
1.5. SYSTEM Fω 19

1.5 System Fω

We motivated the introduction of System F with the observation that adding
products to λ→ involves special typing rules for fst and snd, since λ→ does not
support polymorphic operations. System F addresses this deficiency: we can
express the types of fst and snd within the calculus itself, making it possible
to abstract the operations. For example, here is a polymorphic function which
behaves like fst:

Λα::*.Λβ::*.λp:α× β. f s t p

However, System F shares with λ→ the problem that it is not possible to
define a parameterised type of binary pairs within the calculus: we can build
separate, unrelated definitions for Bool×Bool, N×Bool, N× N, and so on, but
no single definition that suffices for all these types. The difficulty lies in the kind
of the × operator. As the kind-× rule (Section 1.2.1) shows, × is applied to two
type expressions of kind ∗ to build another such type expression. System F does
not offer a way of introducing this type of parameterised type constructor, but
the calculus that we now consider extends System F with exactly this facility.

The calculus System Fω adds a third type of λ-abstraction to the two forms
that are available in System F. We already have λx:A.M, which abstracts terms
to build terms, and Λα::K.M, which abstracts types to build terms. The new
abstraction form λα::K.A abstracts types to build types.

Up until now the structure of kinds has been trivial, limited to a single kind

*, to which all type expressions belonged. We now enrich the set of kinds with
a new operator ⇒, allowing us to construct kinds which contain type operators
and even higher-order type operators. The new type abstraction form λα::K.
A allows us to populate these new kinds with type operators. We’ll also add a
corresponding type application form A B for applying type operators.

Let’s start by looking at some examples of type expressions that we can
build in this enriched language.

• The kind *⇒*⇒* expresses the type of binary type operators such as
× and +. The following type expression abstracts such an operator and
applies it to the types 1 and Bool:

λφ::*⇒*⇒*.φ 1 Bool

• The kind (*⇒*)⇒*⇒* expresses the type of type operators which are
parameterised by a unary type operator and by a type. The following
type expression, which applies the abstracted type operator twice to the
argument, is an example:

λφ::*⇒*.λα::*.φ (φ α)

It is still the case that only type expressions of kind ∗ are inhabited by terms.
We will continue to use the name “type” only for type expressions of kind ∗.

20 CHAPTER 1. LAMBDA CALCULUS

Kinds in System Fω There is one new rule for introducing kinds:

K1 is a kind K2 is a kind
⇒-kind

K1 ⇒ K2 is a kind

It is worth noting that the addition of new kinds retroactively enriches the
existing rules. For example, in the kind-∀ rule the type variable α is no longer
restricted to the kind *.

Kinding rules for System Fω We have two new ways of forming type ex-
pressions, so we need two new kinding rules. The new rules form an introduction-
elimination pair for the new kind constructor ⇒, the first such pair at the type
level.

Γ, α::K1 ` A :: K2 ⇒-intro
Γ ` λα::K1.A :: K1 ⇒ K2

Γ ` A :: K1 ⇒ K2

Γ ` B :: K1 ⇒-elim
Γ ` A B :: K2

The introduction rule⇒-intro shows how to form a type expression λα::K1.A
of kind K1 ⇒ K2. Comparing it with the corresponding rule for terms,→-intro,
reveals that the structure of the two rules is the same.

The elimination rule ⇒-elim shows how to apply type expressions to type
expressions, and follows the pattern of the corresponding term-level application
rule, →-elim.

Type equivalence We have passed over one important aspect of type-level
abstraction. The⇒-elim rule specifies that the domain kind of the type operator
and the kind of the operand should be the same. But what do we mean by
“the same”? In the earlier calculi a simple syntactic equality would do the
trick: two types are the same if they are built from the same symbols in the
same order (after removing any superfluous parentheses). Now that we have
added type-level operations we need a more “semantic” notion of equality: two
type expressions should be considered the same if they are the same once fully
reduced — i.e., once all applications of λ-expressions have been eliminated. For
simplicity we won’t go into any more detail about this aspect of System Fω,
but it is essential to a fully correct formal treatment. (Pierce’s book has the full
details: see the Type equivalence rules on p451.)

1.5.1 Encoding data types in System Fω

The new type-level programming facilities introduced in System Fω significantly
increase the expressive power of the language, as we will see in the following
examples.

1.5. SYSTEM Fω 21

Encoding sums in System Fω We are finally able to encode the definitions
of the sum and product abstractions directly within the calculus itself. First,
here is a definition of a sum type in OCaml:

type (’a, ’b) sum =
Inl : ’a → (’a, ’b) sum

| Inr : ’b → (’a, ’b) sum

A sum type can represent values of either of two types, and so sum has two
type parameters, ’a and ’b. There are two constructors, Inl and Inr. Inl
(the left injection) takes a value of type ’a and builds a sum value; Inr (the
right injection) behaves similarly for ’b.

The following function, case, examines a sum value and applies either l or
r to the argument according to whether the value was constructed with Inl or
Inr:

val case :
(’a,’b) sum → (’a → ’c) → (’b → ’c) → ’c

l et case s l r =
match s with

Inl x → l x
| Inr y → r y

The return type ’c is the same in either case.
In System Fω sums can be encoded using polymorphism. The Sum type

constructor is a type-level function of two arguments, just as the OCaml sum
accepts two type parameters:

Sum = λα.λβ.∀γ.(α→ γ)→ (β → γ)→ γ

The encoding follows the same pattern as N: a sum value is represented as
a function with two parameters, one for each sum constructor.

Each of the inl and inr constructors is represented as a functions. A left
injection inl M is represented as a function that passes M to its first argument;
a right injection inr M as a function that passes M to its second argument.

in l = Λα.Λβ.λv:α.Λγ.
λl:α→ γ.λr:β → γ.l v

inr = Λα.Λβ.λv:β.Λγ.
λl:α→ γ.λr:β → γ.r v

Finally, since a Sum value is already represented as a function that behaves
like case, the destructor (here called foldSum) is simply a version of the
identity function:

foldSum =
Λα.Λβ.λc:∀γ.(α→ γ)→ (β → γ)→ γ.c

As with previous encodings the components Sum, inl, inr, foldSum can
be packed up as an existential type:

22 CHAPTER 1. LAMBDA CALCULUS

pack Sum, 〈 inl , 〈inr, foldSum〉〉
as ∃φ::*⇒*⇒*.
∀α::*.∀β::*.α→ φ α β

× ∀α::*.∀β::*.β → φ α β
× ∀α::*.∀β::*.φ α β → ∀γ::*.(α→ γ)→(β → γ)→ γ

Observe that the addition of higher kinds allows us to use create higher-
kinded existential variables: φ has kind *⇒*⇒*.

As we saw when we extended λ→ with polymorphism, the extra abstrac-
tion facilities enable us to express in the language what we could previously
only express in statements about the language. We could previously say things
like “For all binary type operators φ”; now we can abstract over binary type
operators within the calculus itself.

Encoding lists in System Fω There is a simple connection between the
Bool type that we could encode in System F and the sum type that we have
encoded in System Fω: instantiating the arguments of the sum type with 1 gives
us Bool. Similarly, we could encode N in System F, but System Fω allows us
to encode a list type, which we can think of as a kind of parameterised version
of N.

A definition of lists in OCaml has two constructors, Nil and Cons:

type ’a list =
Nil : ’a list

| Cons : ’a * ’a list → ’a list

We therefore encode lists in System Fω using a function of two arguments,
whose types reflect the types of the corresponding constructors8:

List = λα::*.∀φ::*⇒*.φ α→(α→ φ α→ φ α)→ φ α

The higher-kinded φ is a little more general than is strictly necessary here:
a simpler encoding might replace φ α with a single type variable β of kind *
without significant loss. However, the approach of using a higher-kinded type
constructor to represent a parameterised type (i.e. list) extends straightfor-
wardly to the more exotic examples that follow, which cannot be expressed using
only type expressions of kind *.

The constructor for the empty list is represented as a function which takes
two arguments and returns the first:

nil = Λα::*.Λφ::*⇒*.λn:φ α.λc:α→ φ α→ φ α.n;

The function corresponding to Cons takes two additional arguments x and
xs corresponding to the arguments of the Cons constructor:

cons = Λα::*.λx:α.λxs:List \alpha.
Λφ::*⇒*.λn:φ α.λc:α→ φ α→ φ α.

8We could easily define lists using an existential type as we have done for the other encod-
ings, but as the types grow larger the monolithic pack expressions become less readable, so
we will switch at this point to presenting the components of the encoding individually

1.5. SYSTEM Fω 23

c x (xs [φ] n c);

Finally, the destructor for lists corresponds to OCaml’s List.fold_right
function:

foldList = Λα::*.Λβ::*.λc:α→ β → β.λn:β.λl:List α.l [
λγ::*.β] n c

The analogue of the addition function that we defined using the encoding of
N is the binary append function for lists, which may be defined as follows:

append = Λα::*.
λl:List α.λr:List α.

foldList [α] [List α] (cons [α]) l r

We have seen how System Fω makes it possible to encode a number of
common data types: unit, booleans, numbers, sums and lists. However, these
encodings use relatively little of the expressive power of the calculus. We will
finish with two slightly more exotic examples which illustrate some of the things
that become possible with first class polymorphism and type-level abstraction.

Encoding non-regular data types in System Fω Most data types used in
OCaml are “regular”: when defining of a type t, all occurrences of t within the
definition are instantiated with the same parameters. For example, the tree
constructor occurs four times on the right hand side of the following definition
of a tree type, and at each occurrence it is applied to the parameter ’a:

type ’a tree =
Empty : ’a tree

| Tree : ’a tree * ’a * ’a tree → ’a tree

In contrast, in the following definition the argument of SuccP has the type
(’a * ’a) perfect: the type constructor perfect is applied to the pair
type ’a * ’a rather than to the parameter ’a:

type ’a perfect =
ZeroP : ’a → ’a perfect

| SuccP : (’a * ’a) perfect → ’a perfect

This kind of non-regular or “nested” type definition makes it possible to
represent constraints on data that are difficult or impossible to capture using
regular data type definitions. For example, whereas tree can represent trees
with any number of elements, the perfect type can only be used to represent
trees where the number of elements is a power of two.

The combination of type operators and polymorphism makes it possible to
encode non-regular types in System Fω. Here is a definition of a type corre-
sponding to perfect:

Perfect = λα::*.∀φ::*⇒*.(∀α::*.α→ φ α) \to (∀α::*.φ (
α× α)→ φ α)→ φ α

24 CHAPTER 1. LAMBDA CALCULUS

As in our other examples, there is an argument corresponding to each con-
structor of the type. In order to capture the non-regularity of the original type
these arguments are themselves polymorphic functions.

The functions corresponding to ZeroP and SuccP follow the usual pattern,
except that we must instantiate the polymorphic function arguments when ap-
plying them:

zeroP = Λα::*.λx:α.
Λφ::*⇒*.λz:∀α::*.α→ φ α.λs:φ (α× α)→ φ α.z []

x

succP = Λα::*.λp:Perfect (α× α).
Λφ::*⇒*.λz:∀α::*.α→ φ α.λs:(∀β::*.φ (β × β)

→ φ β).
s [α] (p [φ] z s)

We will have more to say about non-regular types in lecture 8, since they
are fundamental to GADTs.

Encoding type equality in System Fω Our final example encodes a rather
unusual data type which will also play a fundamental role in lecture 8 (GADTs).

Perhaps you have encountered Leibniz’s definition of equality, which states
that objects should be considered equal if they behave identically in any context.
We can express this notion of equality for types within System Fω as follows:

Eql = λα::*.λβ::*.∀φ::*⇒*.φ α→ φ β

That is, for any types α and β we can build a value Eql α β if, for any
unary type operator φ we can convert from φ α to type φ β. (It might be
supposed that we should also include the converse conversion φ β → φ ; we
shall see in a moment why it’s unnecessary to do so.)

Passing any type α twice to the Eql operator gives us a type Eql α α,
which is inhabited by a polymorphic identity function. We call the inhabitant
refl, since it represents the reflexivity of equality:

refl = Λα::*.Λφ::*⇒*.λx:φ α.x

Similarly we can define values to represent the symmetry and transitivity prop-
erties of equality. Here is the type of symmetry, which turns a value of type
Eql α β into a value of type Eql β α for any α and β:

symm : ∀α::*.∀β::*.
Eql α β → Eql β α

Defining symm involves a little ingenuity. The first steps are easy, following the
type structure: we must abstract over types α and β, and accept a value of type
Eql α β (here expanded for clarity):

symm = Λα::*.Λβ::*.λe:(∀φ::*⇒*.φ α → φ β).. . .

1.5. SYSTEM Fω 25

Now we must construct a term of type Eql β α. The variable e is the only
available term involving β and α, so we next look for a way to use e. Since
e has type ∀φ::*⇒*. . . . the first step in using e involves finding a suitable
argument to take the place of φ. For reasons that will become clear very shortly
we pick λγ::*.Eql γ α and pass it to e:

symm = Λα::*.Λβ::*.λe:(∀φ::*⇒*.φ α → φ β).
e [λγ::*.Eql γ α] . . .

Substituting our chosen argument in place of φ and simplifying the result reveals
that e [λγ::*.Eql γ α] has type Eql α α → Eql β α. To produce a
value of type Eql β α it only remains to find a value of type Eql α α; the
refl function constructed earlier suits the purpose perfectly, completing the
definition:

symm = Λα::*.Λβ::*.λe:(∀φ::*⇒*.φ α → φ β).
e [λγ::*.Eql γ α] (refl [α])

Defining trans, which represents the transitivity property of equality, is similar.
The type of trans combines two Eql values: if α is equal to β and β is equal
to γ then α is equal to γ:

trans : ∀α::*.∀β::*.∀γ::*.Eql α β → Eql β γ → Eql α γ

The definition of trans again involves picking a suitable instantiation for φ
. This time, instantiating φ with Eql α in the second argument bc gives
a function of type Eql α β →Eql α γ, which can be applied to the first
argument ab to complete the construction:

trans = Λα::*.Λβ::*.Λγ::*.λab:Eql α β.λbc:Eql β γ.bc [
Eql α] ab

Finally, we can define a function lift whose type tells us that if two types α
and β are equal then φ α and φ β are also equal, for any φ:

lift : ∀α::*.∀β::*.∀φ::*⇒*.Eq α β → Eq (φ α) (φ β)

Here is the definition of lift:

lift = Λα::*.
Λβ::*.

Λφ::*⇒*.
λe:Eql α β.

e [λγ::*.Eql (φ α) (φ γ)] (refl [φ α])

Kind polymorphism As the notation for type-level abstraction suggests,
System Fω enriches System F with what amounts to a simply-typed lambda
calculus at the type level. This observation suggests ways that we might further
extend the abstraction facilities of the calculus — for example, we might add
type-level polymorphism over kinds in the same way that we added term-level
polymorphism over types. Polymorphism over kinds would allow us to generalize
our definition of equality to arbitrary type operators.

26 CHAPTER 1. LAMBDA CALCULUS

1.6 Exercises

1. [HH]: Show how to encode the tree type in System Fω.

2. [HH]: Write a function that computes the sum of a list of natural numbers
in System Fω.

3. [H]: Give an encoding of OCaml’s option type in System Fω:

type ’a option =
None : ’a option

| Some : ’a → ’a option

4. [HHH]: Use existentials, the list type, the product type, the N encod-
ing and your option type from question 3 to implement a stack interface
corresponding to the following OCaml signature:

type ’a t
val empty : ’a t
val push : ’a → ’a t → ’a t
val pop : ’a t → ’a option * ’a t
val size : ’a t → int

1.6. EXERCISES 27

These notes aim to be self-contained, but fairly terse. There are many
more comprehensive introductions to the typed lambda calculi available.
The following books and resources are highly recommended:

• Types and Programming Languages
Benjamin C. Pierce
MIT Press (2002)
http://www.cis.upenn.edu/˜bcpierce/tapl/
There are copies in the Computer Laboratory library and many of the
college libraries.

• Lambda Calculi with Types
Henk Barendregt
in Handbook of Logic in Computer Science Volume II, Oxford
University Press (1992)
Available online: http://ttic.uchicago.edu/˜dreyer/
course/papers/barendregt.pdf

• Advanced Topics in Types and Programming Languages
Benjamin C. Pierce (editor)
MIT Press (2005)
https://www.cis.upenn.edu/˜bcpierce/attapl/
Chapter 2 covers dependent types, including the Calculus of Con-
structions

• The Part II Types lecture notes Andrew M. Pitts
https://www.cl.cam.ac.uk/teaching/1617/Types/
types.notes.pdf

http://www.cis.upenn.edu/~bcpierce/tapl/
http://ttic.uchicago.edu/~dreyer/course/papers/barendregt.pdf
http://ttic.uchicago.edu/~dreyer/course/papers/barendregt.pdf
https://www.cis.upenn.edu/~bcpierce/attapl/
https://www.cl.cam.ac.uk/teaching/1617/Types/types.notes.pdf
https://www.cl.cam.ac.uk/teaching/1617/Types/types.notes.pdf

