question 9.

3. 2009, paper 8, question 1.

4. 2014, paper 7, question 2.

5. 2016, paper 7, question 3.

6. 2017, paper 7, question 3.
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