# L11: Algebraic Path Problems with applications to Internet Routing Lecture 9

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

Michaelmas Term, 2017

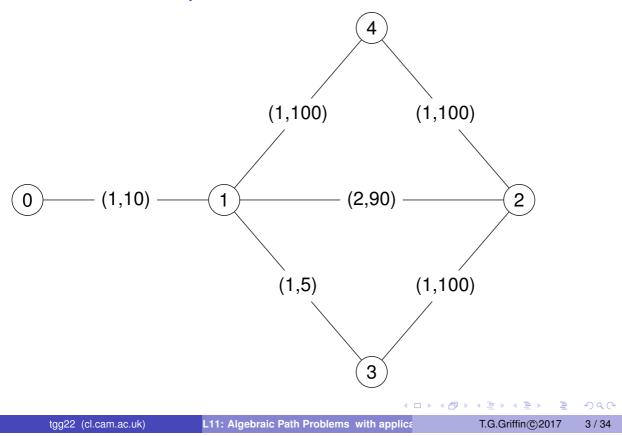
|                      | <                                         |                  | 590    |
|----------------------|-------------------------------------------|------------------|--------|
| tgg22 (cl.cam.ac.uk) | L11: Algebraic Path Problems with applica | T.G.Griffin©2017 | 1 / 34 |

#### Widest shortest-paths

- Metric of the form (d, b), where d is distance  $(\min, +)$  and b is capacity (max, min).
- Metrics are compared lexicographically, with distance considered first.
- Such things are found in the vast literature on Quality-of-Service (QoS) metrics for Internet routing.

 $wsp = sp \times bw$ 

#### Widest shortest-paths

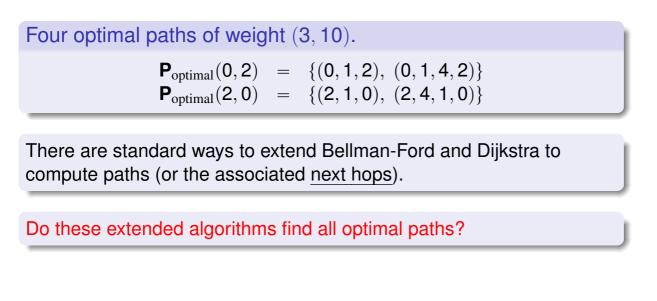


# Weights are globally optimal (we have a semiring)

| Widest short<br>Bellman-Ford                                 |                           | eights co | mputed b                    | oy Dijkstr | a and                                                                                   |  |
|--------------------------------------------------------------|---------------------------|-----------|-----------------------------|------------|-----------------------------------------------------------------------------------------|--|
| $\mathbf{R} = \begin{array}{c} 0\\ 1\\ 2\\ 3\\ 4\end{array}$ | (1,10)<br>(3,10)<br>(2,5) |           | (2,100)<br>(0,⊤)<br>(1,100) | (0, ⊤)     | $\begin{array}{c} 4 \\ (2,10) \\ (1,100) \\ (1,100) \\ (2,100) \\ (0,\top) \end{array}$ |  |

590

### But what about the paths themselves?



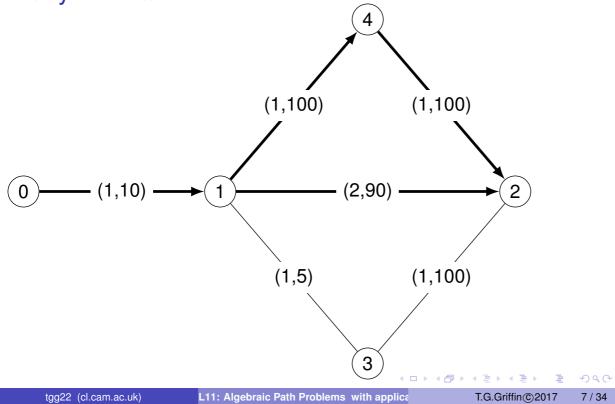
|                      | 4                                         | ロ・・商・・国・・国・・国・   | ~<br>~<br>~ |
|----------------------|-------------------------------------------|------------------|-------------|
| tgg22 (cl.cam.ac.uk) | L11: Algebraic Path Problems with applica | T.G.Griffin©2017 | 5 / 34      |

#### Surprise!

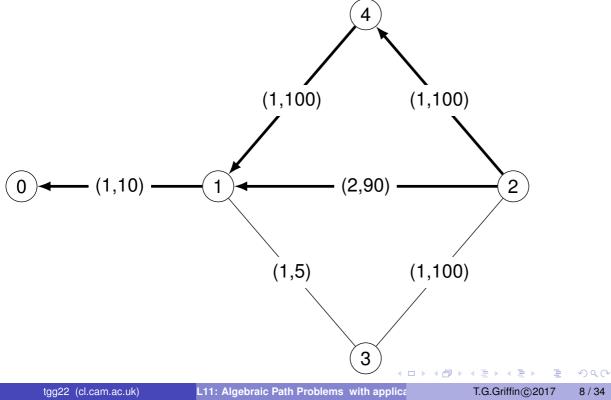
| Four <b>optimal</b> paths of weight (3, 10)                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{rcl} \textbf{P}_{optimal}(0,2) &=& \{(0,1,2), \ (0,1,4,2)\} \\ \textbf{P}_{optimal}(2,0) &=& \{(2,1,0), \ (2,4,1,0)\} \end{array}$ |
| Paths computed by (extended) Dijkstra                                                                                                             |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                              |
| Notice that 0's paths cannot both be implemented with next-hop forwarding since $\mathbf{P}_{\text{Dijkstra}}(1,2) = \{(1,4,2)\}.$                |
| Paths computed by (extended) distributed Bellman-Ford                                                                                             |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                              |

nac

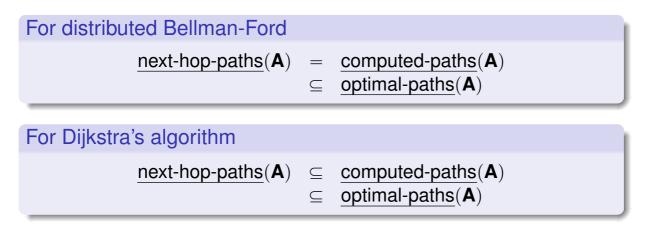
Optimal paths from 0 to 2. Computed by Dijkstra but not by Bellman-Ford



Optimal paths from 2 to 1. Computed by Bellman-Ford but not by Dijkstra

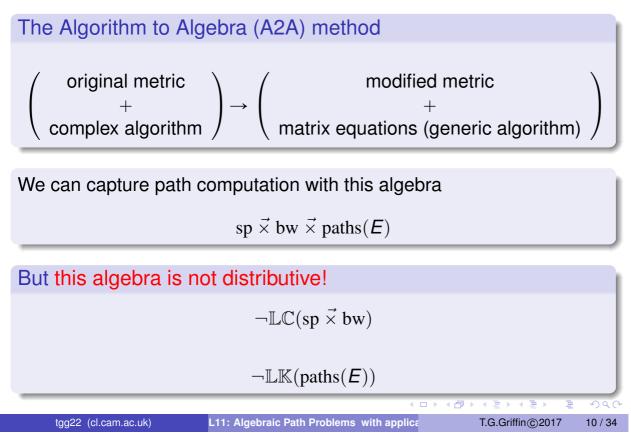


# Observations



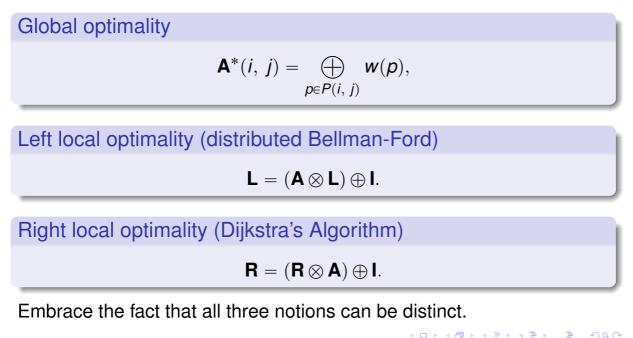
|                      |                                           | □ ► ◀ 🗗 ► | ▲ 콜 ▶ (▲ 콜 ▶ ) ( 콜) | $\mathcal{O}\mathcal{Q}$ |
|----------------------|-------------------------------------------|-----------|---------------------|--------------------------|
| tgg22 (cl.cam.ac.uk) | L11: Algebraic Path Problems with applica |           | T.G.Griffin©2017    | 9 / 34                   |

#### How can we understand this (algebaically)?



# Towards a non-classical theory of algebraic path finding

We need theory that can accept algebras that violate distributivity.



# Left-Local Optimality

Say that L is a left locally-optimal solution when

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applica

$$\mathbf{L} = (\mathbf{A} \otimes \mathbf{L}) \oplus \mathbf{I}.$$

That is, for  $i \neq j$  we have

$$\mathbf{L}(i, j) = \bigoplus_{q \in V} \mathbf{A}(i, q) \otimes \mathbf{L}(q, j)$$

- L(i, j) is the best possible value given the values L(q, j), for all out-neighbors q of source i.
- Rows L(*i*, \_) represents out-trees from *i* (think Bellman-Ford).
- Columns L(\_, *i*) represents **in-trees** to *i*.
- Works well with hop-by-hop forwarding from i.

T.G.Griffin © 2017

# **Right-Local Optimality**

Say that **R** is a right locally-optimal solution when

$$\mathbf{R} = (\mathbf{R} \otimes \mathbf{A}) \oplus \mathbf{I}.$$

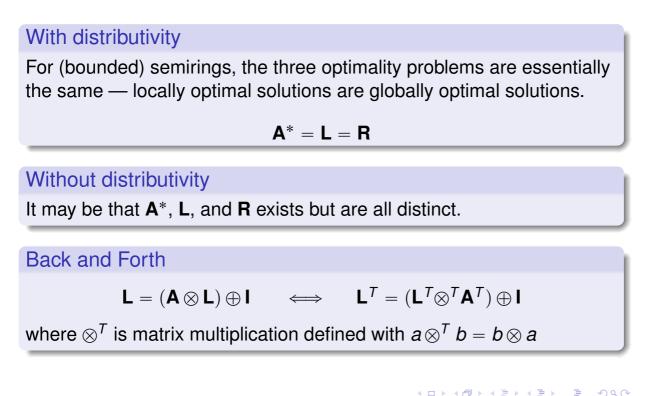
That is, for  $i \neq j$  we have

$$\mathbf{R}(i, j) = \bigoplus_{q \in V} \mathbf{R}(i, q) \otimes \mathbf{A}(q, j)$$

- **R**(*i*, *j*) is the best possible value given the values **R**(*q*, *j*), for all in-neighbors *q* of destination *j*.
- Rows L(*i*, \_) represents out-trees <u>from</u> *i* (think Dijkstra).
- Columns L(\_, *i*) represents **in-trees** to *i*.



# With and Without Distributivity



# Dijkstra's Algorithm

#### **Classical Dijkstra**

Given adjacency matrix **A** over a selective semiring and source vertex  $i \in V$ , Dijkstra's algorithm will compute  $\mathbf{A}^*(i, \_)$  such that

$$\mathbf{A}^*(i, j) = \bigoplus_{\boldsymbol{p} \in \boldsymbol{P}(i,j)} \boldsymbol{w}_{\mathbf{A}}(\boldsymbol{p}).$$

#### Non-Classical Dijkstra

If we drop assumptions of distributivity, then given adjacency matrix A and source vertex  $i \in V$ , Dijkstra's algorithm will compute **R** $(i, \_)$  such that

$$\forall j \in V : \mathbf{R}(i, j) = \mathbf{I}(i, j) \oplus \bigoplus_{q \in V} \mathbf{R}(i, q) \otimes \mathbf{A}(q, j).$$

**Routing in Equilibrium**, João Luís Sobrinho and Timothy G. Griffin, MTNS 2010.

```
tgg22 (cl.cam.ac.uk)
                              L11: Algebraic Path Problems with applica
```

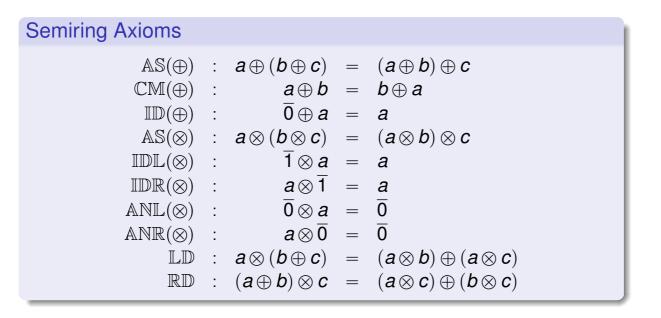
# Dijkstra's algorithm

| Input  | : | adjacency matrix <b>A</b> and source vertex $i \in V$ ,  |
|--------|---|----------------------------------------------------------|
| Output | : | the <i>i</i> -th row of <b>R</b> , $\mathbf{R}(i, \_)$ . |

 $S \leftarrow \{i\}$  $\mathbf{R}(i, i) \leftarrow \overline{1}$ for each  $q \in V - \{i\}$  :  $\mathbf{R}(i, q) \leftarrow \mathbf{A}(i, q)$ while  $S \neq V$ begin find  $q \in V - S$  such that  $\mathbf{R}(i, q)$  is  $\leq_{\oplus}^{L}$  -minimal  $S \leftarrow S \cup \{q\}$ for each  $j \in V - S$  $\mathbf{R}(i, j) \leftarrow \mathbf{R}(i, j) \oplus (\mathbf{R}(i, q) \otimes \mathbf{A}(q, j))$ end end

T.G.Griffin © 2017

# Classical proofs of Dijkstra's algorithm (for global optimality) assume



| tgg22 (cl.cam.ac.uk) | L11: Algebraic Path Problems with applic | e | T.G.Griffin © 2017 |    | 17 / 34 |
|----------------------|------------------------------------------|---|--------------------|----|---------|
|                      | 4                                        |   | ▲ 臣 ▶ ▲ 臣 ▶        | Ð, | 9 Q (?  |

# Classical proofs of Dijkstra's algorithm assume

Additional axioms

 $\mathbb{SL}(\oplus)$  :  $a \oplus b \in \{a, b\}$  $\mathbb{AN}(\oplus)$  :  $\overline{1} \oplus a = \overline{1}$ 

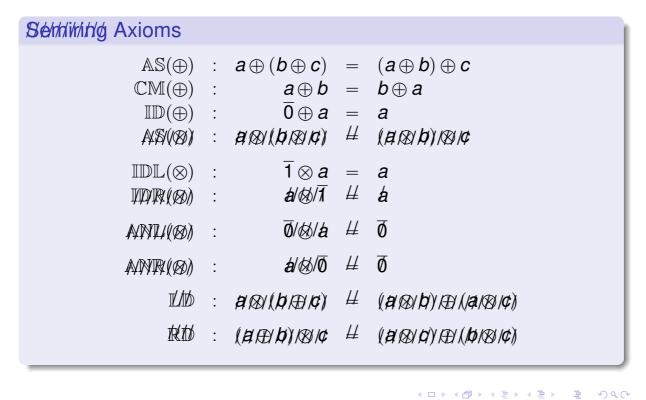
Note that we can derive right absorption,

 $\mathbb{R}A$  :  $a \oplus (a \otimes b) = a$ 

and this gives (right) inflationarity,  $\forall a, b : a \leq a \otimes b$ .

$$\begin{array}{rcl}
a \oplus (a \otimes b) &=& (a \otimes \overline{1}) \oplus (a \otimes b) \\
&=& a \otimes (\overline{1} \oplus b) \\
&=& a \otimes \overline{1} \\
&=& a
\end{array}$$

### What will we assume? Very little!



tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applica T.G.Griffin © 2017 19 / 34

# What will we assume?

| Additional axioms                        |                                         |                      |
|------------------------------------------|-----------------------------------------|----------------------|
| $\mathbb{SL}(\oplus)$<br>ANL( $\oplus$ ) | $a \oplus b$<br>$\overline{1} \oplus a$ | $\frac{\{a, b\}}{1}$ |
| (-)                                      | $a \oplus (a \otimes b)$                |                      |

- Note that we can no longer derive  $\mathbb{R}A$ , so we must assume it.
- Again,  $\mathbb{R}\mathbb{A}$  says that  $a \leq a \otimes b$ .
- We don't use SL explicitly in the proofs, but it is implicit in the algorithm's definition of q<sub>k</sub>.
- We do not use AS(⊕) and CM(⊕) explicitly, but these assumptions are implicit in the use of the "big-⊕" notation.

#### Under these weaker assumptions ...

Theorem (Sobrinho/Griffin)

Given adjacency matrix **A** and source vertex  $i \in V$ , Dijkstra's algorithm will compute **R** $(i, \_)$  such that

$$\forall j \in V : \mathbf{R}(i, j) = \mathbf{I}(i, j) \oplus \bigoplus_{q \in V} \mathbf{R}(i, q) \otimes \mathbf{A}(q, j).$$

That is, it computes one row of the solution for the right equation

$$\mathbf{R} = \mathbf{R}\mathbf{A} \oplus \mathbf{I}.$$



# Dijkstra's algorithm, annotated version

Subscripts make proofs by induction easier ....

```
\begin{array}{l} \textbf{begin} \\ S_{1} \leftarrow \{i\} \\ \textbf{R}_{1}(i, i) \leftarrow \overline{1} \\ \textbf{for each } q \in V - S_{1} : \textbf{R}_{1}(i, q) \leftarrow \textbf{A}(i, q) \\ \textbf{for each } k = 2, 3, \ldots, \mid V \mid \\ \textbf{begin} \\ \quad \text{find } q_{k} \in V - S_{k-1} \text{ such that } \textbf{R}_{k-1}(i, q_{k}) \text{ is } \leqslant_{\oplus}^{L} \text{-minimal} \\ S_{k} \leftarrow S_{k-1} \cup \{q_{k}\} \\ \quad \textbf{for each } j \in V - S_{k} \\ \textbf{R}_{k}(i, j) \leftarrow \textbf{R}_{k-1}(i, j) \oplus (\textbf{R}_{k-1}(i, q_{k}) \otimes \textbf{A}(q_{k}, j)) \\ \textbf{end} \\ \textbf{end} \end{array}
```

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 の�?

Main Claim, annotated

$$\forall k : 1 \leq k \leq |V| \implies \forall j \in S_k : \mathbf{R}_k(i, j) = \mathbf{I}(i, j) \oplus \bigoplus_{q \in S_k} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q, j)$$

#### We will use

Observation 1 (no backtracking) :

$$\forall k : 1 \leq k < | V | \Longrightarrow \forall j \in S_{k+1} : \mathbf{R}_{k+1}(i, j) = \mathbf{R}_k(i, j)$$

Observation 2 (Dijkstra is "greedy"):

$$\forall k : 1 \leq k \leq |V| \implies \forall q \in S_k : \forall w \in V - S_k : \mathbf{R}_k(i, q) \leq \mathbf{R}_k(i, w)$$

Observation 3 (Accurate estimates):

$$\forall k : 1 \leq k \leq |V| \implies \forall w \in V - S_k : \mathbf{R}_k(i, w) = \bigoplus_{q \in S_k} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q, w)$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

# **Observation 1** $\forall k : 1 \leq k < |V| \implies \forall j \in S_{k+1} : \mathbf{R}_{k+1}(i, j) = \mathbf{R}_k(i, j)$

Proof: This is easy to see by inspection of the algorithm. Once a node is put into S its weight never changes again.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへぐ

T.G.Griffin © 2017

#### The algorithm is "greedy"

**Observation 2** 

 $\forall k : 1 \leq k \leq |V| \implies \forall q \in S_k : \forall w \in V - S_k : \mathbf{R}_k(i, q) \leq \mathbf{R}_k(i, w)$ 

By induction.

Base : Since  $S_1 = \{i\}$  and  $\mathbf{R}_1(i, i) = \overline{1}$ , we need to show that

$$\overline{1} \leqslant \mathbf{A}(i, \mathbf{w}) \equiv \overline{1} = \overline{1} \oplus \mathbf{A}(i, \mathbf{w}).$$

This follows from  $\mathbb{ANL}(\oplus)$ .

Induction: Assume  $\forall q \in S_k : \forall w \in V - S_k : \mathbf{R}_k(i, q) \leq \mathbf{R}_k(i, w)$  and show  $\forall q \in S_{k+1} : \forall w \in V - S_{k+1} : \mathbf{R}_{k+1}(i, q) \leq \mathbf{R}_{k+1}(i, w)$ . Since  $S_{k+1} = S_k \cup \{q_{k+1}\}$ , this means showing

(1) 
$$\forall q \in S_k : \forall w \in V - S_{k+1} : \mathbf{R}_{k+1}(i, q) \leq \mathbf{R}_{k+1}(i, w)$$
  
(2)  $\forall w \in V - S_{k+1} : \mathbf{R}_{k+1}(i, q_{k+1}) \leq \mathbf{R}_{k+1}(i, w)$ 

|                      |                                           | □ → < @ → < E → < E → _ E | うくで     |
|----------------------|-------------------------------------------|---------------------------|---------|
| tgg22 (cl.cam.ac.uk) | L11: Algebraic Path Problems with applica | T.G.Griffin©2017          | 25 / 34 |

By Observation 1, showing (1) is the same as

$$\forall q \in S_k : \forall w \in V - S_{k+1} : \mathbf{R}_k(i, q) \leq \mathbf{R}_{k+1}(i, w)$$

which expands to (by definition of  $\mathbf{R}_{k+1}(i, w)$ )

 $\forall q \in S_k : \forall w \in V - S_{k+1} : \mathbf{R}_k(i, q) \leq \mathbf{R}_k(i, w) \oplus (\mathbf{R}_k(i, q_{k+1}) \otimes \mathbf{A}(q_{k+1}, w))$ 

But  $\mathbf{R}_k(i, q) \leq \mathbf{R}_k(i, w)$  by the induction hypothesis, and  $\mathbf{R}_k(i, q) \leq (\mathbf{R}_k(i, q_{k+1}) \otimes \mathbf{A}(q_{k+1}, w))$  by the induction hypothesis and  $\mathbb{R}\mathbb{A}$ . Since  $a \leq_{\oplus}^L b \land a \leq_{\oplus}^L c \implies a \leq_{\oplus}^L (b \oplus c)$ , we are done.

くロッ (雪) (目) (日) (日)

By Observation 1, showing (2) is the same as showing

$$\forall w \in V - S_{k+1} : \mathbf{R}_k(i, q_{k+1}) \leq \mathbf{R}_{k+1}(i, w)$$

which expands to

$$\forall w \in V - S_{k+1} : \mathbf{R}_k(i, q_{k+1}) \leq \mathbf{R}_k(i, w) \oplus (\mathbf{R}_k(i, q_{k+1}) \otimes \mathbf{A}(q_{k+1}, w))$$

But  $\mathbf{R}_k(i, q_{k+1}) \leq \mathbf{R}_k(i, w)$  since  $q_{k+1}$  was chosen to be minimal, and  $\mathbf{R}_k(i, q_{k+1}) \leq (\mathbf{R}_k(i, q_{k+1}) \otimes \mathbf{A}(q_{k+1}, w))$  by  $\mathbb{R}\mathbb{A}$ . Since  $a \leq_{\oplus}^L b \land a \leq_{\oplus}^L c \implies a \leq_{\oplus}^L (b \oplus c)$ , we are done.

|                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | □▶∢@▶∢≧▶∢≧▶      | E       |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|
| tgg22 (cl.cam.ac.uk) | L11: Algebraic Path Problems with application of the second sec | T.G.Griffin©2017 | 27 / 34 |

#### **Observation 3**

**Observation 3** 

$$\forall k : 1 \leq k \leq |V| \implies \forall w \in V - S_k : \mathbf{R}_k(i, w) = \bigoplus_{q \in S_k} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q, w)$$

Proof: By induction: Base : easy, since

$$\bigoplus_{q \in S_1} \mathbf{R}_1(i, q) \otimes \mathbf{A}(q, w) = \overline{1} \otimes \mathbf{A}(i, w) = \mathbf{A}(i, w) = \mathbf{R}_1(i, w)$$

Induction step. Assume

$$\forall w \in V - S_k : \mathbf{R}_k(i, w) = \bigoplus_{q \in S_k} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q, w)$$

and show

$$\forall w \in V - S_{k+1} : \mathbf{R}_{k+1}(i, w) = \bigoplus_{q \in S_{k+1}} \mathbf{R}_{k+1}(i, q) \otimes \mathbf{A}(q, w)$$

T.G.Griffin © 2017

By Observation 1, and a bit of rewriting, this means we must show

$$\forall w \in V - S_{k+1} : \mathbf{R}_{k+1}(i, w) = \mathbf{R}_k(i, q_{k+1}) \otimes \mathbf{A}(q_{k+1}, w) \oplus \bigoplus_{q \in S_k} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q_{k+1}) \otimes \mathbf{A}(q_{k+1}, w) \oplus \bigoplus_{q \in S_k} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q_{k+1}) \otimes \mathbf{A}(q_{k+1}, w) \oplus \bigoplus_{q \in S_k} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q_{k+1}) \otimes \mathbf{A}(q_{k+1}, w) \oplus \bigoplus_{q \in S_k} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q_{k+1}) \otimes \mathbf{A}(q_{k+1}, w) \oplus \bigoplus_{q \in S_k} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q_{k+1}) \otimes \mathbf{A}(q_{k+1}, w) \oplus \bigoplus_{q \in S_k} \mathbf{R}_k(i, q_{k+1}) \otimes \mathbf{A}(q_{k+1}, w) \oplus \bigoplus_{q \in S_k} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q_{k+1}) \otimes \mathbf{A}(q_{k+1}, w) \oplus \bigoplus_{q \in S_k} \mathbf{R}_k(i, q_{k+1}) \otimes \mathbf{A}(q_{k+1}) \otimes \mathbf{A}$$

Using the induction hypothesis, this becomes

$$\forall w \in V - S_{k+1} : \mathbf{R}_{k+1}(i, w) = \mathbf{R}_k(i, q_{k+1}) \otimes \mathbf{A}(q_{k+1}, w) \oplus \mathbf{R}_k(i, w)$$

But this is exactly how  $\mathbf{R}_{k+1}(i, w)$  is computed in the algorithm.



#### **Proof of Main Claim**

Main Claim  
$$\forall k : 1 \leq k \leq |V| \implies \forall j \in S_k : \mathbf{R}_k(i, j) = \mathbf{I}(i, j) \oplus \bigoplus_{q \in S_k} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q, j)$$

Proof : By induction on *k*. Base case:  $S_1 = \{i\}$  and the claim is easy. Induction: Assume that

$$\forall j \in S_k : \mathbf{R}_k(i, j) = \mathbf{I}(i, j) \oplus \bigoplus_{q \in S_k} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q, j)$$

We must show that

$$\forall j \in S_{k+1} : \mathbf{R}_{k+1}(i, j) = \mathbf{I}(i, j) \oplus \bigoplus_{q \in S_{k+1}} \mathbf{R}_{k+1}(i, q) \otimes \mathbf{A}(q, j)$$

Since  $S_{k+1} = S_k \cup \{q_{k+1}\}$ , this means we must show

(1) 
$$\forall j \in S_k : \mathbf{R}_{k+1}(i, j) = \mathbf{I}(i, j) \oplus \bigoplus_{q \in S_{k+1}} \mathbf{R}_{k+1}(i, q) \otimes \mathbf{A}(q, j)$$

(2) 
$$\mathbf{R}_{k+1}(i, q_{k+1}) = \mathbf{I}(i, q_{k+1}) \oplus \bigoplus_{q \in S_{k+1}} \mathbf{R}_{k+1}(i, q) \otimes \mathbf{A}(q, q_{k+1})$$

By use Observation 1, showing (1) is the same as showing

$$\forall j \in S_k : \mathbf{R}_k(i, j) = \mathbf{I}(i, j) \oplus \bigoplus_{q \in S_{k+1}} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q, j),$$

which is equivalent to

$$\forall j \in S_k : \mathbf{R}_k(i, j) = \mathbf{I}(i, j) \oplus (\mathbf{R}_k(i, q_{k+1}) \otimes \mathbf{A}(q_{k+1}, j)) \oplus \bigoplus_{q \in S_k} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q, j)$$

By the induction hypothesis, this is equivalent to

$$\forall j \in S_k : \mathbf{R}_k(i, j) = \mathbf{R}_k(i, j) \oplus (\mathbf{R}_k(i, q_{k+1}) \otimes \mathbf{A}(q_{k+1}, j)),$$

|                      | ٩                                             |   | ⊒ K K ≣ K K ≣ K I I | - 90C   |
|----------------------|-----------------------------------------------|---|---------------------|---------|
| tgg22 (cl.cam.ac.uk) | L11: Algebraic Path Problems with application | ε | T.G.Griffin©2017    | 31 / 34 |

Put another way,

$$\forall j \in S_k : \mathbf{R}_k(i, j) \leq \mathbf{R}_k(i, q_{k+1}) \otimes \mathbf{A}(q_{k+1}, j)$$

By observation 2 we know  $\mathbf{R}_k(i, j) \leq \mathbf{R}_k(i, q_{k+1})$ , and so

$$\mathbf{R}_{k}(i, j) \leqslant \mathbf{R}_{k}(i, q_{k+1}) \leqslant \mathbf{R}_{k}(i, q_{k+1}) \otimes \mathbf{A}(q_{k+1}, j)$$

by  $\mathbb{RA}$ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

To show (2), we use Observation 1 and  $I(i, q_{k+1}) = \overline{0}$  to obtain

$$\mathbf{R}_{k}(i, \ q_{k+1}) = \bigoplus_{q \in S_{k+1}} \mathbf{R}_{k}(i, \ q) \otimes \mathbf{A}(q, \ q_{k+1})$$

which, since  $\mathbf{A}(q_{k+1}, q_{k+1}) = \overline{\mathbf{0}}$ , is the same as

$$\mathbf{R}_{k}(i, q_{k+1}) = \bigoplus_{q \in S_{k}} \mathbf{R}_{k}(i, q) \otimes \mathbf{A}(q, q_{k+1})$$

This then follows directly from Observation 3.



### Finding Left Local Solutions?

$$\mathbf{L} = (\mathbf{A} \otimes \mathbf{L}) \oplus \mathbf{I} \qquad \Longleftrightarrow \qquad \mathbf{L}^T = (\mathbf{L}^T \otimes^T \mathbf{A}^T) \oplus \mathbf{I}$$
$$\mathbf{R}^T = (\mathbf{A}^T \otimes^T \mathbf{R}^T) \oplus \mathbf{I} \qquad \Longleftrightarrow \qquad \mathbf{R} = (\mathbf{R} \otimes \mathbf{A}) \oplus \mathbf{I}$$

where

$$a \otimes^T b = b \otimes a$$

Replace  $\mathbb{R}\mathbb{A}$  with  $\mathbb{L}\mathbb{A}$ ,

$$\mathbb{LA}: \forall a, b: a \leq b \otimes a$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●