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ABSTRACT

Many path-finding problems have been formulated in a
suitable algebra and, in terms of this algebra, they have
been reduced to the solution of a system of linear equa-
tions. In this paper, these results are extended to the
problem of enumerating all minimal i-j cut sets between
all pairs of nodes in a directed graph. An i-j cut set is
a set of arcs such that, by removing these arcs, there is
no path from node i to node j. A definition of sum and
multiplication is given, inm such a way that the problem
can be represented by a system of linear equations.
Gaussian elimination provides an efficient solution of

this system.
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1. Introduction

Several path-finding problems for graphs have beer
formulated im a suitable regular algebra, i.e. an algebra
satisfying the axioms of regular expressions [1]. For
example, regular algebras have been given for finding the
shortest path between all pairs of nodes im a weighted
graph, for fimding the tramsitive closure of a directed
graph and for fimding all simple paths [2,3] . In terms of
a regular algebra, the problem cam be posed as that of
solving a system of linear equatioms, and it was demomn-
strated 'that such equations can be solved by variants of
classical methods of linear algebra. For example, both
Floyd's method for finding the shortest path [4] and
Warshall's algorithm for finding the transitive closure [5]
can be interpreted as a solution of the given system through

Gaussian elimination.

This paper shows that these concepts can be applied
to problems other than path-finding problems and, precisely,
to the problem of enumerating all i-j cut sets between all
pairs of nodes i and j in a graph. An i-j cut sets is
a set of arcs such that, if these arcs are removed from the
graph, there is no path between node i and j. The enumera-
tion of all i-j cut sets is often the first step of impor-

tant procedures, like, for example, the computation of the
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terminal reliability in a communication network {6,7,8}@

In sections 2 and 3 we introduce the basic concepts
of regular algebra and explain a few simple methods for
solving a system of linear equations. In section 4 we give
the algebra for cut sets and we show that the problem of
enumerating all i-j cut sets can be reduced to that of
solving a system of linear equations in this algebra. Finally,
in section 5, we discuss how to implement our method in an

efficient way and make some comparisons with other methods
vhich have been proposed for solving the same problem.

2. Regular Algebra

&%
A regular algebra R = (S8, +, ., ) [1,3] consists
of a set S on which are defined two binary operations,

(1) *

addition and multiplication , and one unary operation ,

and for which the following axioms are wvalid:

Al {a<+ﬁﬁ‘;+g=o<+(ﬂ+5)
Az (B ) = (%) y

A3 X+ /3 =3 +

as o (A4y) = (XB) + (xy)
A5 (Xap)y = (xy) + (Ay)
A6 O & X = X

(1} Multiplication of « and /%e;S will be denoted by o< /3
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where CX,/3, § € S.

The set S contains a zero element @ such that

A7 O(-l—ﬁ::()(
AB ¢O<=ﬂ==0<ﬁ

#*
By denoting @ by e, we have

A9 e K= = e
* #*
A1D X = e + KX

A1 ok = (e +00)”
We can define a partial ordering < on the set S by
o =/3 &= X+ 3 =73
Finally, the following rule of inference is valid:
R1 %sﬁm+xz@ mzﬂ%

. ‘
This rule of inference states that K= /? X is the minimal

solution of the equation a:=/85X+ ¥ -
The above axiom system was originally defined for
regular expressions [1].

Given any regular algebra R, we can form a new
regular algebra consisting of all n x n matrices whose

elements belong to R. In this algebra addition and multi-
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plication have the usual meaning, i.e., if & = Laij] and

B = [b..} are two n X n matrices, then

A+ B ir b d AB . b
% = |a.. + .. an = a .
L 1) 13} [ Z; ik kj}

Moreover, A < B if and only 1if aijfggbij for all i,j.

The unit matrix E = [eij] is the n x n matrix with eij = @

if i = j and eij =g if i £ j. The zero matrix is a matrix

all of whose entries are g. The powers of a matrix are
A =E,A = A A (k=1,2|ocs)

Finally, the closure of A is

It can be verified that this algebra of n x n
matrices is a regular algebra, i.e. that axioms A1 - A11

and rule of inference R1 are valid,

An n X n matrix A = faij] can always be visualized
as a n-node labelled directed graph as follows, If 3, | # 0,
there is an arc from node i to node j whose label is aij’
otherwise, if aij = f, there is no arc from node i to
node j. A path pij from node 1 to node j in this graph is

a sequence of arcs (i i}) (i1 iz)a..(im j), where the Ffirst
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node of each arc is equal to the second node of the prece-

ding arc. The length of a path is the number of its arcs.

The path product W(pij) of the path pij is the product of
the labels of the arcs belonging to pij:

wip..) = a. . a. . ... a, .
(plj 1,19 11539 Imse J
The element aij of the matrix A corresponds to the

sum of the path products of all paths from node i to node

j of length r. For example, the following matrix

RN G N R

LS v S N
RN R - N O
L S N R o ¥

is represented by the Jgraph in Fig. 1. ¥We have
2

%34
and (3 2) (2 4) of length 2.

= ad + Bf, which correspond to the two paths (3 1) (1 4)

In many cases, we have an algebra for which the

additional axiom
Al 2 e 4+ = e

*
holds. As a consequence of this axiom we have « = e and

#
the operator can be eliminated from the algebra. Let us
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denote such an algebra by RQ. Its axioms are given by

A1-A9, A12.

If we now consider the algebra of all n x n matri-
ces over RQ’ the following property of the closure of a

matrix can be proved:

* 2 T 2 N1
(2.1) A =B +A+A + .e.+A =BE + A+ A 4+ ... A

for all r>n-l

This algebra has been applied to several path-find-
ing problems, such as the determination of shortest paths

or the enumeration of all simple paths on a directed graph

[2,3] .

3. Finding the closure of a matrix

Once a path=-finding problem has been formulated in
a regular algebra, it reduces to the problem of determining
the closure A* of a matrix A, whose elements belong to the
given algebra. By inference rule R1 we know that A* is the

minimal solution of the equation
Y=AY+E0

This equation suggests an analogy with linear algebra and,

in fact, 1t has been shown fB] that it 1s possible to
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define algorithms for solving it, similar to the methods

of linear algebra.

In this section we shall consider only the case of
n x n matrices over a redgular algebra RQ, defined in tge
previous section., One well-known method of obtaining A
in this case, is to set M = E + A and then to compute
successively M2, M4, ..., M2Y, where r is the first inte-

#*
ger such that Qt;gn—1. We know, by (2.1), that M2¥ = a .

¥*
Another way of obtaining A 1is Gaussian elimina-

tion, for which the following algorithm can be given.

Algorithm G

(1) set
b(.);:agg (i331 e & @ I i#\])
13 lj 9 & & 14
o] .
bii = e (1 = 1,000,n)

(2) Repeat next step for h = 1,...,n

(3) set
b; = b?? N b?; bi? (i,5 = 1,000 m3if h; j# )
h?j = b2;1 otherwise

(4) set
o= b". (i, = 1,.4.,0)

a. .
1] 1]
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Notice that the elements on the main diagonal are
initially set to e, and they always keep the same value

because of axiom A12.

This algorithm has been used in [2J for enumerating
all simple paths in a graph and it is practically equiva-
lent to Floyd's algorithm for finding the shortest path
between all pairs of nodes in a weighted.graph[4].

. L .
If only a submatrix of matrix A is required, a
more economical version of algorithm G can easily be
obtained. For example, the following algorithm will compute

¥* . .
the submatrix [aij] vith r<i<n, c<j<=n.

Algorithm G'

(1) set
bY. = a (1, = 1,0ee,n; i £ 3)
iJ ij # § L4 ]
O .
bii=e (1=1,.eo'n)

(2) Repeat next step for h = 1,...,n

(3) set

S L (if h<r then h<i<n
1] i] ip hj

: else r<i<=n; i#h
if h<c then h<j<n

else c<j<n; j#h)
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pt = p2 otherwise
1] 1]
(4) set
+#* ¥i R .
a.. = b. . (r<i<n; c<j<n)
1] 1]

4, Enumeration of all minimal cut sets

Given a directed graph G, an i-j cut set is a set

of arcs, such that, by removing from G these arcs, there

is no path between node 1 and node j. A minimal i-j cut

set is an i=j cut set such that no subset of it is an

i=-j cut set.

In this section, we introduce a regular algebra for
cut sets and we show that the problem of enumerating all
minimal i-j cut sets can be reduced to the problem of find-
ing the closure of a certain matrix. This problem can then
be solved with the methods described in the previous sec-—

tion,

We assume that an arc is uniquely identified by a
label attached to it, Let L = {11""'1m} be the set of
such labels. Cut sets will be denoted by sets of labels:
€.g. (11,12,13). Sets of cut sets will be denoted by sets
of sets of labels: e.qg. {(11,12,13), (14,15)} .
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Now, we can define our algebra C = (S, +, .). An ele-

ment o of § is defined as a set of setis

that if a set of labels s is an element
other element of o4 which is a subset of s. For example,

[ (1 i i ' 1 7 @
i(iiwlg>§ (12913)§ is an element of S and {(lﬁp&g}g{lﬁglgg%gﬁy

is not. The last requirement has been introduced because we

want to consider only minimal cut sets,

If o and /3 are two elements of 5§, addition and multi-
plication are defined as follows:

I +/@ is a set obtained by making the union of each ele-
ment of o« with each element of/g , and then deleting

all elements which are a superset of some other ele-

ment;

X /3 is a set obtained by making the union of and/e R
and then deleting all elements which are a superset

of some other element.

For example, if ol = {(1,), (1,,1,)} and 3 = {(1,.1,),
(12,13)} , we have o 471 = {(1;,1,), (1,10} and
Xp= {(11)' (Lpety)y -

The zero element ¥ is the set whose only element is
the empty set, and the unit element e is the empty set.

It is possible to show that this algebra C 1s an
algebra RQ' i.e, that it satisfies the axioms AT-AS, Al2.

In order to prove this, we introduce another algebra
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C* = (8', @, ®). The elements of S' are the sets of sets

of labels ¢ L (8'> 8) and two operations are defined as

K 83 iz a set obtained by making the union of each ele-

ment of o with each element of/g

d’@/S 18 the union of d’and/@ .

Now, we can prove the following lemma.

Lemma 1 . Let Hnes be the result of the computation of an
expression consisting of additions and multiplications of
elements of S in the algebra C. Let i1'6 S' be the result
of the computation of the same expression in the algebra

C*. Then

N EN Y

wvhere every element of»11 is a superset of gsomeelement
of V| .
.

Proof. Given J, /6 € §', we have

7

i

d1 U dz and

/g:/21uﬂ2

4 ) - ' i &
where OQ?,/%@ € § and every element of O(Q(or /82) s
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superset of some element of X (or/ﬁ%),

We want to show that

(4.1) f=Xes= (X, +3)0(,

(4».2} g: 0(@/3

i

(o, U,

where every element of 5’2 (or 5ﬂ2) is a superset of some

element of 041 4-/31 (or 0%1/83)«

If we prove (4.1) and (4.2), we can extend the same
result to any expression containing additions and multi-

plications and the lemma 1s proved.

We have
= R8p =y 8a,U oy 85,0, 84U, 845
and, according to the definition of addition in C,
K8y = (X + AU

where every element of K' 15 a superset of some element
Of0(1+‘/'31 @

Let us consider the set €X1 6/@2, According to the defini-
& /3

tion Of‘/ﬁz, every element of X is & superset of

9 2
£ X a) t =N A ' ’ - P
some element of 1 @/ 3 and, thersfore, ochT ¢=/”1



A, Martelli - 15 =

Analogously, for m’g $/%1 and CX2 6/62. Thus, by taking
A\ e ¢ O(
fo= Y'UX, 88,0 8,88 U, 84,

we have proved (4.1).

Now we have

b =%ep =X FVH VAU A,
and

A VUA 3B+ 8
If we take

62 = (BI'U O(QUﬂQ

-~

every element of S, is a superset of some element of 0(1/61

2
and (4.2) is proved,

Q.BE.D.
As a consequence of this lemma, we see that any expres-

sion in our algebra C can be computed by first computing it

in the algebra C' and then deleting from the resulting set
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all elements which are a superset of some other element. In

this way, it is easy to prove the validity of axioms A1-AQ,

a2,

Let G be a directed graph, with n nodes, for which we

want to find all minimal i-j cut sets for every pair of

nodes i and j. Let a label lij be attached to every arc (i j)

of G. An n x n matrix A, whose elements belong to the above

defined algebra C, is constructed by setting aij =@, if

there is no arc between node i and node j, and a5 = {(lij)}

otherwise., We can prove the following theorem.

¥* ¥*
Theorem 1. The element aij of the closure A of matrix A

gives the set of all minimal i-j cut sets for graph G.
Proof., From (2.1) we recall that

¥ 2 -
A=E+A+A +¢-6+An1

* :
Thus, the element aij consists of a sum of path products,

corresponding to all simple paths between node i and node

* = —
i ) v(p)
k=1 EPk
P EPy

where Ptj is the set of all simple paths between i and j of

length k, and w(p) is the path product of path p.
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j), the path

1f we have p = (i 11) (11 12) cos <1ku1

product of p is

]

, ¢ vor
v(p) %(li,i1)} i(li1gig)} e {(likm1sj)} -

it

Ay
o

et
g

1,4, “11,12)' (lik_1,j)}

According to Lemma 1, we can add all path products
in algebra C'. Every element of the resulting set ?l' will
contain an arc label for every path from i to j, therefore
it is certainly a cut set. Moreover, these sets are ob-
tained by taking all possible combinations of arcs from
simple paths; hence, the setvl' will contain all minimal
cut sets., Finally, the value of a:j is obtained by delet-
ing from ;1' all elements which are a superset of some
other element, hence, &:j will contain only minimal cut

sets.

Q.E.D.

The closure of matrix A can be computed using the
methode deseribed in section 3. Let us consider, for
example, the graph in Fig. 1. If we want to obtain a§4,
we can use algorithm G' with r = 3 and ¢ = 3.
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e {©} s {@)
BO: ﬁ e ﬂ {(f)}
{(a)} (o e p
Y
1 - ° ’ {(\’E)}
TS e, b0} e {(a), (@)
g 4 .
B=B=E =L e {(ab), (a,8), (b,c,d), (4, 8))
- = 8 £

we have indicated with dashes those elements of a
. i . . .
matrix B, which are not used in the computation of sub-

sequent matrices,

The results of this section can easily be extended
to the case of non-directed graphs, by transforming them
into directed graphs. To each non-directed arc i-j we

substitute two directed arcs (i j) and (j i), and we

Y

attach the same label 11, to both arcs.
J
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5. Experimental results

A computer program implementing algorithm G' has been
written in LISP 1.5. Every cut set is represented by a word
specifying with a bit pattern which arcs are present in the
cut set, Implementation of addition requires some care,
since a simple implementation according to its definition
might be too expensive. In fact, if we add two sets of
cardinality n and m, we Ffirst have to perform n X m unions
and then we must delete all non-minimal cut sets. If the
result 1s a set of cardinality r, the time necessary to
perform addition is roughly proportional to n X m X r. HOw-
ever, the computing time can be reduced to be proportional
to n x m, by taking into account some properties of cut

sets,

For example, the program has been applied to the dgraph
cf Fig. 2, and the cut sets between the pairs of nodes

N_ - N_ are given in Table I.

Ng = Ngo Ng = Ngy Njo= Ng

5
The total computing time of the algorithm is dgreatly
dependent on the structure of the graph and, in general, it
is exponential, since the number of minimal cut sets can be
exponential. Furthermore, for a given graph, the computing
time depends on the order of elimination of nodes, as in
the case of the solution of a sparse system of equations in

linear algebra {9 ].
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Among other methods proposed to solve this problem,
the one described in [7]| first computes all simple paths
and then finds all combinations of arcs cutting all paths.
Since the time necessary to compute all paths is compara-—
ble with the time needed to compute all cut sets, this
method can be considerably less efficient than ours. Anoth-
er nethod é%gg for non-directed graphs, searches the given

From node i and constructs a tree whose

are the minimal 1-j cut sets,

The main difference between these methods and the
one proposed in this paper is that they compute the minimal
cut sets only for one pair of nodes and, if we consider
several pairs of nodes, they have to be used separately for
each pair. Instead, with our method, we can compute simulta-
necusly several entries of the matrix. For example, the

, L * * ) . .
computatiocn of a and a with algorithm G' requires
Ve o 71 Nnei,n
*

the computation of a .
n=1,1n
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