
L28: Advanced functional programming

Exercise 2

Due date: see the course web page

Submission instructions

Your solutions for this exericse should be handed in to the Graduate Education
Office by 4pm on the due date. Additionally, please email the completed text
file exercise2.ml to jeremy.yallop@cl.cam.ac.uk.

Changelog

17:00 Sat 24th Feb Added a note to question 3(e) clarifying the use of types to maintain queue
invariants.

1

http://www.cl.cam.ac.uk/teaching/1718/L28/assessment.html
jeremy.yallop@cl.cam.ac.uk

1 Alternative applicatives

The APPLICATIVE interface presented in Lecture 10 is the standard way of building
applicative computations:

module type APPLICATIVE = sig
type 'a t
val pure : 'a -> 't
val (<*>) : ('a -> 'b) t -> 'a t -> 'b t

end

However, there are several ways to define an interface equivalent to APPLICATIVE.
For example, the following interface is based on a function meld that combines two
computations by means of a function that combines their results:

module type MELDABLE = sig
type 'a t
val pure : 'a -> 'a t
val meld : ('a -> 'b -> 'c) ->

'a t -> 'b t -> 'c t
end

(We will make use of MELDABLE in Question 2.)

(a) Define functors with the following signatures that convert between MELDABLE and
APPLICATIVE:

module Applicative_of_meldable(M: MELDABLE)
: APPLICATIVE with type 'a t = 'a M.t = . . .

module Meldable_of_applicative(A: APPLICATIVE)
: MELDABLE with type 'a t = 'a A.t = . . .

(b) Complete the proof of equivalence by defining a set of laws for the MELDABLE

operations and showing that each set of laws follows from the other. You will
need to give one proof for each of the APPLICATIVE laws and one proof for each of
your new MELDABLE laws.

(Hint: you might start by introducing exactly the MELDABLE laws needed to
complete the APPLICATIVE proofs.)

(10 marks)

3

2 Tries, sets and maps

In this section we will use the logarithm and exponentiation operations on types from
Lecture 8 to construct a family of associative structures known as tries.

The tries we will build have several appealing features: they allow arbitrary data as
keys, have purely functional behaviour (i.e. no mutation) and support an efficient
lookup operation that is typically faster than the associative structures (hash tables
and maps) in the OCaml standard library.

A trie with keys of type k and values of type v has a lookup function of type k -> v. It
is possible to use this function type directly as a higher-order representation of tries.
However, it is more convenient and efficient to use a first-order representation. The
exponentiation laws from Lecture 8 give the rules for converting from a higher-order
to a first-order representation.

Example: for a trie with keys of type bool and values of type a, the higher-order
representation is

bool -> a

Interpreting -> as exponentiation gives:

abool

and interpreting bool as a set with two inhabitants we have:

a2

which corresponds to a binary product:

a × a

In general, the type of the keys determines the shape of the first-order trie
representation. We’ll write triek for the first-order representation corresponding to
the key type k. The following three rules give the first-order representations for tries
whose keys are built from units, sums and products:

key k higher-order trie ak triek note

unit unit -> a a a1 ≡ a

s + t s + t -> a a tries * a triet as+t ≡ as × at

s * t s * t -> a (a tries) triet as×t ≡ (as)t

4

Here is an interface to tries with keys k and representations trie:

module type TRIE =
sig

type k
type _ trie
val all : 'v -> 'v trie
val mix : ('a -> 'b -> 'c) -> 'a trie -> 'b trie -> 'c trie

val set : k -> 'v -> 'v trie -> 'v trie
val get : k -> 'v trie -> 'v

end

There are four functions:

• all v constructs a trie where every value is initially v.

• mix f l r combines the tries l and r, using f to combine the values for each key.

• set k v t updates the value for key k to v in the trie t. It returns a fresh copy of
t, leaving the original unchanged.

• get k t returns the value corresponding to k in t. Since t stores a value for every
possible k, get always succeeds.

The all and mix functions correspond to the pure and meld of the MELDABLE interface of
Question 1, and so each trie can be treated as an APPLICATIVE.

Tries also follow a number of additional laws, such as (among others):

get retrieves the value stored by all when there are no intervening updates:

get k (all v) ≡ v

get retrieves the last value stored by set for the same key k:

get k (set k v t) ≡ v

Using mix const to combine a trie with itself has no effect:

mix (fun x y -> x) t t ≡ t

mix f followed by get is equivalent to get followed by f:

get k (mix f t1 t2) ≡ f (get k t1) (get k t2)

(a) (i) Following the rules in the table on page 4, write implementations of the
TRIE interface for units, products and sums by supplying the parts marked
? below:

5

implicit module Trie_unit :
TRIE with type k = unit and type 'v trie = ?

= ?

module Trie_product (A: TRIE) (B: TRIE)
: TRIE with type k = A.k * B.k and type 'v trie = ? =

= ?

module Trie_sum (A: TRIE) (B: TRIE)
: TRIE with type k = (A.k, B.k) sum

and type 'v trie = ?
= ?

(ii) Many common types are isomorphic to combinations of units, sums and
products. Rather than write a trie implementation for each type, we’ll
define a way to map those types into the implementations from question (a).

The INJ signature gives an interface to injections from a type t to a type s:

module type INJ = sig
type t and s
val inj : t -> s

end

Define a module Trie_iso that builds a trie implementation from an existing
implementation A and an injection:

module Trie_iso (A: TRIE) (S: INJ with type s = A.k) :
TRIE with type k = S.t and type 'v trie = 'v A.trie =
?

and use Trie_iso to build trie implementations with bool and option keys
from Trie_unit, Trie_product and Trie_sum.

implicit module Trie_bool : TRIE with type k = bool
and type 'v trie = ?

= ?
implicit module Trie_option (A: TRIE) :

TRIE with type k = A.k option and type 'v trie = ?
= ?

(iii) The approach above works well for finite types, whose definitions don’t
involve recursion. However, types with an infinite number of inhabitants
require a different approach.

The default type stores either a value or — if the value is not available —
a default to be used in its place:

type ('p, 'a) default = Present : 'p -> ('p, 'a) default
| Absent : 'a -> ('p, 'a) default

6

Using default we can define a TRIE implementation that uses less storage if
most entries in the trie are unchanged from their initial value. Complete
the following definition:

module Trie_default (A: TRIE) : TRIE
with type k = A.k and type 'v trie = ('v A.trie ,'v) default =

struct
type k = A.k
type 'v trie = ('v A.trie , 'v) default
let all v = Absent v
. . .

The accompanying file exercise2.ml defines a functor Trie_fix that builds
tries for recursively-defined types. If F is a functor that builds a trie with
key type b from a trie with key type a then Trie_fix builds tries with key
type µb.a.

module Trie_fix (F:(functor (X: TRIE) -> TRIE)) :
sig
module rec Fixed : sig
type k = K : (F(Trie_default(Fixed)).k) -> k
type 'v trie = 'v F(Trie_default(Fixed)).trie
include TRIE with type k := k and type 'v trie := 'v trie

end
end

Either using Trie_fix and Trie_iso or otherwise, give implementations of
TRIE with nat and list keys:

implicit module Trie_nat
: TRIE with type k = nat and type 'v trie = ?

= ?
implicit module Trie_list {A: TRIE}

: TRIE with type k = A.k list and type 'v trie = ?
= ?

(If you choose not to use Trie_fix, your implementation should follow the
approach underlying Trie_sum, Trie_unit and Trie_product.)

(b) The TRIE interface can be used to implement other collection interfaces, including
SET and MAP as given below

module type SET = sig
type t
type elem

(* Create an empty set *)
val create : unit -> t

(* Whether a set contains a particular element *)
val member : elem -> t -> bool

(* The union of two sets *)

7

val mingle : t -> t -> t

(* Add an element to a set *)
val insert : elem -> t -> t

(* Remove an element from a set *)
val remove : elem -> t -> t

end

module type MAP = sig
type 'v t
type key

(* Create an empty map *)
val make : unit -> 'v t

(* Retrieve the value corresponding to a key in a map *)
val seek : key -> 'v t -> 'v option

(* Join two maps together , using the function to merge values *)
val join : ('a -> 'a -> 'a) -> 'a t -> 'a t -> 'a t

(* Add a key to a map *)
val push : key -> 'v -> 'v t -> 'v t

(* Remove a key from a map *)
val oust : key -> 'v t -> 'v t

end

Complete the following definitions to give implementations of SET and MAP based
on TRIE. Each function in Set and Map should be implemented using the TRIE

operations.

implicit module Set{T:TRIE} : SET with type elem = T.k = ?
implicit module Map{T:TRIE} : MAP with type key = T.k = ?

(12 marks)

8

3 Queues and invariants

A queue is a type of sequence supporting two operations: enq adds an element to the
back of the queue, and deq removes an element from the front. Besides enq and deq,
queues also support operations for creating an empty queue and checking whether a
queue is empty.

A common representing for queues in functional languages is a pair of lists, inq and
outq. The enq operation conses an element onto inq:

a

b c

f e d

enq ;

a b c

f e d

and deq removes the first element from outq:

a b

e d c

deq ; e

a b

d c
,

A common strategy to improve worst-case efficiency is to ensure that inq never grows
longer than outq. Under this strategy, if inq grows longer than outq, then enq or deq

additionally moves the elements of inq to outq, reversing their order:

a b c

f e d

deq ; f

e d c b a
,

Several other invariants govern the behaviour of queues — for example, the element
removed by deq must be the element least recently added by enq — and many of
these invariants can be expressed using OCaml’s types. This exercise focuses on the
invariant relating the lengths of the lists that represent a queue.

Representing natural numbers

There are various ways to represent natural numbers, and some representations are
better suited than others to particular tasks. In this exercise we’ll use a representation
based on differences, representing a number o as the difference between two other
numbers m and n:

9

m− n = o

Among other properties, this representation ensures that m ≥ n.

As with max in Lecture 7, we’ll build representations of facts about numbers starting
from primitive rules. Two facts about subtraction involving non-negative integers
suffice:

For any n: n− n = 0

For any m, n, o: if m− n = o then (m + 1) − n = (o + 1).

(a) Complete the following definition to give a type of proofs built from these facts:

type (_, _, _) sub =
SubZ : (?, ?, ?) sub

| SubS : (?, ?, ?) sub -> (?, ?, ?) sub

(b) The following fact is also useful, and may be derived:

For any m, n, o: if m− n = o then (m + 1) − (n + 1) = o.

Define a function subsuc that corresponds to a proof of the fact above:

val subsuc : (?, ?, ?) sub -> (?, ?, ?) sub

Length-indexed vectors

A vector is a kind of linked list that is indexed by its length, just as the trees in
Lecture 8 were indexed by their depths.

Vectors may be defined with the following interface:

type (+'a,'n) vec

val nil : ('a, z) vec
val cons : 'a -> ('a, 'n) vec -> ('a, 'n s) vec
val length : ('a, 'n) vec -> ('n, z, 'n) sub

The type vec has two parameters representing the element type and the length. There
are three functions

• nil constructs an empty vector (with length z).

• cons takes an element and a vector of length n and builds a vector whose length
is the successor of n.

• length returns the length of a vector as a difference between natural numbers.

10

(c) Define a type of vectors vec along with functions nil, cons and length following
the interface above.

(Note: either storing the length in the vector or recomputing the length on every
call to length is acceptable.)

(d) Define a function rev_append along with a type revappend_result so that rev_append

v1 v2 appends the elements of v2 in reverse order onto the tail of v1, and so that
revappend_result represents the fact that the length of the vector returned by
rev_append is equal to the sum of the lengths of its inputs:

type ('a, 'm, 'n) revappend_result

val rev_append : ('a, 'm) vec -> ('a, 'n) vec ->
('a, 'm, 'n) revappend_result

(Hint : we’ve been treating sub as a way of representing proofs about subtraction;
it can also be seen as a representation of proofs about addition.)

(e) Implement the following interface to queues:

type 'a queue = Q : ('a, 'outlen) vec *
('a, 'inlen) vec *
('outlen , 'inlen , _) sub -> 'a queue

val isEmpty : 'a queue -> bool
val enq : 'a -> 'a queue -> 'a queue

exception Empty
val deq : 'a queue -> 'a * 'a queue

so that enq and deq behave as defined above, deq additionally raises Empty iff the
queue has no elements, and isEmpty returns true iff the queue has no elements.

(For full marks, your implementation should ensure using the types that inq

cannot grow longer than outq.)

(13 marks)

11

