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Shortest paths example, sp = (N*, min, +, 00, 0)
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Shortest paths solution
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solves this global optimality
problem:

min  w(p),
peP(i, j) (P)

where P(i, j) is the set of all paths
from / to j.
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Widest paths example, bw = (N*, max, min, 0, o)
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solves this global optimality
problem:

A*(i, j) = max w(p),

peP(i, j)

where w(p) is now the minimal
edge weight in p.
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Unfamiliar example, (222 ¢ U, ~ {}, {a, b, c})

We want A* to solve this global
optimality problem:

e tabej id) A= | wi),
@{{b ¢} i — 155 e
where w(p) is now the intersection
{ab} {b} of all edge weights in p.

®

For x € {a, b, c}, interpret x € A*(i, j) to mean that there is at least
one path from /i to j with x in every arc weight along the path. J

A*(4,1)={a, b} A*(4, 5) = {b}
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Another unfamiliar example, (212 ¢t~ )

We want matrix R to solve this
global optimality problem:

e} tabel i) A )= () wip),
@{{b o) %?— o5 e
where w(p) is now the union of all
{ab} {b} edge weights in p.

Ro

For x € {a, b, c}, interpret x € R(/, j) to mean that every path from j to
j has at least one arc with weight containing x. J

A*(4,1) ={b} A*(4, 5 ={b} A*(5 1)={}
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Semirings (generalise (R, +, x,0,1))

possible routing use
minimum-weight routing
greatest-capacity routing
most-reliable routing
usable-path routing
shared link attributes?
shared path attributes?

name S @, ®
sp N* min  +
bw N®  max min
rel [0, 1] max x

use {0, 1} max min
2W

U M

S o o o 8| o
=S = = 8 o =

ow 8 U

A wee bit of notation!

Symbol Interpretation

Natural numbers (starting with zero)
Natural numbers, plus infinity
|dentity for @

|dentity for ®

—~lolZ Z
8

v
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Semiring axioms ...

We will look at all of the axioms of semirings, but the most important
are

distributivity
LD : a®((bdc) = (a®b) @ (a®c)
RD : (a®b)®c = (a®c)@® (b®c)
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Distributivity, illustrated
b
a
ol (0
c

aR(bdc) = (a®@b)d(a®c)

Jj makes the choice = 7 makes the choice
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Should distributivity hold in Internet Routing?

long path through a customer

(O— ©

customer provider
short path through a peer

@ j prefers long path though one of its customers (not the shorter
path through a competitor)

@ given two routes from a provider, i prefers the one with a shorter
path

@ More on inter-domain routing in the Internet later in the term ...
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Widest shortest-paths

@ Metric of the form (d, b), where d is distance (min, +) and b is
capacity (max, min).

@ Metrics are compared lexicographically, with distance considered
first.

@ Such things are found in the vast literature on Quality-of-Service
(QoS) metrics for Internet routing.
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Widest shortest-paths

(1,100) (1,100)

(0)—(1,10) /1\/ (2,90)

N

1,5) (1,100)
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Weights are globally optimal (we have a semiring)

Widest shortest-path weights computed by Dijkstra and
Bellman-Ford

0 1 2 3 4
o [ (0,0) (1,10) (3,10) (2,5) (2,10)
1| (1,10) (0,0) (2,100) (1,5) (1,100)
R = 2| (310) (2,100) (0,) (1,100) (1,100)
s | (25 (1,5 (1,100) (0,0) (2,100)
4| (2,10) (1,100) (1,100) (2,100) (0,00)
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But what about the paths themselves?

Four optimal paths of weight (3, 10).
Poptimal(oa 2) = {(07 1 ) 2)7 (07 1 ) 47 2)}
Poptimal(za 0) = {(27 1 ) 0)7 (2a 4’ 1 ) 0)}

There are standard ways to extend Bellman-Ford and Dijkstra to
compute paths (or the associated next hops).

Do these extended algorithms find all optimal paths? J
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Surprise!

Four optimal paths of weight (3, 10)

Poptimal(oa 2) = {(07 1 ’ 2)7 ( s 1y

0,1,4,2)}
Poptimal(za 0) = {(25 1 ) 0)7 (27 47 1

2
,0)}

Paths computed by (extended) Dijkstra

PDijkstra(072) = {(07172)a (0717472)}
Ppijkstra(2,0) = {(2,4,1,0)}

Notice that 0’s paths cannot both be implemented with next-hop
forwarding since Ppjjksira(1,2) = {(1,4,2)}.
Paths computed by distributed Bellman-Ford

PBellman(07 2) = {(07 1 ) 47 2)}
PBellman(za O) = {(27 1 y 0)7 (27 47 1 3 O)}
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Optimal paths from 0 to 2. Computed by Dijkstra but
not by Bellman-Ford
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Optimal paths from 2 to 1. Computed by Bellman-Ford

but not by Dijkstra f

(1 100) (1,100)

(1,10) 4% (2,90)
(1,100)
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How can we understand this (algebaically)?

The Algorithm to Algebra (A2A) method

original metric modified metric
+ — +
complex algorithm matrix equations (generic algorithm)
Preview

@ We can add paths explicitly to the widest shortest-path semiring to
obtain a new algebra.

@ We will see that distributivity does not hold for this algebra.

@ Why? We will see that it is because min is not cancellative!
(amin b = amin ¢ does not imply that b = ¢)

v
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Towards a non-classical theory of algebraic path
finding
We need theory that can accept algebras that violate distributivity.

Global optimality
A*(i, )= @D w(p)

peP (i, j)

Left local optimality (distributed Bellman-Ford)
L= (A®L)a®l

Right local optimality (Dijkstra’s Algorithm)
R=(R®A Ll

Embrace the fact that all three notions can be distinct.

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin@©2017 20/38



Assessment

Five homeworks, with only best four counted, each 25%.

due

October 16
October 27
November 6
November 17
December 1

aAarowOND =
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Lectures 2, 3

@ Semigroups
@ A few important semigroup properties
@ Semigroup and partial orders
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Semigroups

Semigroup

A semigroup (S, e) is a non-empty set S with a binary operation such

that

AS associative = Va,b,ce S, ae(bec)=(aeb)ec

Important Assumption — We will ignore trival semigroups
We will impicitly assume that 2 <| S |.

Note

Many useful binary operations are not semigroup operations. For
example, (R, o), where ae b= (a+ b)/2.
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Some Important Semigroup Properties

D identity
AN annihilator
CM commutative
SIL. selective
I[P  idempotent

Jae S, Vae S, a=aea=aec
Jwe S, Vae S, w=wea=agew
Va,be S, aeb=Dbea

Va,be S, aebe {a, b}

Vae S, aea=a

23/38

A semigroup with an identity is called a monoid.
Note that
SL(S, o) = IP(S, o)
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A few concrete semigroups

S ) description a | w |CM | SL | IP
S left xlefty = x
S right | xrighty =y
S* - | concatenation | ¢
St .| concatenation
{t, f} A conjunction I I
{t, f} Y% disjunction *x | ok | %
N min minimum * x| x
N max maximum 0 * *x | x
W U union W[ « *
W n | intersection | W | {} | = *
fin(2Y) | U union {} * *
fin(2Y) | n intersection {3 | = *
N + addition 0 *
N X multiplication | 1 | O | «
W a finite set, U an infinite set. For set Y, fin(Y) = {X € Y | X is finite}
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A few abstract semigroups
S e | description w | CM | SL | IP
2V |y union b | U
2V | ~ | intersection | U | {}| =
2UxU | i | relational join | Zy | {}
X — X | o | composition | Ax.x

U an infinite set
XXY={(x,2)eUxU|3IyelU, (x,y) e XA (y, 2)e Y}
Zu={(u, u)|ue U}

subsemigroup

Suppose (S, o) is asemigroupand T < S. If T is closed w.r.t e (that
is,Vx,ye T,xeye T),then (T, ) is a subsemigroup of S.

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin@©2017 26 /38



Order Relations

We are interested in order relatons << Sx S
Definition (Important Order Properties)
RX
TR

reflexive = a<a

transitive = a<bab<c—a<c

AY antisymmetric = a<bab<a—a=>b

TO total = a<bvb<a
partial preference total
pre-order order order order
RX * * *
TR * * * *
AY * *
TO * *
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Canonical Pre-order of a Commutative Semigroup

Definition (Canonical pre-orders)

adlb =
ad;b =

dJce S:b=aec
dceS:a=bec

Lemma (Sanity check)
Associativity of e implies that these relations are transitive.

Proof.

Note that a <f b means 3c; € S: b = ae ¢y, and b < ¢ means

dco e S:c = be . Letting ¢35 = ¢4 e o we have
C=beco=(aeci)ecor=ae(ciecCy) =aecs. Thatis,

Jes e S:c=aecs, so a<fc. The proof for <t is similar. O

28 /38
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Canonically Ordered Semigroup

Definition (Canonically Ordered Semigroup)

A commutative semigroup (S, e) is canonically ordered when a <f ¢
and a <t c are partial orders.

Definition (Groups)

A monoid is a group if for every a e S there exists a a~' € S such that
aea'=alea=na.
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Canonically Ordered Semigroups vs. Groups

Lemma (THE BIG DIVIDE)
Only a trivial group is canonically ordered.

Proof.

lfa, be S,thena=a,ea= (beb ')ea=be(b 'ea)=bec,for
c=b""ea soa<kp. Inasimilar way, b <F a. Thereforea=b. [

v
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Natural Orders
Definition (Natural orders)
Let (S, o) be a semigroup.

a<tb = a=aeb
a<fip = =aeb

Lemma

If o is commutative and idempotent, then a<P? b — a <P b, for
De{R, L}.

Proof.
a<llb <« b=aec=(aea)ec=ae(aec)
— aeb <= a<Pb
a<tb <« a=bec=(beb)ec=Dbe(bec)
= bea=aeb «— a<ib

—
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Special elements and natural orders
Lemma (Natural Bounds)

@ Ifa exists, then foralla, a <t o and o <P a
@ Ifw exists, then for all a, w <t aand a <f w
@ Ifa and w exist, then S is bounded.

wéfaéfa
aé?aéﬁw

Remark (Thanks to lljitsch van Beijnum)
Note that this means for (min, +) we have

0 <t. a <t o

\gin \gin
o0 <min a <min 0

and still say that this is bounded, even though one might argue with the
terminology!

v
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Examples of special elements

S . a| w | <R
N*® |min|ow | O < | =
N max | 0 | -0 | = | <
PW)l v [ {}| W | < |2
PW)| n |[W| {} | 2| <
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Property Management

Lemma

LetDe {R, L}.

Q@ IP(S, o) — RX(S, <P

Q CM(S, o) — AY(S, <P)

Q AS(S, o) — TR(S, <P

Q CM(S, o) — (SL(S, o) «— TO(S, <P))

Proof.
Q a<Pla < a=aeg,
Q@ a<tbrab<tla «— a=aebab=bea = a=b
Q@ a<tbab<lc — a=aebab=bec — a=ae(bec) =
(aeb)ec=aec — a<lc
Q a=aebvb=aeb «— a<tbvbx<la
]

v
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Bounds

Suppose (S, <) is a partially ordered set.

greatest lower bound

For a, b e S, the element ¢ € S is the greatest lower bound of a and b,
written ¢ = a glb b, if it is a lower bound (¢ < aand ¢ < b), and for
every d e Swith d < aand d < b, we have d < c.

least upper bound

For a, b e S, the element c € S is the least upper bound of a and b,
written ¢ = alub b, if it is an upper bound (a < ¢ and b < ¢), and for
every d e Swith a< d and b < d, we have ¢ < d.
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Semi-lattices

Suppose (S, <) is a partially ordered set.

meet-semilattice
S is a meet-semilattice if a glb b exists for each a, b e S.

join-semilattice
S is a join-semilattice if a lub b exists for each a, be S.
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Fun Facts

Fact 1

Suppose (S, e) is a commutative and idempotent semigroup.
o (S, <b)is a meet-semilattice with aglb b = ae b.
@ (S, <f) is ajoin-semilattice with alub b = g e b.

Fact 2
Suppose (S, <) is a partially ordered set.

@ If (S, <) is a meet-semilattice, then (S, glb) is a commutative and
idempotent semigroup.

@ If (S, <) is a join-semilattice, then (S, lub) is a commutative and
idempotent semigroup.

That is, semi-lattices represent the same class of structures as
commutative and idempotent semigroups.
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Homework 1 (due 16 October)

Prove Fun Fun Facts 1 and 2. J
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