
Effects

February 2018

Last time: monads and applicatives

>>=
⊗

This time: algebraic effects

effect E

Monads: summary

monads

let x1 = e1 in
let x2 = e2 in

...
let xn = en in

e

applicatives

let x1 = e1
and x2 = e2

...
and xn = en in

e

Algebraic effects and handlers
(effect E)

Extending match for exceptions

Possible outcomes of match

match f v with
| A x -> g x
| B y -> h y
| . . .

f v evaluates to the A x: evaluate g x

f v evaluates to the value B y: evaluate h y

. . .

E(

Extending match for exceptions

Possible outcomes of match

match f v with
| A x -> g x
| B y -> h y
| . . .

f v evaluates to the value A x: evaluate g x

f v evaluates to the value B y: evaluate h y

. . .

E(

Extending match for exceptions

Possible outcomes of match

match f v with
| A x -> g x
| B y -> h y
| . . .

f v evaluates to the value A x: evaluate g x

f v evaluates to the value B y: evaluate h y

. . .

E(

Extending match for exceptions

Possible outcomes of match

match f v with
| A x -> g x
| B y -> h y
| . . .

f v evaluates to the value A x: evaluate g x

f v evaluates to the value B y: evaluate h y

. . .

f v raises an exception E: raise E

Extending match for exceptions

New syntax:

match f v with
| A x -> g x
| B y -> h y
| . . .
| exception (E z) -> j z

E.g. search an association list l for a boolean value:

match List.assoc s l with
| true -> "found (True)"
| false -> "found (False)"
| exception Not_found -> "not found"

Extending match for effects

Possible outcomes of match

match f v with
| A x -> g x
| B y -> h y
| exception (E z) -> j z
| . . .

f v evaluates to the value A x: evaluate g x

f v evaluates to the value B y: evaluate h y

f v raises an exception E: raise E

. . .

f v performs an effect E and continues: perform E, continue

Extending match for effects

Possible outcomes of match

match f v with
| A x -> g x
| B y -> h y
| exception (E z) -> j z
| . . .

f v evaluates to the value A x: evaluate g x

f v evaluates to the value B y: evaluate h y

f v raises an exception E: raise E

. . .

f v performs an effect E and continues: perform E, continue

Extending match for effects

New syntax:

match f v with
| A x -> g x
| B y -> h y
| . . .
| effect (E z) k -> j z k

E.g. log each key while searching an association list l:

match List.assoc s l with
| true -> "found (True)"
| false -> "found (False)"
| effect (Log key) k -> print key; continue k ()
| exception Not_found -> "not found"

Extensible variants

Defining
type ’a t = ..

Extending
type ’a t +=

G : int t
| P : int → unit t

Constructing
P 3 (* No different to standard variants *)

Matching
let f : type a. a t → string = function

G → "G"
| P _ → "P"
| _ → "?" (* All matches must be open *)

Elements of exceptions

Exceptions

exception E: s -> exn (means: type exn += E: s -> exn)

Raising exceptions

val raise : exn -> ’b

Handling exceptions

match e with
. . .
| exception (E x) -> . . .

Running continuations

continue : (’a, ’b) continuation -> ’a -> ’b

Elements of effects

Effects

effect E: s -> t (means: type _ eff += E: s -> t eff)

Performing effects

val perform : ’a eff -> ’a

Handling effects

match e with
. . .
| effect (E x) k -> . . .

Running continuations

val continue : (’a, ’b) continuation -> ’a -> ’b

Using effects: yet another OCaml fork

modular implicits

opam sw i t ch 4.02.0+ modular− i m p l i c i t s

effects

opam sw i t ch 4.03.0+ e f f e c t s

staging (final weeks)

opam sw i t ch 4.03.0+ e f f e c t s −be r

Example: exceptions as an effect
Define the effect and a function to perform the effect:

effect Raise : exn -> ’a
let raise e = perform (Raise e)

Define a function to handle the effect:
let _try_ f handle =

match f () with
| v -> v
| effect (Raise e) k -> (* discard k! *) handle e

Program in direct (non-monadic) style:
let rec assoc x = function
| [] -> raise Not_found
| (k,v)::t -> if k = x then v else assoc x t

try (fun () -> Some (assoc 3 l))
(fun ex -> None)

Recap: state as a monad

The type of computations:

type ’a t = state -> state * ’a

The return and >>= functions from MONAD:

let return v s = (s, v)
let (>>=) m k s = let s’, a = m s in k a s’

Signatures of primitive effects:
val get : state t
val put : state → unit t

Primitive effects and a run function:

let get s = (s, s)
let put s’ _ = (s’, ())
let runState m init = m init

Example: state as an effect

Primitive effects:

effect Put : state -> unit
effect Get : state

Functions to perform effects:

let put v = perform (Put v)
let get () = perform Get

A handler function:
let run f init =

let exec =
match f () with
| x -> (fun s -> (s, x))
| effect (Put s’) k -> (fun s -> continue k () s’)
| effect Get k -> (fun s -> continue k s s)

in exec init

Evaluating an effectful program

The handler function for state:
let run f init =

let exec =
match f () with
| x -> (fun s -> (s, x))
| effect (Put s’) k -> (fun s -> continue k () s’)
| effect Get k -> (fun s -> continue k s s)

in exec init

Running the counter program under the state handler:
run (fun () ->

let id = get () in
let () = put (id + 1) in

string_of_int id
) 3

Evaluating an effectful program

Starting point: reduce the function application
(match (fun () ->

let id = get () in
let () = put (id + 1) in

string_of_int id) ()
with
| x -> (fun s -> (s, x))
| effect (Put s’) k -> (fun s -> continue k () s ’)
| effect Get k -> (fun s -> continue k s s))
3

Evaluating an effectful program

Call the get function
(match (let id = get () in

let () = put (id + 1) in
string_of_int id)

with
| x -> (fun s -> (s, x))
| effect (Put s’) k -> (fun s -> continue k () s ’)
| effect Get k -> (fun s -> continue k s s))
3

Evaluating an effectful program

Perform the Get effect
(match (let id = perform Get in

let () = put (id + 1) in
string_of_int id)

with
| x -> (fun s -> (s, x))
| effect (Put s’) k -> (fun s -> continue k () s ’)
| effect Get k -> (fun s -> continue k s s))
3

Evaluating an effectful program

Evaluate the right-hand side of the case for effect Get

(fun s -> continue k s s) 3

Evaluating an effectful program

Evaluate the right-hand side of the case for effect Get

(fun s -> continue k s s) 3

(But what is k?)

Evaluating an effectful program

continue k 3 3

k is the program (up to the handler) with a hole for perform Get:

k =
(match (let id = - in

let () = put (id + 1) in
string_of_int id)

with
| x -> (fun s -> (s, x))
| effect (Put s’) k -> (fun s -> continue k () s ’)
| effect Get k -> (fun s -> continue k s s))

hole

Evaluating an effectful program

continue k 3 3

k is the program (up to the handler) with a hole for perform Get:

k =
(match (let id = - in

let () = put (id + 1) in
string_of_int id)

with
| x -> (fun s -> (s, x))
| effect (Put s’) k -> (fun s -> continue k () s ’)
| effect Get k -> (fun s -> continue k s s))

hole

value for hole

Evaluating an effectful program

Fill the hole and continue:
(match (let id = 3 in

let () = put (id + 1) in
string_of_int id)

with
| x -> (fun s -> (s, x))
| effect (Put s’) k -> (fun s -> continue k () s ’)
| effect Get k -> (fun s -> continue k s s)) 3

Evaluating an effectful program

Call the put function
(match (let () = put (3 + 1) in

string_of_int 3)
with
| x -> (fun s -> (s, x))
| effect (Put s’) k -> (fun s -> continue k () s ’)
| effect Get k -> (fun s -> continue k s s)) 3

Evaluating an effectful program

Perform the Put effect
(match (let () = perform (Put 4) in

string_of_int 3)
with
| x -> (fun s -> (s, x))
| effect (Put s’) k -> (fun s -> continue k () s ’)
| effect Get k -> (fun s -> continue k s s)) 3

Evaluating an effectful program

(fun s -> continue k () 4) 3

k =
(match (let () = - in

string_of_int 3)
with
| x -> (fun s -> (s, x))
| effect (Put s’) k -> (fun s -> continue k () s ’)
| effect Get k -> (fun s -> continue k s s))

hole

Evaluating an effectful program

(fun s -> continue k () 4) 3

k =
(match (let () = - in

string_of_int 3)
with
| x -> (fun s -> (s, x))
| effect (Put s’) k -> (fun s -> continue k () s ’)
| effect Get k -> (fun s -> continue k s s))

hole

value for hole

Evaluating an effectful program

(No more effects: evaluation continues as normal)

(match (let () = () in
string_of_int 3)

with
| x -> (fun s -> (s, x))
| effect (Put s’) k -> (fun s -> continue k () s ’)
| effect Get k -> (fun s -> continue k s s))

4

Evaluating an effectful program

(No more effects: evaluation continues as normal)

(match string_of_int 3
with
| x -> (fun s -> (s, x))
| effect (Put s’) k -> (fun s -> continue k () s ’)
| effect Get k -> (fun s -> continue k s s))

4

Evaluating an effectful program

(No more effects: evaluation continues as normal)

(match "3"
with
| x -> (fun s -> (s, x))
| effect (Put s’) k -> (fun s -> continue k () s ’)
| effect Get k -> (fun s -> continue k s s))

4

Evaluating an effectful program

(No more effects: evaluation continues as normal)

(fun s -> (s, "3")) 4

Evaluating an effectful program

(No more effects: evaluation continues as normal)

(4, "3")

What to do with a continuation?

What can we do with the continuation k? Some possibilities:

Discard it (exceptions)

Call it (e.g. state)

Return it, and call it later (coroutines, generators)

Switch between continuations (concurrency)

Example: traversing trees in OCaml

A tree traversal:
let rec iter_tree f = function

| Empty -> ()
| Tree (l, x, r) -> iter_tree f l; f x; iter_tree f r

Using current OCaml’s built-in (non-algebraic) effects, we can . . .

. . . end the computation early (using exceptions):
iter_tree (fun x -> if x = 0 then raise Zero)

. . . accumulate information (using state):
iter_tree (fun x -> sum := !sum + x)

Can we pause the traversal and resume it later?

Example: traversing trees with algebraic effects

Define a data type to represent the state of a traversal:
type ’a next =

End : ’a next
| Value : ’a * (unit -> ’a next) -> ’a next

Define an effect Next that carries values (tree labels):
effect Next : int -> unit
let next v = perform (Next v)

Handle Next by returning the continuation
let generate t =

match iter_tree next t with
| () -> End
| effect (Next v) k -> Value (v, fun () -> continue k ())

Example: traversing trees with algebraic effects

let t = Tree (Tree (Empty , 3, Empty),
4,
Tree (Empty , 5, Empty))

generate t ⇝ Next (3, next1)

next1 () ⇝ Next (4, next2)

next2 () ⇝ Next (5, next3)

next3 () ⇝ End

Effects and monads

Integrating effects and monads

What we’ll get

Easy reuse of existing monadic code

(Uniformly turn monads into effects)

Improved efficiency, eliminating unnecessary binds

(Normalize computations before running them)

No need to write in monadic style

Use let instead of >>=

“Unnecessary” binds
The monad laws tell us that the following are equivalent:

return v >>= k ≡ k v
v >>= return ≡ v

Why would we ever write the lhs?

“Administrative” >>= and return arise through abstraction

let apply f x = f >>= fun g ->
x >>= fun y ->
return (g y)

. . .
apply (return succ) y
(* used: two returns , two >>=s *)
(* needed : one return , one >>= *)

Effects from monads: the elements

module type MONAD = sig
type +_ t
val return : ’a -> ’a t
val bind : ’a t -> (’a -> ’b t) -> ’b t

end

Given M : MONAD, define an effect and two conversions:
effect E : ’a M.t -> ’a

reify turns a function into a monadic computation
let reify f = match f () with

| x -> M. return x
| effect (E m) k -> M.bind m (continue k)

reflect turns a monadic computation into a function
let reflect m = perform (E m)

Effects from monads: the functor

module RR(M: MONAD) : sig
val reify : (unit -> ’a) -> ’a M.t
val reflect : ’a M.t -> ’a

end =
struct

effect E : ’a M.t -> ’a

let reify f = match f () with
| x -> M. return x
| effect (E m) k -> M.bind m (continue k)

let reflect m = perform (E m)
end

Example: state effect from the state monad

module StateR = RR(State)

Build effectful functions from primitive effects get, put:
module StateR = RR(State)
let put v = StateR . reflect (State.put v)
let get () = StateR . reflect State.get

Run the program using reify and State .run:
State .run (StateR .reify f) init

Use let instead of >>=:
let id = get () in
let () = put (id + 1) in

string_of_int id

Summary

Applicatives are a weaker, more general interface to effects
(⊗ is less powerful than >>=)

Every applicative program can be written with monads
(but not vice versa)

Every Monad instance has a corresponding Applicative instance
(but not vice versa)

We can build effects using handlers

Existing monads transfer uniformly

Next time: inductive families

Vec : Set → N → Set

