
Chapter 6

Programming with GADTs

ML-style variants and records make it possible to define many different data
types, including many of the types we encoded in System Fω in Chapter 1.3.2:
booleans, sums, lists, trees, and so on. However, types defined this way can lead
to an error-prone programming style. For example, the OCaml standard library
includes functions List.hd and List.tl for accessing the head and tail of a
list:

val hd : ’a list → ’a
val tl : ’a list → ’a list

Since the types of hd and tl do not express the requirement that the ar-
gument lists be non-empty, the functions can be called with invalid arguments,
leading to run-time errors:

# List.hd [];;
Exception: Failure "hd".

In this chapter we introduce generalized algebraic data types (GADTs),
which support richer types for data and functions, avoiding many of the errors
that arise with partial functions like hd. As we shall see, GADTs offer a num-
ber of benefits over simple ML-style types, including the ability to describe the
shape of data more precisely, more informative applications of the propositions-
as-types correspondence, and opportunities for the compiler to generate more
efficient code.

6.1 Generalising algebraic data types

Towards the end of Chapter 1 we considered some different approaches to defin-
ing binary branching tree types. Under the following definition a tree is either
empty, or consists of an element of type ’a and a pair of trees:

type ’a tree =
Empty : ’a tree

| Tree : ’a tree * ’a * ’a tree → ’a tree
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Using the constructors of tree we can build a variety of tree values. For
example, we can build trees that are skewed to the right (Figure 6.1) or to the
left (Figure 6.2), or whose elements are distributed evenly between left and right
(Figure 6.3).

Alternatively we can give a definition under which a tree is either empty, or
consists of an element of type ’a and a tree of pairs1:

type _ ntree =
EmptyN : ’a ntree

| TreeN : ’a * (’a * ’a) ntree → ’a ntree

The constructors of ntree severely constrain the shape of trees that can be
built. Since the element type of each subtree ’a*’a duplicates the element type
’a of the parent , the number of elements at each depth precisely doubles, and

1The perfect type of Chapter 1 defined trees with labels at the leaves rather than at
the branches. The definition of ntree given here makes it easier to compare the various tree
types in this chapter.



6.1. GENERALISING ALGEBRAIC DATA TYPES 95

T
1

E

T
2

T
(1, 3)

E

T
4

T
(3, 5)

T
((1, 2), (6, 7))

E

TreeN
(1, EmptyN)

TreeN
(2, TreeN

((1,3),
EmptyN))

TreeN
(4, TreeN

((3,5),
TreeN (((1,2),(6,7))

,
EmptyN)))

Figure 6.4: Perfectly-balanced trees

the elements are distributed evenly to the left and to the right. As a result, the
only trees that can be built are perfectly balanced trees whose elements number
one less than a power of two (Figure 6.4).

The definition of ntree is non-regular because the type constructor it de-
fines, ntree, is not uniformly applied to its type parameters in the definition:
instead, it is instantiated with ’a * ’a in the argument of TreeN. We call
such non-regular types nested. Allowing the return types of constructors to vary
in a similar way gives us a variety of non-regular types known as generalized
algebraic data types (GADTs).

Our first example of a GADT definition involves a couple of auxiliary types
for natural numbers:

type z = Z : z
type ’n s = S : ’n → ’n s

For each natural number n, the types z and s allow us to construct a type
whose single inhabitant represents n. For example, the number three is repre-
sented by applying S three times to Z:

# S (S (S Z));;
- : z s s s = S (S (S Z))

Initially we will be mostly interested in the types built from z and s rather
than the values which inhabit those types.

The types z and s are not themselves GADTs, but we can use them to build
a GADT, gtree, that represents perfect trees:

type (’a, _) gtree =
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Figure 6.5: Perfect trees using GADTs

(The bracketed numbers indicate the depth of the subtree.)

EmptyG : (’a,z) gtree
| TreeG : (’a,’n) gtree * ’a * (’a,’n) gtree → (’a,’n s) gtree

The definition of gtree corresponds to the definition of tree, but with
an additional parameter for representing the depth of the tree. For the empty
tree EmptyG the parameter is instantiated to z, reflecting the fact that empty
trees have depth zero. For branching trees built with the TreeG constructor the
depth parameter is instantiated to ’n s, where ’n is the depth of each of the
two subtrees. There are two constraints introduced by this second instantiation:
first, the subtrees are constrained to have the same depth ’n; second, the depth
of the tree built with TreeG is one greater than the depth of its subtrees.

It is the different instantiations of the second type parameter in the return
types of EmptyG and TreeG which make gtree a GADT. We call parameters
which vary in constructor return types indexes.

As with ntree, the constructors of gtree constrain the trees that we can
build. Since both subtrees of each branch are constrained by the type of TreeG
to have the same depth, the only values of type gtree are perfectly balanced
trees. Figure 6.5 gives some examples.
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let rec swivel : ’a.’a tree → ’a tree = function
Empty → Empty

| Tree (l,v,r) → Tree (swivel r, v, swivel l)

Figure 6.6: Functions over unconstrained binary trees

6.1.1 Functions over GADTs

The gtree type illustrates how relaxing the regularity conditions on the types
of data type constructors makes it possible to impose interesting constraints
on the shape of data. However, constructing data is somewhat less than half
the story: the most interesting aspects of GADT behaviour are associated with
analysing values passed as function arguments. We will now consider a number
of functions that analyse trees passed as arguments to illustrate how GADTs
have certain clear advantages over regular and nested data types.

Functions over tree Figure 6.6 shows the implementations of three func-
tions over the regular tree type tree. The first, depth, computes the depth of
a tree, defined as zero if the tree is empty and the successor of the maximum of
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the depths of the left and right subtrees otherwise. The second, top, retrieves
the element nearest the root of the argument tree, and returns an option value
in order to account for the case where argument is empty. The third, swivel,
rotates the tree around its central axis.

The types of depth, top and swivel are straightforward, but fairly un-
informative. The type of depth tells us that the function accepts a tree and
returns an int, but there is nothing in the type that indicates how the two
are related. It is possible to write functions of the same type that compute
the number of elements in the tree rather than the depth, or that compute the
number of unbalanced branches, or that simply return a constant integer. The
type of swivel is slightly more informative, since we can apply parametricity-
style reasoning to conclude that every element in the output tree must occur in
the input tree, but we cannot say much more than this. It is possible to write
functions with the same type as swivel that return an empty tree, ignoring
the argument, or that duplicate or exchange nodes, or that simply return the
argument unaltered.

Functions over ntree Figure 6.7 shows the implementation of functions
corresponding to depth, top and swivel for the ntree type.

The implementations of depthN and topN correspond quite directly to their
counterparts for the tree type. Since all values of type ntree are perfectly
balanced, it is sufficient for depthN to measure the spine rather than computing
the maximum depth of subtrees. One additional point is worth noting: since a
non-empty value of type ’a ntree has a subtree of type (’a * ’a) ntree,
depthN is an example of polymorphic recursion (Section 2.4.2).

The implementation of swivelN is less straightforward, since it deals re-
cursively with elements, and the element type changes as the depth increases.
The auxiliary function swiv accepts a function f which can be used to swivel
elements at a particular depth. At the point of descent to the next level, f is
used to construct a function fun (x,y) → (f y,f x) that can be used to
swivel elements one level deeper.

Functions over gtree Figure 6.8 shows the implementation of functions
corresponding to depth, top and swivel for gtree.

Locally abstract types The first thing to observe is the new syntax in the
type signatures: the prefix type a n introduces two type names a and n that
are in scope both in the signature and in the accompanying definition. These
names denote so-called locally abstract types, and together with GADTs they
support type-checking behaviour known as type refinement.

Type refinement Under standard pattern matching behaviour, matching a
value against a series of patterns reveals facts about the structure of the value.
For example, in the depth function of Figure 6.6, matching the argument de-
termines whether it was constructed using Empty or Tree. It is only possible
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let rec swiv : ’a.(’a→’a) → ’a ntree → ’a ntree =
fun f t → match t with
EmptyN → EmptyN

| TreeN (v,t) →
TreeN (f v, swiv (fun (x,y) → (f y, f x)) t)

let swivelN p = swiv id p

Figure 6.7: Functions over perfect trees
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let rec swivelG : type a n.(a,n)gtree → (a,n)gtree =
function

EmptyG → EmptyG
| TreeG (l,v,r) → TreeG (swivelG r, v, swivelG l)

Figure 6.8: Functions over perfect trees using GADTs
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to extract the element from the tree in the Tree branch, since the variable v
which binds the element is not in scope in the Empty branch.

Type refinement extends standard pattern matching so that matching re-
veals facts both about the structure of the value and about its type. Since the
constructors of a GADT value have different return types, determining which
constructor was used to build a value reveals facts about the type of the value
(and sometimes about other values, as we shall see later). Let’s consider the
implementation of depthG to see how refinement works.

Here’s the signature of depthG:

type a n.(a, n)gtree → n

Knowing the interpretation of the second type parameter, we might read this
as follows: depthG takes a gtree with element type a and depth n and returns
the depth n. Thus for an empty tree we expect depthG to return Z, and for a
tree of depth three we expect it to return S (S (S Z)). However, these have
different (and incompatible) types, and the normal type checking rules require
that every branch of a match have the same type. Type refinement addresses
exactly this difficulty. The first branch is executed if the value was built with
EmptyG:

EmptyG → Z

Looking back to the definition of EmptyG (page 95) we find the depth pa-
rameter instantiated with z:

EmptyG : (’a,z) gtree

It is therefore reasonable to draw the following conclusion: if the first branch
is executed, then the type equality n ≡ z must hold, and we can freely exchange
n and z in the types of any expression within this branch. In particular, the
expression Z, which has type z, can also be given the type n, which is exactly
what is needed to satisfy the signature.

Similarly, the second branch is executed if the value was built with TreeG:

| TreeG (l,_,_) → S (depthG l)

In the definition of TreeG the depth parameter is instantiated with ’n s:

| TreeG : (’a,’n) gtree * ’a * (’a,’n) gtree → (’a,’n s) gtree

If this branch is executed then we can draw the following series of conclusions:

1. The type equality n ≡ ’n s must hold for some unknown type variable
’n and we can freely exchange n and ’n s in the types of any expression
within this branch

2. According to the type of the TreeG constructor the first constructor ar-
gument l has type (a, ’n) gtree.

3. The recursive call depthG l therefore has type ’n.
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4. The application of the S constructorS (depthG l) therefore has type
’n s.

5. Since n ≡ ’n s, the expression S (depthG l) can be given the type
n, which is exactly what is needed to satisfy the signature.

There’s quite a lot going on to type check such a simple definition! It is only
because we have specified the expected type of the function that type checking
succeeds; there is no hope of inferring a principal type. There are at least three
reasons why the type inference algorithm of Chapter 2 cannot be expected to
determine a type for depthG:

1. The definition is polymorphic-recursive, since the argument passed to
depthG has a different type to the parameter in the definition. We saw
in Section 2.4.2 that polymorphic recursion is incompatible with type in-
ference.

2. The type of the variable l is existential, which is a more formal way of
saying the same thing as “for some unknown type variable ’n”’ above.
We saw in Chapter 3 that type inference for general existential types is
undecidable.

3. Type refinement is not generally compatible with inference, since the type
checker needs to know in advance what is being refined. We will cover this
point in more detail in Section 6.3.

The second function over gtree values, topG, illustrates an additional ben-
efit of type refinement. Although the gtree type has two constructors, the
definition of topG matches only TreeG. A pattern match that matches only a
subset of constructors for the matched type is usually a programming mistake
which leads to a warning from the compiler, as we see if we try to give a similar
one-branch definition for tree:

# let top : ’a.’a tree → ’a option =
function Tree (_,v,_) → Some v;;
Characters 38-69:

function Tree (_,v,_) → Some v;;
ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
Empty

However, the OCaml compiler accepts topG without warning. An analysis of the
type refinement that takes place in the definition shows why. Here is the type of topG:

type a n.(a,n s)gtree → a

As before, matching the TreeG branch refines the depth index type to ’n s
for some unknown type variable ’n. Combining this with the depth index n s in
the signature gives the type equality ’n s ≡ n s, (which is equivalent to the
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simpler equation ’n ≡ n, since the type constructor s is injective). Similarly,
if we had a case for EmptyG we would again see the index type refined to z
to give the equation z ≡ n s. However, this last equation clearly has no

solutions: there is no value of n which can make the two sides the same! Since
it is therefore impossible to pass the value EmptyG to topG, there is no need
to include a case for EmptyG in the match.

In fact, the OCaml compiler goes a little further than simply accepting
the incomplete match without a warning. Since the EmptyG case is clearly
impossible, OCaml treats its inclusion as an error:

# let topG : type a n.(a,n s) gtree → a = function
TreeG (_,v,_) → v

| EmptyG → assert false;;
Characters 75-81:

| EmptyG → assert false;;
ˆˆˆˆˆˆ

Error: This pattern matches values of type (a, z) gtree
but a pattern was expected which matches values
of type (a, n s) gtree
Type z is not compatible with type n s

The final function in Figure 6.8, swivelG, illustrates building GADT values
in a context in which type equalities are known to hold. As with depthG, the
compiler deduces from the types of the constructors in the pattern match that
the equalities n ≡ z and n ≡ ’n s (for some ’n) hold in the EmptyG and
TreeG branches respectively. The following type assignments are therefore
justified:

• The expression EmptyG can be given the type (a, n) gtree in the
EmptyG branch (since the EmptyG constructor has the type (’a, z)
gtree for any ’a, and we know that n ≡ z).

• The bound variables l and r are each given the types (a, ’n) gtree,
since the whole TreeG pattern has the type (a, ’n s) gtree.

• These types for l and r, together with the type of swivelG, lead to the
type (a,’n) gtree for the recursive calls swivelG r and swivelG l.

• The expression TreeG (swivelG r, v, swivelG l) can be given
the type (a, n) gtree using the types of the arguments, the type of
the TreeG constructor and the type equality n ≡ ’n s.

The types for depthG, topG and swivelG are a little more complex than
the types for the corresponding functions over unconstrained trees (tree) and
nested trees (ntree). It is worth considering what we can learn about the
functions from their types alone.

While the types of depth and depthN told us relatively little about the
behaviour of those functions, the type of depthG tells us precisely what the
function returns:
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val depthG: (’a, ’n) gtree → ’n

Since the index ’n describes the depth of the tree, and the function returns
a value of type ’n, we can be sure that the value returned by depthG repre-
sents the depth. For each value of type (’a, ’n) gtree there is exactly one
corresponding value of type ’n.

The type of topG also tells us more than the types of its counterparts top
and topN:

val topG : (’a,’n s) gtree → ’a

The instantiation of the depth index to ’n s tells us that only non-empty
trees can be passed to topG. The return type, ’a, tells us that topG always
returns an element of the tree, in contrast to top and topN, which might
return None. Unlike the type of depthG, however, the type of topG does
not completely specify the function. For example, a function that returned the
leftmost or rightmost element of a gtree would have the same type.

Finally, the type of swivelG once again tells us more than the types of
swivel and swivelN:

val swivelG : (’a,’n) gtree → (’a,’n) gtree

Since the depth index is the same in the parameter and the result we can
conclude that swivelG preserves the depth of the tree passed as argument.
Since trees of type gtree are always balanced, we can also conclude that the
tree returned by swivelG always has the same number of elements as the input
tree. As with topG, however, the type is not sufficiently precise to completely
specify the behaviour. For one thing, the type of swivelG tells us nothing
about swivelling: the identity function can be given the same type!

Conversions between the two representations of perfect trees We have
shown two ways of representing perfect trees, using nested types and using
GADTs. We can demonstrate the interchangeability of the two representations
by defining an isomorphism between them. We will only give one half of the
isomorphism here; the other half is left as an exercise for the reader (Question 4,
page 119).

Figure 6.9 shows the implementation of a function zipTree, which turns
a pair of gtree values into a gtree of pairs. There are two cases: first, if
both input trees are empty, the result is an empty tree; second, if both trees are
branches, the result is built by pairing their elements and zipping their left and
right subtrees.

As with topG, type refinement relieves us of the need to specify the other
cases, in which one tree is empty and the other non-empty. The type of zipTree
specifies that the two input trees have the same depth n. Consequently, if one
tree matches EmptyG, we know that the depth of both trees must be z. Similar
reasoning leads to the conclusion that if one tree is non-empty the other must
also be non-empty.

Figure 6.10 shows how zipTree can be used to build a function nestify,
which converts a gtree to an ntree. The depth information is discarded in the
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let rec zipTree :
type a b n.(a,n) gtree → (b,n) gtree → (a * b,n) gtree =
fun x y → match x, y with
EmptyG, EmptyG → EmptyG

| TreeG (l,v,r), TreeG (m,w,s) →
TreeG (zipTree l m, (v,w), zipTree r s)

Figure 6.9: Zipping perfect trees using GADTs
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let rec nestify : type a n.(a,n) gtree → a ntree =
function
EmptyG → EmptyN

| TreeG (l, v, r) →
TreeN (v, nestify (zipTree l r))

Figure 6.10: Converting a gtree to an ntree
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type (_,_,_)max =
MaxEq : ’a → (’a,’a,’a)max

| MaxFlip : (’a,’b,’c)max → (’b,’a,’c)max
| MaxSuc : (’a,’b,’a)max → (’a s,’b,’a s)max

let rec max : type a b c. (a, b, c) max → c = function
MaxEq x → x

| MaxSuc m → S (max m)
| MaxFlip m → max m

Figure 6.11: A max function for type-level natural numbers

output, and so the types do not guarantee that the structures of the input and
output trees correspond: we must examine the implementation of the function
to convince ourselves that it is correct.

6.1.2 Depth-indexing imperfect trees

The trees we have seen so far fall into two categories: trees without balancing
constraints implemented using standard variants, and perfect trees implemented
either with nested types or with GADTs. At this point the reader may be won-
dering whether GADTs are only useful for representing data with improbable
constraints that are unlikely to be useful in real programs. In this section we
provide evidence to the contrary in the form of a second implementation of un-
balanced trees, this time with an additional type parameter to track the depth.
As we shall see, this implementation combines benefits of both the unconstrained
and the depth-indexed trees from earlier in the chapter: the depth-indexing pro-
vides extra information about the types to improve correctness and performance,
but we will be able to represent arbitrary binary branching structure.

The depth of an unbalanced tree is determined by the maximum depth of
its branches. In order to implement a depth-indexed unbalanced tree we will
need some way of constructing a type denoting this maximum.

Figure 6.11 defines a type max that represents the maximum of two numbers.
Following the propositions-as-types correspondence described in Chapter 5 we
will interpret the type constructor max as a three-place predicate which we
will write max(−,−) = −, the type (a, b, c) max as the proposition
max(a, b) = c, and a value of the type as a proof of the proposition. Viewed
this way, the types of the three constructors for max become inference rules for
constructing proofs. There are three rules, each of which is consistent with the
notion that max defines a notion of maximum.

The first rule, max-eq, says that the maximum of a value a and the same
value a is a.
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a max-eq
max(a, a) = a

The premise a in the inference rule, corresponding to the argument of the
constructor MaxEq, stipulates that the max-eq rule only applies if we have
evidence for a; this will make it easier to write the max function described
below, which produces the maximum value c from a proof that max(a, b) = c.

The second rule, max-flip, says that max is commutative.

max(a, b) = c
max-flip

max(b, c) = a

The third rule, max-suc, says that the maximum of two values remains the
maximum if we increment it.

max(a, b) = a
max-suc

max(a+ 1, b) = a+ 1

These rules represent just one of many possible ways of defining the maxi-
mum predicate. The definition given here is convenient for our purposes, and
allows us to build proofs for the maximum of any two natural numbers. For
example, we can construct a proof for the proposition max(1, 3) = 3 as follows:

1 max-eq
max(1, 1) = 1

max-suc
max(2, 1) = 2

max-suc
max(3, 1) = 3

max-flip
max(1, 3) = 3

Translating the proof back to OCaml, turning each rule application into a
constructor application gives us a value of type (z s, z s s s, z s s s
) max:

# MaxFlip (MaxSuc (MaxSuc (MaxEq (S Z))));;
- : (z s, z s s s, z s s s) max = . . .

Figure 6.11 also defines the function max, which builds a value of type c
from a value of type (a,b,c) max. For example, when given our proof of
max(1, 3) = 3 the max function will return 3:

# max (MaxFlip (MaxSuc (MaxSuc (MaxEq (S Z)))));;
- : z s s s = S (S (S Z))

Now that we have defined the max type we can move on to the definition of
the trees themselves. Starting from the tree type that represents unbalanced
trees two changes are needed. First, we must add a type parameter representing
the depth. Second, we must store in each non-empty tree a value which relates
the depths of the subtrees to the depth of the tree. Here is the definition:
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Figure 6.12: Depth-indexed unbalanced trees

type (’a,_) dtree =
EmptyD : (’a,z) dtree

| TreeD : (’a,’m) dtree * ’a * (’a,’n) dtree * (’m,’n,’o) max
→ (’a,’o s) dtree

The EmptyD constructor is straightforward: an empty tree has depth zero.
In the definition of TreeD the depth indexes of the subtrees (’m and ’n) and
in the return type (’o) are all different, but the relation between them is rep-
resented by an additional value of type (’m,’n,’o) max. As we have seen,
this value represents the fact that ’o is the maximum of ’m and ’n; further,
since the depth index in the return type of TreeD is ’o s we have captured
the desired property that the depth of a non-empty tree is one greater than the
maximum depth of its subtrees (Figure 6.12).

Figure 6.13 shows the implementation of functions corresponding to depth,
top and swivel for dtree.

The depthD function computes the depth of a depth-indexed unbalanced
tree. The max value stored in each non-empty node supports a relatively efficient
implementation, since it allows us to retrieve the depth of the deeper subtree
without inspecting the subtrees themselves.

The topD function retrieves the topmost element of a non-empty tree. As
with topG, the type refinement that takes place when the function matches the
argument determines that only the TreeD constructor can occur.

The swivelD function rotates a tree around its central axis. Exchanging
the left and right subtrees requires updating the max value which records which
subtree is deeper: we must replace a proof max(l, r) = t with a proof max(r, l) =
t.

6.1.3 GADTs and efficiency

As we saw when considering topG (page 102), the extra type information intro-
duced by GADT indexes enable the compiler to detect match cases that can
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T[2]

max(1, 0) = 1 (p2)

T[1]

max(0, 0) = 0 (p3)

E a E

b E
 S (max (MAX(1, 0) = 1

)

let rec depthD : type a n.(a,n) dtree → n = function
EmptyD → Z

| TreeD (l,_,r,mx) → S (max mx)

T[2]

max(1, 0) = 1 (p2)

T[1]

max(0, 0) = 0 (p3)

E a E

b E
 b

let topD : type a n.(a,n s) dtree → a =
function TreeD (_,v,_,_) → v

T[2]

max(1, 0) = 1

T[1]

max(0, 0) = 0

E a E

b E
 

T[2]

max(0, 1) = 1

E b T[1]

max(0, 0) = 0

E a E

let rec swivelD : type a n.(a,n) dtree → (a,n) dtree =
function

EmptyD → EmptyD
| TreeD (l,v,r,m) → TreeD (swivelD r, v, swivelD l, MaxFlip m)

Figure 6.13: Functions over depth-indexed unbalanced trees



110 CHAPTER 6. PROGRAMMING WITH GADTS

never be executed. In addition to allowing the programmer to omit unreachable
branches, this analysis also makes it possible for the compiler to generate more
efficient code. If type checking a match reveals that only one of the construc-
tors of the scrutinee value type can ever occur then the generated code need not
examine the value at all, leading to simpler generated code and faster execution.

Here is the definition of top from Figure 6.6:

let top : ’a.’a tree → ’a option = function
Empty → None

| Tree (_,v,_) → Some v

Passing the -dlambda option to the OCaml compiler causes it to print out
an intermediate representation of the code2:

(function p
(if p

(makeblock 0 (field 1 p))
0a))

This intermediate representation corresponds quite closely to the source.
The value of top is a function with a parameter p. There is a branch if p
to determine whether the constructor is Tree or Empty; if it is Tree then
makeblock is called to allocate a Some value, passing the first field (called v
in the definition of top) as an argument. If p is determined to be Empty then
the function returns 0a, which is the intermediate representation for None.

Here is the definition of topG from Figure 6.8:

let topG : type a n.(a,n s)gtree → a =
function TreeG (_,v,_) → v

This time the code printed out when we pass -dlambda is much simpler:

(function p
(field 1 p))

The call to makeblock has disappeared, since the more precise typing allows
topG to return an a rather than an a option. Additionally, the compiler has
determined that the Empty constructor can never be passed as an argument to
topG, and so no branch has been generated. The source language types have
made it possible for the compiler to emit significantly simpler and faster code.

Let’s consider one more example. The zipTree function of Figure 6.10
traverses two gtree values in parallel. The lambda code for zipTree is a little
more complicated than the code for topG, mostly as a result of the recursion
in the input definition:

(letrec
(zipTree

(function x y

2Some names in the code below have been changed to improve legibility.
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(if x
(makeblock 0

(apply zipTree (field 0 x) (field 0 y))
(makeblock 0 (field 1 x) (field 1 y))
(apply zipTree (field 2 x) (field 2 y)))

0a)))
(apply (field 1 (global Toploop!)) "zipTree" zipTree))

Of particular interest is the generated branch if x. A match for two values,
each with two possible constructors, will typically generate code with three
branches to determine which of the four possible pairs of constructors has been
passed as input. However, the type for zipTree constrains the types of the
arguments so that both must be EmptyG or both TreeG. As there are only
two cases to distinguish the compiler can generate a single branch if x to
determine the constructors for both arguments.

6.2 GADTs and type equality

We have seen the central role that type equalities play in programs involving
GADTs. The type refinement that is associated with pattern matching on
GADT values introduces type equalities that follow the types of the constructors
in the match. We now consider the definition of a GADT eql which captures
the idea of a type equality, and outline how every other GADT value can be
straightforwardly encoded using non-GADT variant types together with eql.

Figure 6.14 gives a definition of the eql type, which has two type param-
eters and a single constructor with no arguments. The parameters of eql are
instantiated to the same type ’a, enforcing the constraint that Refl can only
be used with a type (a,b) eql when the types a and b are known to be equal.
For example, we can use Refl at type (int,int) eql, since the types int
and int are known to be equal:

# (Refl : (int, int) eql);;
- : (int, int) eql = Refl

Similarly, since a type alias declaration simply introduces a new name for
an existing type, we can instantiate the parameters of Refl with a type and its
alias:

# type t = int;;
type t = int
# (Refl : (t, int) eql);;
- : (t, int) eql = Refl

However, if we hide the representation of t behind the signature of a module
M then the fact that t is equal to int is hidden and attempting to build a value
of type (M.t, int) eql meets with failure:

# module M : sig type t end = struct type t = int end;;
module M : sig type t end
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type (_, _) eql = Refl : (’a, ’a) eql

Figure 6.14: The equality GADT

let symm : type a b.(a, b) eql → (b, a) eql =
fun Refl → Refl

let trans : type a b c.(a, b) eql → (b, c) eql → (a, c) eql
=

fun Refl Refl → Refl

module Lift (T : sig type _ t end) :
sig

val lift : (’a,’b) eql → (’a T.t,’b T.t) eql
end =
struct

let lift : type a b.(a, b) eql → (a T.t, b T.t) eql =
fun Refl → Refl

end

let cast : type a b.(a,b) eql → a → b =
fun Refl x → x

Figure 6.15: Some properties of type equality
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# (Refl : (M.t, int) eql);;
Characters 1-5:

(Refl : (M.t, int) eql);;
ˆˆˆˆ

Error: This expression has type (M.t, M.t) eql
but an expression was expected of type (M.t, int) eql
Type M.t is not compatible with type int

This last example gives a clue to how we might use eql. Since modules and
other abstraction mechanisms make different type equalities visible at different
parts of a program it is useful to have a means of passing equalities around
as values. From a Curry-Howard (Propositions as Types) perspective, we can
view a value of type (a,b) eql as a proof of the proposition that a and b
are equal. Looked at this way, eql and other GADTs are a convenient way of
programming with proofs as first-class objects.

We first introduced a representation for type equalities in Chapter 1, where
we used Leibniz’s principle of substitution in a context to construct values rep-
resenting equality of types. In addition to the equality type itself we introduced
a number of functions representing various properties of type equality: symme-
try, transitivity, and so on. Figure 6.15 gives implementations of a number of
these properties for the eql GADT:

• symm encodes the symmetry property of ≡: if a ≡ b then b ≡ a.

• trans encodes the transitivity property of ≡: if a ≡ b and b ≡ c then
a ≡ c.

• Lift lifts equality through type contexts: if a ≡ b then for any context
- t we have a t ≡ b t

• Finally, the type of cast tells us that if a ≡ b then we can convert a
value of type a to a value of type b.

As the figure shows, the implementations of these properties for the eql
GADTs are significantly simpler than the corresponding implementations of

equality in System Fω. In System Fω we had to find a suitable type context
argument to pass to the encoding of equality; with GADTs we simply match
on Refl and rely on type refinement to ensure that the types match up. It is
worth examining the type checking of one of these equality property functions
to see the type refinement in action. The signature for symm is as follows:

type a b.(a, b) eql → (b, a) eql

The signature dictates a simple implementation: we only have a single con-
structor Refl for eql, which we must use in as the pattern and the body of
the function:

fun Refl → Refl
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In the signature for symm we have two distinct locally abstract types a and
b. Matching against Refl reveals that we must have a ≡ b, since the two type
parameters in the definition of Refl are the same. The type equality a ≡ b
justifies giving the Refl in the body the type b ≡ a, which is just what is
needed to satisfy the signature.

6.2.1 Encoding other GADTs with eql

We can use eql together with a standard (non-GADT) OCaml data type to
build a data type that behaves like gtree. Here is the definition:

type (’a,’n) etree =
EmptyE : (’n,z) eql → (’a,’n) etree

| TreeE : (’n,’m s) eql *
(’a,’m) etree * ’a * (’a,’m) etree → (’a,’n) etree

Each constructor of etree has an additional argument which represents
an instantiation of the second type parameter. The EmptyE constructor has an
argument of type (’n,z) eql, reflecting the instantiation of the depth param-
eter to z in the original definition of EmptyG. Similarly the TreeE constructor
has an additional argument of type (’n, ’m s) eql, where the existential
type variable ’m is the depth of the two subtrees, reflecting the instantiation of
the depth parameter to ’n s in the definition of TreeG.

For each function involving gtree we can write a corresponding function
for etree. Here is an implementation of the depth operation:

let rec depthE : type a n.(a, n)etree → n =
function
EmptyE Refl → Z

| TreeE (Refl, l,_,_) → S (depthE l)

In contrast to depthG, no type refinement takes place when EmptyE and
TreeE are matched. However, matching the GADT constructor Refl intro-
duces the same type equalities as for depthG, namely n ≡ z in the first branch
and n ≡ ’m s in the second.

Implementing equivalents of topG and swivelG is left as an exercise (Ques-
tion 1, page 119).

6.3 GADTs and type inference

We have mentioned in passing that it is not possible in general to infer types
for functions involving GADTs, as we shall now show with a simple example.
The following function matches a value of type eql and returns an int:

let match_eql = function Refl → 3

We can ascribe a number of types to match_eql, including the following:

let match_eql1 : type a.(int,a) eql → a = function Refl → 3
let match_eql2 : type a b.(a,b) eql → int = function Refl → 3
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However, neither of these is a substitution instance (Section 2.3) of the other,
and there is no valid type for match_eql that generalises both. Without the
principal types property we cannot infer types without sacrificing generality.

6.4 GADT programming patterns

Up to this point we have focused on what GADTs are, and on how to understand
the behaviour of the OCaml compiler on programs involving GADTs. However,
there is more to programming than simply understanding the mechanics of
type checking: using GADTs effectively requires a rather different programming
style than programming with simpler types. We will now look at a number of
programming patterns that emerge when using GADTs in real programs.

6.4.1 Pattern: building GADT values

It’s not always possible to determine index types statically.

For example, the depth of a tree might depend on user input.

In the first part of this chapter we considered various functions whose argu-
ments are trees defined using GADTs. Each of these functions follows a similar
approach: the input tree has a type whose depth index involves universally
quantified type variables which may also occur in the function’s return type.
Pattern matching on the input tree reveals equalities between the type indexes
which can be used when constructing the return value. In this way we can write
a wide variety of functions whose types connect together the shapes of the input
and result types in some way.

The combination of polymorphism in the depth index together with type
refinement makes it straightforward to write functions which accept and scru-
tinise trees of different depths. However, writing functions which return trees
of different depths introduces new difficulties. Here is a function which builds
a tree without depth constraints from an option value:

let tree_of_option : ’a. ’a option → ’a tree =
function
None → Empty

| Some v → Tree (Empty, v, Empty)

If we try to write a corresponding function for depth-indexed trees we soon
run into difficulty. As a first attempt we might start to write

let dtree_of_option : type a n. a option → (a, n) dtree =

but we will soon discover that this is not what we want: the type says
that the function returns a value of type (a,n) dtree for all n, but the
specification of the function requires that it return a tree indexed by some
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particular depth — either (a,z) dtree or type (a,z s) dtree — not a
value that is polymorphic in the depth.

To state the problem is, in this case, to give the solution. The return value
has some depth, not all depths, so the appropriate quantifier is existential, not
universal. We have seen how to define existential types in OCaml in Chapter 3:
we must define a variant type whose definition involves more type variables than
type parameters. It is the depth index that we want to conceal, so we define
the following type, which has ’a but not ’n as a parameter:

type ’a edtree = E : (’a, ’n) dtree → ’a edtree

Hiding the depth of trees with edtree allows us to return trees of different
depths in different branches, and so to write dtree_of_option:

let dtree_of_option : type a n. a option → a edtree =
function
None → E EmptyD

| Some v → E (TreeD (EmptyD, v, EmptyD, MaxEq Z))

The depth information is hidden, but not gone forever. Other parts of the
program can recover the depth by unpacking the existential and matching on
the dtree constructors in the usual way.

Chapter 3 highlighted the duality of existential and universal quantification
that allows us to move between abstraction and parametricity. It is therefore no
surprise to discover that there is a second approach to building depth-indexed
trees of unknown depth using universals rather than existentials. We can pass
a value of polymorphic type as an argument using a record with a polymorphic
field:

type (’a, ’k) adtree = { k: ’n. (’a, ’n) dtree → ’k }

The type of adtree might be read as follows: a value of type (’a,’k)
adtree is a (record containing a) function which accepts a tree of any depth
with element type ’a and returns a value of type ’k.

Equipped with adtree we can give an alternative implementation of dtree_of_option
which accepts a function wrapped as an adtree to which it passes the con-

structed tree. The depth polymorphism in the definition of adtree ensures
that it is able to accept any tree, regardless of depth.

let dtree_of_option_k : type a k. a option → (a, k) adtree → k
=

fun opt {k} → match opt with
None → k EmptyD

| Some v → k (TreeD (EmptyD, v, EmptyD, MaxEq Z))

6.4.2 Pattern: singleton types

Without dependent types we can’t write predicates involving data.
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Using one type per value allows us to simulate value indexing.

We saw in Chapter 5 that the types in non-dependently-typed languages
such as System F correspond to propositions in a logic without quantification
over objects. The System F type language has no constructs for referring to
individual values, so there is a syntactic barrier to even forming types that
correspond to propositions involving individuals.

However, we have seen in Section 6.1.2 that we can apparently form propo-
sitions involving individuals. For instance, we can use max to form types that
correspond to predicates like max(1, 3) = 3, which mention the individual
numbers 1 and 3, not just sets like N. This appears to conflict with our claims
above, and might lead us to wonder whether the extra expressive power that
comes with GADTs allows us to write dependently typed programs in OCaml.

In fact there is no conflict. GADTs do not allow us to write dependently-
typed programs and types like (z, z s s, z s s) max correspond to propo-
sitions in a logic without quantification over individual objects. The key to un-
derstanding types like max is the observation that types such as z and z s s
are so-called singleton types — i.e. they each have a single inhabitant. When
there is only one value of each type the type can act as a proxy for the value in
type expressions and we can simulate the quantification over individuals which
the type language does not support directly.

Here is an additional example. We can represent equations of the form
a+ b = c using the following GADT definition:

type (_,_,_)add =
AddZ : ’n → (z,’n,’n)add

| AddS : (’m,’n,’o)add → (’m s,’n,’o s)add

As we saw in Section 6.1.2 we can read the types of the constructors of add
as inference rules for constructing proofs:

n
add-z

0 + n = n
m+n=0

add-s
(1 +m) + n = 1 + o

Then each value of type add corresponds to a proof of some fact about
addition. For example, we can build a value corresponding to a proof that
2 + 1 = 3:

# AddS (AddS (AddZ (S Z)));;
- : (z s s, z s, z s s s) add = AddS (AddS (AddZ (S Z)))

The singleton pattern works well for simple data such as natural numbers,
and can sometimes be extended to more complex data. The further reading
section (page 122) lists a number of papers that explore how singletons support
encoding dependently-typed programs in languages without dependent types.

6.4.3 Pattern: building evidence

With type refinement we learn about types by inspecting values.
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Predicates should return useful evidence rather than true or false.

In a typical program many constraints on data are not captured in the types.
The programmer might ensure through careful programming that a certain list
is always kept in sorted order or that a file handle is not accessed after it is
closed, but since the information is not made available to the type checker there
is no way for the compiler either to ensure that the constraint is maintained or
to make use of it to generate more efficient code.

For example, if we wish to ensure that our program never attempts to re-
trieve the top element of an empty tree we might write a predicate that test for
emptiness

let is_empty : ’a .’a tree → bool =
function
Empty → true

| Tree _ → fa lse

and then use the predicate to test trees before passing them to top:

i f not (is_empty t) then
f (top t)

else
None

There is potential both for error and for inefficiency here. Although the
programmer knows that the bool returned by is_empty is intended to indicate
whether the tree was determined to be empty, the type checker does not, and so
would have no cause for complaint if we were to switch the two branches of the
if expression or omit the call to the not function. Further, there is nothing in
the types which allows the top function to skip the test for emptiness, so the
generated code tests for emptiness twice, once in the condition of the if and
once in top.

GADTs offer a solution to this unsatisfactory state of affairs. The problem
lies in the type of the predicate function, which tells us nothing about the facts
that the predicate was able to discover. If we arrange for our predicates to have
return types more informative than bool then the facts which the predicates
discover can flow through the types to the rest of the program.

In the example above is_empty checks whether a tree is empty or non-
empty — that is, whether its depth is zero or non-zero. We can capture this
property in a type that, like bool, has two nullary constructors like bool but,
unlike bool, is indexed by what could be determined about the depth:

type _ is_zero =
Is_zero : z is_zero

| Is_succ : _ s is_zero

We can use the is_zero type to write a predicate that builds evidence for
the emptiness or non-emptiness of its argument:

let is_emptyD : type a n.(a,n) dtree → n is_zero =
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function
EmptyD → Is_zero

| TreeD _ → Is_succ

As with is_empty, we can branch on the result of is_emptyD to determine
whether it is safe to call topD:

match is_emptyD t with
Is_succ → f (topD t)

| Is_zero → None

Whereas calling is_empty communicated no information to the type checker
about the depth of the tree, examining the result of is_emptyD reveals whether
the depth is z or ’n s (for some type ’n). It is only in the second case that
the type checker will allow the call to topD. Switching the two branches leads
to a type error, since Is_zero reveals that the depth of the tree is z, and the
type of topD demands a non-zero depth index. Further, as we have seen in
Section 6.1.3, there is no need for topD to repeat the test for emptiness once
we have captured the fact that the tree is non-empty in its type.

6.5 Exercises

1. [H] Implement the functions corresponding to top and swivel for etree
(Section 6.2.1).

2. [H] It is sometimes convenient to work with a GADT for natural numbers,
indexed by z and s:

type _ nat =
Z : z nat

| S : ’n nat → ’n s nat

Use nat to write a function of the following type:

val unit_gtree_of_depth : ’n nat → (unit, ’n) gtree

3. [HH] Write a second function

val int_gtree_of_depth : ’n nat → (int, ’n) gtree

which, for a given natural number n, builds a tree populated with the
numbers 0 . . . 2n−1 in left-to-right order.

4. [HH] Write a inverse for zipTree:

val unzipTree : (’a * ’b,n) gtree → (’a,’n) gtree → (’b,’n
) gtree

and use it to write an inverse for nestify that converts an ntree to a
gtree, using an existential for the return type.
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5. [HH] Define a type of length-indexed vectors using GADTS:

type (’a, _) vec = ...

A vector is either empty, in which case its length is zero, or consists of a
cons cell with an element and a tail, in which case its length is one greater
than the tail.

Write analogues of the list-processing functions head, tail, map and
rev for your vec type.

6. [HHHH] Here is an alternative definition of the equality type of Fig-
ure 6.14:

type (’a, ’b) eql_iso = {
a_of_b : ’b → ’a;
b_of_a : ’a → ’b;

}

It is possible to define a number of the equality operations for eql_iso,
including refl and symm:

let refl : ’a. (’a, ’a) eql_iso =
{ a_of_b = (fun x → x); b_of_a = (fun x → x) }

let symm : ’a ’b. (’a, ’b) eql_iso → (’b, ’a) eql_iso =
fun { a_of_b; b_of_a } → { a_of_b = b_of_a; b_of_a =
a_of_b }

Is it possible to define analogues of all the functions in Figure 6.15 for
eql_iso? Is it possible to encode arbitrary GADT types in the style of
Section 6.2.1 using eql_iso instead of eql?

7. [HHHH] Here is a function which turns a proof of equality for list types
into a proof of equality for their element types:

let eql_of_list_eql : type a b.(a list,b list) eql → (a,b)
eql =

fun Refl → Refl

Here is a similar function for option:

let eql_of_option_eql : type a b.(a option,b option) eql →
(a,b) eql =
fun Refl → Refl

Rather than writing such a function for every type constructor we would
like to give a single definition which could be reused. However, the follow-
ing attempt is rejected by OCaml. Can you explain why?

module Eql_of_t_eql(T: sig type ’a t end) =
struct
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let eql_of_t_eql : type a b.(a T.t,b T.t) eql → (a,b)
eql =

fun Refl → Refl
end
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Further reading

• The following paper describes a number of GADT programming pat-
terns realised in the language Ωmega. Features similar to those used
in the paper, namely GADTs and extensible kinds, have found their
way into recent versions of the Glasgow Haskell Compiler:

Putting Curry-Howard to work
Tim Sheard
Haskell Workshop (2005)

• A number of papers investigate how to simulate dependently-typed
programming using GADTs and other features of functional program-
ming languages (typically Haskell). Here are a few examples:

Faking It (Simulating Dependent Types in Haskell)
Conor McBride
Journal of Functional Programming (2003)

Dependently typed programming with Singletons
Richard A. Eisenberg and Stephanie Weirich
Haskell Symposium (2012)

Hasochism: the pleasure and pain of dependently typed Haskell pro-
gramming
Sam Lindley and Conor McBride
Haskell Symposium (2013)

• The following paper shows how to encode dynamic types in a
statically-typed functional language using many of the techniques de-
scribed in this chapter and elsewhere in the notes. Since the paper
predates the introduction of GADTs into functional languages it uses
an encoding of Leibniz equality to perform a similar function.

Typing dynamic typing
Arthur I. Baars and S. Doaitse Swierstra
International Conference on Functional Programming (2002)

• There is an interesting correspondence between various number sys-
tems and tree types, which can be realised using nested types, as the
following paper shows:

Numerical Representations as Higher-Order Nested Datatypes
Ralf Hinze
Technical Report (1998)

• There have been a number of papers over the last decade or so propos-
ing algorithms for type-checking GADTs. One of the more straight-
forward, which describes the approach taken in OCaml, is described
in the following paper:
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Ambivalent types for principal type inference with GADTs
Jacques Garrigue and Didier Rmy
Asian Symposium on Programming Languages and Systems (2013)

• As types become richer, the inhabitants (i.e. the terms having those
types) becomes fewer; and in many cases (such as the polymorphic
compose function (Chapter 1) and the trans function (page 112) the
type is sufficiently descriptive that there is only a single inhabitant.
The following paper investigates the question of when a type has a
unique inhabitant:

Which simple types have a unique inhabitant?
Gabriel Scherer and Didier Rmy
International Conference on Functional Programming (2015)

• Pattern matching exhaustiveness checking to ensure that no cases are
missing has long been a feature of ML-family languages. However the
addition of GADTs to ML makes it impossible. The following paper
shows (via an encoding into Horn clauses) that adding GADTs to
ML turns exhaustiveness checking into an undecidable problem, and
describes refutation cases, a small addition to the OCaml language
that improves practicality and usability in the presence of GADT
matching:

GADTs and Exhaustiveness: Looking for the Impossible
Jacques Garrigue and Jacques Le Normand
Post-proceedings of 2015 ML Family / OCaml workshops (2017)
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