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Abstract

In this paper we show that minimum-cost spanning tree is a special case of the closed semiring

path-�nding problem. This observation gives us a non-recursive algorithm for �nding minimum-

cost spanning trees on mesh-connected computers that has the same asymptotic running time

but is much simpler than the previous recursive algorithms.

1 Introduction

In this paper we show that minimum-cost spanning tree is a special case of the closed semiring

path-�nding problem [1, sections 5.6{5.9]. For a graph of n vertices, the path-�nding problem can

be solved sequentially in O(n

3

) steps by a dynamic programming algorithm [7, 12] of which the

algorithms of Floyd [5] and Warshall [15] are special cases. This dynamic programming algorithm

has a well known O(n) step implementation on an n� n mesh-connected computer [2, 3, 4, 6, 13].

Previously known minimum-cost spanning tree algorithms for the mesh [2, 11] are based on the

recursive algorithm of Boruvka (also attributed to Sollin) [14, pp. 71{83], which is complicated to

implement. For example, the algorithm of [2] achieves O(n) steps by reducing the fraction of the

mesh in use by a constant factor at each recursive call. The dynamic programming algorithm has

the same asymptotic running time but is much simpler.
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The rest of this paper consists of two short sections. In section 2 we show how to cast minimum-

cost spanning tree as a path-�nding problem. In section 3, we brie
y describe an O(n) step mesh

algorithm to solve the problem.

2 Minimum-cost spanning tree

In this section we de�ne the minimum-cost spanning tree problem and a related path-�nding prob-

lem. We give a recurrence for solving the path-�nding problem via dynamic programming. We

then prove that the solution to the path-�nding problem contains the solution to the minimum-cost

spanning tree problem.

Given an n-node connected

1

undirected graph G = (V;E), where V is the set f1; . . .ng, and

where each edge fi; jg in E has cost C

0

ij

= C

0

ji

, the minimum-cost spanning tree problem is to �nd a

subgraph that connects the vertices in V such that the sum of the costs of the edges in the subgraph

is minimum. We assume that the edge costs are unique. (If not, lexicographical information can

be added to make them unique.) For convenience, we also assume that if fi; jg is not in E then it

has cost C

0

ij

= C

0

ji

=1.

The path-�nding problem is to compute the cost C

k

ij

for each 1 � i; j; k � n of the shortest

(lowest-cost) path from i to j that passes through vertices only in the set f1; . . . ; kg, where the cost

of a path is de�ned to be the highest cost of any edge on the path. For any i and j, the shortest

path from i to j with no intermediate vertex higher than k either passes through k or does not. In

the �rst case, the cost of the shortest path from i to j is either the cost of the shortest path from i

to k or the cost of the shortest path from k to j, whichever is higher. In the second case, we have

C

k

ij

= C

k�1

ij

. Thus, C

k

ij

can be computed by the recurrence

C

k

ij

= minfC

k�1

ij

;maxfC

k�1

ik

; C

k�1

kj

gg:

The following theorem shows that the unique minimum-cost spanning tree can be recovered

from the costs of the shortest paths.

Theorem 1 An edge fi; jg is in the unique minimum-cost spanning tree if and only if C

0

ij

= C

n

ij

.

1

For simplicity, we assume that the graph is connected. The same technique will �nd a minimum-cost spanning

forest of a disconnected graph.
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Proof : The proof has two parts. We �rst show that if fi; jg is a tree edge then C

0

ij

= C

n

ij

. We

then show that if C

0

ij

= C

n

ij

then the edge fi; jg is in the tree. First, assume that fi; jg is a tree

edge, but that C

0

ij

6= C

n

ij

. Consider the cut of the graph that fi; jg crosses, but no other tree edge

crosses. Since C

0

ij

6= C

n

ij

, there must be some path from i to j whose highest-cost edge has cost

C

n

ij

< C

0

ij

. Hence, every edge on this path has cost less than C

0

ij

. This path must cross the cut at

least once. Replacing the edge fi; jg by any edge on the path that crosses the cut reduces the cost

of the tree, a contradiction. Conversely, assume that C

0

ij

= C

n

ij

, but that fi; jg is not a tree edge.

Adding the edge fi; jg to the tree forms a cycle whose highest-cost edge costs more than than C

0

ij

.

Replacing this edge by fi; jg yields a tree with smaller cost, a contradiction.

3 Implementation on a mesh-connected computer

In this section we give a short description of an O(n) step algorithm for solving the minimum-cost

spanning tree problem on an n�n mesh-connected computer. We assume that the diagonal element

in each mesh row can broadcast a value to the other elements of the row in a single step. This type

of broadcast can be simulated by a mesh without this capability by slowing the algorithm down by

a constant factor [8, 9, 10]. The algorithm proceeds as follows. We assume that the input graph

is given in the form of a matrix of edge costs C

0

which enters row-by-row through the top of the

mesh. Matrix row i is modi�ed as it passes over rows 1 through i� 1 and is stored when it reaches

mesh row i. When matrix row i passes over mesh row k, the value C

k�1

ik

is broadcast right and left

from the diagonal cell (k; k). Each cell (k; j); 1 � j � n knows the value of C

k�1

kj

and computes

C

k

ij

= minfC

k�1

ij

;maxfC

k�1

ik

; C

k�1

kj

gg:

which is passed down to the next mesh row. After reaching mesh row i, matrix row i stays there

until each matrix row l, i < l � n, above it has passed over it and then continues to propagate

down, passing over the rest of the matrix rows. The output matrix C

n

exits row-by-row from the

bottom of the mesh. By theorem 1, the adjacency matrix of the minimum-cost spanning tree can

be constructed by comparing the input and output matrices.
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