Instructions for .90 Practical:
Sentiment Detection of Reviews*

Kevin Heffernan Helen Yannakoudakis
khb62@cam. ac.uk hy260@cam. ac.uk

This practical concerns sentiment classification of movie reviews. Your first task is to use a
sentiment lexicon and a machine learning approach based on bag-of-word features, a stemmer
and a POS tagger. For the first task, please do not use any other packages than those described
below. Your second task is to improve over the two baseline systems using document embeddings
and perform an error analysis on the strengths and weaknesses of the approach. You must use
the MPhil machines for these tasks. We provide your own personal VM on these machines.

You will find 1000 positive and 1000 negative movie reviews in /usr/groups/mphil/L90/
data/{P0S,NEG}/*.txt. To prepare yourself for this practical, you should have a look at a
few of these texts to understand the difficulties of the task (how might one go about classifying
the texts?); you will write code that decides whether a random unseen movie review is positive
or negative, and two reports in the form of a scientific article that describe the results you
achieved in the two tasks.

Please also make sure you have read the following paper:

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan (2002). Thumbs up? Senti-
ment Classification using Machine Learning Techniques. Proceedings of EMNLP.

Bo Pang et al. were the “inventors” of the movie review sentiment classification task, and
the above paper was one of the first papers on the topic. The first version of your sentiment
classifier will do something similar to Bo Pang’s system. If you have questions about it, we
should resolve them in our first demonstrated practical.

Advice: Please read through the entire instruction sheet and familiarise yourself with all
requirements before you start coding or otherwise solving the tasks. Writing clean, modular
code can make the difference between solving the assignment in a matter of hours, and taking
days to run all experiments.

Note: Please include a pointer to your working code on the Mphil machines (your account).

1 A quick note on installing packages in the MPhil ma-
chines

You can install packages by downloading the .tar file in your home folder and then installing
the packages from there (while setting your path variables as needed). An alternative would be
to do the following:

1. Go to https://pip.pypa.io/en/stable/installing/ and download get-pip.py
2. Run python get-pip.py --user

3. Then to install a package (e.g., scipy) run python -m pip install --user scipy

*Adapted from L90 practical notes by Simone Teufel, Adrian Scoica, and Yiannos Stathopoulos.

2 Part One: Baseline and Essentials

How could one automatically classify movie reviews according to their sentiment? Your task in
Part One is to establish two commonly used baselines — by implementing and evaluating several
NLP methods on this task.

2.1 Symbolic approach — sentiment lexicon

If we had access to a sentiment lexicon, then there are ways to solve the problem without
using Machine Learning. One might simply look up every open-class word in the lexicon, and
compute a binary score Spinary by counting how many words match either a positive, or a
negative word entry in the sentiment lexicon SLex.

n
Shinary (W1Wa...wy,) = Z sgn(SLex [wz])
i=1
If the sentiment lexicon also has information about the magnitude of sentiment (e.g., “excel-
lent” would have higher magnitude than “good”), we could take a more fine-grained approach
by adding up all sentiment scores, and deciding the polarity of the movie review using the sign
of the weighted score Sweighted-

Sweighted(wlw2---wn) = Z SLex [wz]
i=1

Your first task is to implement these approaches using the sentiment lexicon in /usr/
groups/mphil/L90/resources/sent_lexicon, which was taken from the following work:

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann (2005). Recognizing Contex-
tual Polarity in Phrase-Level Sentiment Analysis. Proceedings of HLT-EMNLP.

Their lexicon also records two possible magnitudes of sentiment (weak and strong), so you
can implement both the binary and the weighted solutions (please use a switch in your program).
For the weighted solution, you can choose the weights intuitively once before running the
experiment.

2.2 Answering questions in statistically significant ways

Having implemented both lexicon methods above, consider answering the following question:
(Q0.1) Does using the magnitude improve results?

Oftentimes, answering questions like this about the performance of different signals and/or
algorithms by simply looking at the output numbers is not enough. When dealing with natural
language or human ratings, it’s safe to assume that there are infinitely many possible instances
that could be used for training and testing, of which the ones we actually train and test on are
a tiny sample. Thus, it is possible that observed differences in the reported performance are
really just noise. There exist statistical methods which can be used to check for consistency
(statistical significance) in the results, and one of the simplest such tests is the sign test. We
can now add rigorosity to our answer by appending the following question in conjunction with
the original one:

(Q0.2) Is the performance difference between the two methods statistically significant?

Apply the sign test to answer questions (QO0). The sign test is described in Siegel and
Castellan (1986)!, page 80 (scans of the relevant pages are available in the L90 directory /usr/
groups/mphil/L90/resources/). As presented in the slides, the sign test is based on the
binomial distribution. Count all cases when System 1 is better than System 2, when System 2

1Sjegel and Castellan, Nonparametric Statistics for the behavioural sciences, McGraw-Hill.

2

is better than System 1, and when they are the same. Call these numbers Plus, Minus and
Null respectively. The sign test returns the probability that the null hypothesis is true. This
probability is called the p-value and it can be calculate for the two-sided sign test using the
following formula (we multiply by two because this is a two-sided sign test and tests for the
significance of differences in either direction):

2 g’“om 41— N

where N = 2 {NT“” +Plus+Minus is the total number of cases, and k = (NT“H +min{ Plus, Minus}
is the number of cases with the less common sign. In this experiment, ¢ = 0.5. Here, we treat
ties by adding half a point to either side, rounding up to the nearest integer if necessary. You
can quickly verify the correctness of your sign test code using a free online tool.2.

From now on, report all differences between systems® using the sign test. In your
reports, you should report statistical test results in an appropriate form — if there are several
different methods (i.e., systems) to compare, tests can only be applied to pairs of them at a
time. This creates a triangular matrix of test results in the general case. When reporting these
pair-wise differences, you should summarise trends to avoid redundancy.

2.3 Machine Learning using Bags of Words representations

Your second task is to program a Machine Learning approach that operates on a simple Bag-
of-Words (BoW) representation of the text data, as described in Pang et al. (2002). In this
approach, the only features we will consider are the words in the text themselves, without
bringing in external sources of information. The BoW model is a popular way of representing
text information as vectors (or points in space), making it easy to apply classical Machine
Learning algorithms on NLP tasks. However, the BoW representation is also very crude, since
it discards all information related to word order and grammatical structure in the original text.

2.3.1 Writing your own classifier

Write your own code to implement the Naive Bayes (NB) classifier.* As a reminder, the Naive
Bayes classifier works according to the following equation:

n

¢ = argmax P(c|f) = arg max P(c) HP(fZ|c)
ceC ceC =1

where C' = {POS,NEG} is the set of possible classes, ¢ € C is the most probable class, and

f is the feature vector. Remember that we use the log of these probabilities when making a
prediction:

¢ = ar%gax{logp(c) + Z logP(filc)}

i=1

You can find more details about Naive Bayes here:
https://web.stanford.edu/ jurafsky/slp3/6.pdf
and pseudocode here:

https://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-
1.html

2For example https://www.graphpad.com/quickcalcs/binomiall.cfm

3You can think about a change that you apply to one system, as a new system.

4This section and the next aim to put you a position to replicate Pang et al., Naive Bayes results. However,
the numerical results will differ from theirs, as they used different data.

You may use whichever programming language you prefer (C++, Python, or Java being
the most popular ones), but you must write the Naive Bayes training and prediction code from
scratch. You will not be given credit for using off-the-shelf Machine Learning libraries such as
mlpack (C++), scikit (Python), Weka (Java), etc.

The data in /usr/groups/mphil/L90/data-tagged/{P0S,NEG}/*.tag contains the text
of the reviews, where each document is one review. You will find the text has already been
tokenised for you. Your algorithm should read in the text, store the words and their frequencies
in an appropriate data structure that allows for easy computation of the probabilities used in
the Naive Bayes algorithm, and then make predictions for new instances.

(Q1.0) Train your classifier on files cv000-cv899 from both the /P0OS and the /NEG
directories, and test it on the remaining files cv900—cv999. Report results using
simple classification accuracy as your evaluation metric.

(Q1.1) [Optional. Even if you do this, please don’t report it.] Would you con-
sider accuracy to also be a good way to evaluate your classifier in a situation
where 90% of your data instances are of positive movie reviews? You can simu-
late this scenario by keeping the positive reviews data unchanged, but only using
negative reviews cv000—cv089 for training, and cv900-cv909 for testing. Calculate
the classification accuracy, and explain what changed.

Smoothing

The presence of words in the test dataset that haven’t been seen during training can
cause probabilities in the Naive Bayes classifier to be 0, thus making that particular
test instance undecidable. The standard way to mitigate this effect (as well as to

give more clout to rare words) is to use smoothing, in which the probability fraction
count(w;,c) count(w;,c)+smoothing(w;)

>~ count(w,c) > count(w,c)+ > smoothing(w)
wev wevV weV

for a word w; becomes

(Q2.0) Implement Laplace feature smoothing (smoothing(-) = k, constant for all
words) in your Naive Bayes classifier’s code, and report the impact on performance.

(Q2.1) Is the difference between Q2 and Q1 statistically significant?

2.3.2 Cross-validation

A serious danger in using Machine Learning on small datasets, with many iterations of slightly
different versions of the algorithms, is that we end up with Type III errors, also called the
“testing hypotheses suggested by the data” errors. This type of error occurs when we make
repeated improvements to our classifiers by playing with features and their processing, but we
don’t get a fresh, never-before seen test dataset every time. Thus, we risk developing a classifier
that’s better and better on our data, but worse and worse at generalizing to new, never-before
seen data.

A simple method to guard against Type III errors is to use cross-validation. In N-fold cross-
validation, we divide the data into N distinct chunks / folds. Then, we repeat the experiment
N times, each time holding out one of the chunks for testing, training our classifier on the
remaining N - 1 data chunks, and reporting performance on the held-out chunk. We can use
different strategies for dividing the data:

e Consecutive splitting:
cv000—cv099 = Split 1
cv100-cv199 = Split 2
e Round-robin splitting (mod 10):

cv000, cv010, cv020,...= Split 1
cv001, cv011, cv021,... = Split 2

4

e Random sampling/splitting: Not used here (but you may choose to split this way in a
non-educational situation)

(Q3.0) Write the code to implement 10-fold cross-validation for your Naive Bayes
classifier from Q2 and compute the 10 accuracies. Report the final performance,
which is the average of the performances per fold.

If all splits perform equally well, this is a good sign.

(Q3.1) Write code to calculate and report variance, in addition to the final per-
formance.

Please report all future results using 10-fold cross-validation now (unless told to
use the held-out test set).

YOU HAVE NOW REACHED THE MINIMAL REQUIREMENT FOR THE BASELINE
SYSTEM.

2.3.3 Features, overfitting, and the curse of dimensionality

In the Bag-of-Words model, ideally we would like each distinct word in the text to be mapped to
its own dimension in the output vector representation. However, real world text is messy, and we
need to decide on what we consider to be a word. For example, is “word” different from “Word”,
from “word”, or from “words”? Too strict a definition, and the number of features explodes,
while our algorithm fails to learn anything generalisable. Too lax, and we risk destroying our
learning signal. In the following section, you will learn about confronting the feature sparsity
and the overfitting problems as they occur in NLP classification tasks.

A touch of linguistics

(Q4.0) Taking a step further, you can use stemming to hash different inflections of
a word to the same feature in the BoW vector space. How does the performance of
your classifier change when you use stemming on your training and test datasets?®

(Q4.1) Is the difference from the results obtained at (Q3) statistically significant?

(Q4.2) What happens to the number of features (i.e., the size of the vocabu-
lary) when using stemming as opposed to (Q3)? Give actual numbers. You can
use the held-out training set to determine these.

Putting [some] word order back in

(Q5.0) A simple way of retaining some of the word order information when using
BoW representations is to use bigrams or trigrams as features. Retrain your clas-
sifier from (Q3) using bigrams or trigrams as features, and report accuracy and
statistical significance in comparison to the experiment at (Q3).

(Q5.1) How many features does the BoW model have to take into account now?
How does this number compare (e.g., linear, square, cubed, exponential) to the
number of features at (Q3)? Use the held-out training set once again for this.

2.3.4 Feature independence, and comparing Naive Bayes with SVM

Though simple to understand, implement, and debug, one major problem with the Naive Bayes
classifier is that its performance deteriorates (becomes skewed) when it is being used with
features which are not independent (i.e., are correlated). Another popular classifier that doesn’t

5Please use the Porter stemming algorithm; code is available at http://tartarus.org/martin/
PorterStemmer/

scale as well to big data, and is not as simple to debug as Naive Bayes, but that doesn’t assume
feature independence is the Support Vector Machine (SVM) classifier.

(Q6.0) Write the code to print out your BoW features from (Q3) in SVM Light
format.”

(Q6.1) Download and use the SVM Light implementation® on our dataset. Com-
pare the classification performance of the SVM classifier to that of the Naive Bayes
classifier from (Q3) and report the numbers.

More linguistics

Now add in part-of-speech features. You will find the movie review dataset has already been
POS-tagged for you. Try to replicate what Pang et al. were doing;:

(Q7.0) Replace your features with word+POS features, and report performance
with the SVM. Does this help? Why?

(Q7.1) Discard all closed-class words from your data (keep only nouns, verbs,
adjectives and adverbs), and report performance. Does this help? Why?

3 Part Two: extension

Now your task is to improve over the baseline systems using doc2vec, and perform an error
analysis on the strengths and weaknesses of the approach.’ Doc2vec (or Paragraph Vectors),
proposed by Le and Mikolov (2014), extend the learning of embeddings from words (word2vec)
to sequences of words:

Le, Q. and Mikolov, T. (2014). Distributed representations of sentences and doc-
uments. Proceedings of ICML.

Train various doc2vec models using the IMDB movie review database to learn document-level
embeddings.'® This is a database of 100,000 movie reviews and can be found here:

http://ai.stanford.edu/~amaas/data/sentiment/

Ideas for training different models include choosing the training algorithm, the way the context
word vectors are combined, and the dimensionality of the resulting feature vectors. You will
also find pre-trained doc2vec models here /usr/groups/mphil/L90/models/, which can help
you verify your implementation.!!

(Q8.0) Use the trained doc2vec model to infer/generate document vectors/embeddings
for each review in the train and test sets you used in Part One. Now report per-
formance using the document embeddings with an SVM.!2

(Q8.1) [Please don’t report this] Compare your performance to the one you ob-
tained with your Naive Bayes classifier from Part One (Q3). Do you achieve a
significant result?

6You can find more details about SVMs in Chapter 7 here: http://users.isr.ist.utl.pt/~wurnd/Livros/
school/Bishop%20-7%20Pattern)20Recognition’20And/,20Machine,20Learning?20-%20Springer?’20%202006.
pdf

"Described in detail on http://svmlight.joachims.org/

8SVM Light is available for download at http://svmlight.joachims.org/

9Use the 4,000 word limit to describe the extension system only.

10You can use the gensim python library: https://radimrehurek.com/gensim/models/doc2vec.html

HTrained using the gensim python library.

12You can find more details about SVMs in Chapter 7 here: http://users.isr.ist.utl.pt/~wurmd/Livros/
school/Bishop%20-%20Pattern)20Recognition’20And’,20Machine?,20Learning’20-%20Springer?’207%202006.
pdf

Now inspect the model(s), examine the results, and perform an in-depth insightful analysis
(something non-obvious) of the doc2vec approach to sentiment classification. Some suggestions
are presented below:

(Q8.2) Are meaningfully similar documents close to each other?
(Q8.3) Are meaningfully similar words close to each other?
(Q8.4) What happens when you use pre-trained word embeddings?

(Q8.5) Are document embeddings close in space to their most critical content
words?

(Q8.6) Do inferred embeddings (at a finer level of granularity perhaps) capture
local compositionality?

(Q8.7) Which dimensions contribute the most to the classification decision?

(Q8.8) Are there categories of instances for which the doc2vec vectors perform
better?

(Q8.9) What information do document embeddings capture? E.g., do they capture
differences in genres?

Useful resources
Doc2vec:

e https://radimrehurek.com/gensim/models/doc2vec.html

e https://github.com/RaRe-Technologies/gensim/blob/develop/docs/notebooks/
doc2vec-IMDB. ipynb

e https://github.com/jhlau/doc2vec
Scikit:

e http://scikit-learn.org/stable/tutorial/text_analytics/working with_
text_data.html

TensorFlow:

e https://www.tensorflow.org/programmers_guide/embedding
e http://projector.tensorflow.org/

t-SNE:
e https://lvdmaaten.github.io/tsne/

MALLET:

e http://mallet.cs.umass.edu/topics.php

And papers

Lau, J. H. and Baldwin, T. (2016). An empirical evaluation of doc2vec with practi-
cal insights into document embedding generation. In Proceedings of the 1st Work-
shop on Representation Learning for NLP.

Dai, A. M., Olah, C., and Le, Q. V. (2015). Document embedding with paragraph
vectors. arXiv preprint arXiv:1507.07998.

Li, J., Chen, X., Hovy, E., and Jurafsky, D. (2015). Visualizing and understanding
neural models in nlp. In Proceedings of NAACL.

7

