
Machine Learning for Language Processing (L101)

Machine Learning for Language Processing
(L101)

Ann Copestake

Computer Laboratory
University of Cambridge

October 2017



Machine Learning for Language Processing (L101)

The story so far

The story so far

Models:
1. Naive Bayes (see also Manning et al, Chapter 13)
2. HMMs
3. Disciminative classifiers: MaxEnt, MEMM

Methodology:
1. Task/data/model; shared tasks.
2. Smoothing. Feature engineering.
3. Token annotation schemes. Regularization (in passing).

Precision/recall balance.



Machine Learning for Language Processing (L101)

The story so far

Model power

I Why don’t we just use the more powerful models and
forget about the simpler ones?

I Speed etc
I Also: danger of overfitting: powerful models can pick up

unintended effects in training data.
I Suggested additional reading: Manning et al §14.6: the

bias-variance tradeoff.
I Especially important to be careful with deep learning

models: very sensitive to artifacts; blackbox.
I Not at all clear we have methodology right yet: sensitivity

to classes of artifact?



Machine Learning for Language Processing (L101)

The story so far

Model power

I Why don’t we just use the more powerful models and
forget about the simpler ones?

I Speed etc
I Also: danger of overfitting: powerful models can pick up

unintended effects in training data.
I Suggested additional reading: Manning et al §14.6: the

bias-variance tradeoff.
I Especially important to be careful with deep learning

models: very sensitive to artifacts; blackbox.
I Not at all clear we have methodology right yet: sensitivity

to classes of artifact?



Machine Learning for Language Processing (L101)

The story so far

Where we’re headed

4 Today: focus is linear and non-linear classifiers. (Note:
Naive Bayes is a generative linear classifier, we just don’t
normally describe it that way . . . )

5 Clustering. Topic models, LDA: latent variables, Dirichlet,
hyperparameters.

6 Gibbs sampling, RBMs, intro to deep learning.
Preparation: L90 notes for lecture 8 and 9 (8 online now, 9
ready early next week).

7 LSTMs. Compositional distributional semantics.
8 Current issues



Machine Learning for Language Processing (L101)

The story so far

Rest of today’s lecture

I Perceptron: an early neurally-inspired linear classifier
I Gradient descent training
I Limitations of perceptrons
I Perceptrons in NLP

I Kernel methods: non-linear decisions from linear classifiers
I An NLP example



Machine Learning for Language Processing (L101)

Perceptron algorithm

Perceptron

w3

w2

w1

x3

x2

x1

∑
> θ yes/no

Dot product of an input vector ~x and a weight vector ~w ,
compared to a threshold θ



Machine Learning for Language Processing (L101)

Perceptron algorithm

Perceptron

I The perceptron was one of the first neural network
architectures (Rosenblatt 1962)

I Cognitively inspired — but nobody knew much about how
real neurons worked then . . .

I Multilayer perceptron is not a perceptron . . .
I perceptron algorithm for learning — suitable for

classification where linearly separable.
I Many variants: kernel perceptron, voted perceptron (which

is competitive with techniques such as SVMs).
I In NLP, mainly for parse selection (alternative to MaxEnt).
I Description here based on Manning and Schütze: see

Stephen Clark’s notes for perceptron applied to tagging.



Machine Learning for Language Processing (L101)

Perceptron algorithm

Perceptron learning algorithm

I Simple example of gradient descent (also know as hill
climbing, gradient ascent).

I Move the prediction in the direction of the training data via
the steepest gradient (i.e., derivative).

I Theory fairly complex, implementation simple (and fast!).
I Will converge if problem is linearly separable, but:

I boundary may flip back and forth — not always clear in
training if it will converge or if problem non-linear

I results depend on training data order, boundaries
non-optimal



Machine Learning for Language Processing (L101)

Perceptron algorithm

Perceptron learning algorithm
θ threshold, ~w weights, ~xj (numerical) feature vector

decision(~xj , ~w , θ) is yes if ~w · ~xj > θ else no

initialize ~w and θ to 0

while not converged do
for each element ~xj in training set do

d := decision(~xj , ~w , θ)
if trueclass(~xj) = d then continue
elseif trueclass(~xj) = yes then θ := θ − 1

~w := ~w + ~xj
elseif trueclass(~xj) = no then θ := θ + 1

~w := ~w − ~xj
fi



Machine Learning for Language Processing (L101)

Perceptron algorithm

Perceptron boundaries



Machine Learning for Language Processing (L101)

Perceptron algorithm

Perceptron boundaries



Machine Learning for Language Processing (L101)

Perceptron algorithm

Perceptron boundaries



Machine Learning for Language Processing (L101)

Perceptron algorithm

Perceptron boundaries



Machine Learning for Language Processing (L101)

Perceptron algorithm

Perceptron decisions: XOR



Machine Learning for Language Processing (L101)

Perceptron algorithm

Perceptron issues

I Multiple possible boundaries between linearly separable
data points: other approaches just find one boundary (e.g.,
SVMs)

I Some classes not linearly separable: this issue was partly
responsible for killing NN work in the 1960s.

I BUT: very fast, fast to train, so can use with more data
than other methods for a given amount of CPU time.

I Originally: specialist perceptron hardware.



Machine Learning for Language Processing (L101)

Perceptron algorithm

Perceptrons in NLP

I Introduced to NLP by Collins in 2002 (voted perceptron).
I Tagging (see Steve Clark’s notes from two years ago),

named entity recognition but primarily used for parse
ranking.

I Can be used in conjunction with kernels. e.g., parse
ranking: features are all subtrees of parse tree (so
exponential number): use tree kernels.

I Kernels allow perceptrons and other methods to be used
for problems that are not linearly separable.



Machine Learning for Language Processing (L101)

Kernels

Kernel methods

I Roughly: a kernel is a function which allows features to be
mapped to an inner product in a higher-dimensional
(possibly infinite) feature space.

I A valid kernel is defined by any symmetric finitely positive
semi-definite function (psd: definition Manning et al, p305).

I Hence, if we prove a function has these properties, then we
have a kernel: no need to explicitly represent the mapping.

I Various similarity measurements are kernels, including
cosine similarity and Jensen-Shannon divergence.



Machine Learning for Language Processing (L101)

Kernels

XOR and Kernels

x

y

I Add a third dimension, xy: blue xy = 1, red xy = −1, so
linearly separable.

I More generally, use a quadratic kernel:

K (~u, ~v) = (1 + ~uT~v)2

I or more generally still, a polynomial kernel.



Machine Learning for Language Processing (L101)

Kernels

Why kernel methods?

I Allow linear classifiers to learn non-linear classification
functions.

I Allow structured objects (trees, strings, sets etc) to be
classified by vectorial methods (convert to real numbers,
fixed length).

I Multiple kernels may be combined to give a new kernel:
usually better performance than treating them individually.

I Can be used in conjunction with a variety of ML methods:
e.g., perceptron (first used by Aizerman et al 1964).

I SVMs use kernels.



Machine Learning for Language Processing (L101)

Kernels

String kernel example
Feature space from character pairs: 1 if contiguous in word, λ if
one intervening character, λ2 if two intervening characters etc

c-a c-t c-r a-r r-t b-a b-r
φ(cat) 1 λ 0 0 0 0 0
φ(cart) 1 λ2 λ 1 1 0 0
φ(bar) 0 0 0 1 0 1 λ

k(cat, cart) = 1 + λ3

k(cat,bar) = 0
k(cart,bar) = 1

From Mark Gales’ L101 slides 2010/11



Machine Learning for Language Processing (L101)

Interpreting English compound nouns using kernel methods

Compound noun relations

I cheese knife: knife for cutting cheese
I steel knife: knife made of steel
I kitchen knife: knife characteristically used in the kitchen

Very limited syntactic/phonological cues in English, so assume
parser gives: N1(x), N2(y), compound(x,y).



Machine Learning for Language Processing (L101)

Interpreting English compound nouns using kernel methods

Language-specific restrictions

German compounds with non-compound translations:

Arzttermin *doctor appointment doctor’s appointment

Terminvorschlag * date proposal proposed date
Terminvereinbarung * date arrangement arrangement of a date

Januarhälfte * January half half of January
Frühlingsanfang * spring beginning beginning of spring



Machine Learning for Language Processing (L101)

Interpreting English compound nouns using kernel methods

Data-driven approaches to compound relation learning

I Find paraphrases by looking for explicit relationships in
corpora: e.g., knife made of steel
(Lauer: prepositions, Lapata: verbal compounds)

I treat as a supervised classification problem:
1. human annotation of compounds: e.g., steel knife

annotated with BE
2. use distributional techniques to compare unseen to seen

examples.

Girju et al, Turner, Ó Séaghdha (2008) among others.



Machine Learning for Language Processing (L101)

Interpreting English compound nouns using kernel methods

Relation schemes for learning experiments:
Ó Séaghdha (2007)

BE, HAVE, INST, ACTOR, IN, ABOUT: (with subclasses)
LEX: lexicalised, REL: weird, MISTAG: not a noun compound.

I Relation scheme based on Levi (1978)
I Considerable experimentation to define a usable scheme:

some classes very rare (therefore not annotated reliably).
I Annotation of 1400 examples from BNC by two trained

annotators, using extensive guidelines.
I Reasonable interannotator agreement (IAA).



Machine Learning for Language Processing (L101)

Interpreting English compound nouns using kernel methods

Compound noun relation learning



Machine Learning for Language Processing (L101)

Interpreting English compound nouns using kernel methods

Compound noun relation learning



Machine Learning for Language Processing (L101)

Interpreting English compound nouns using kernel methods

Squirrels and pasties



Machine Learning for Language Processing (L101)

Interpreting English compound nouns using kernel methods

Compound noun relation learning: Ó Séaghdha, 2008

I Use distributional methods: count vectors, acquired from
subset of parsed British National Corpus and from Google
5-gram corpus.

I Distributions normalised to give probabilities.
I Apply distributional similarity to the compound phrase

(note difference between compound noun and
adjective-noun combination).

I Treating compounds as single words?
Distributional vector for pork pie compared with vector for
squirrel pasty?



Machine Learning for Language Processing (L101)

Interpreting English compound nouns using kernel methods

Compound noun relation learning: Ó Séaghdha, 2008
I Two similarity methods that do work:

1. Constituent similarity: compounds x1 x2 and y1 y2,
compare x1 vs y1 and x2 vs y2.
squirrel vs pork, pasty vs pie

2. Relational similarity: compare sentences with x1 and x2 vs
sentences with y1 and y2.
squirrel is very tasty, especially in a pasty vs
pies are filled with tasty pork

I Comparison using kernel methods: including combined
constituent and relational similarity kernels.

I Best accuracy: about 65% (only slightly lower than
agreement between annotators).

I Same system successfully used for a SEMEVAL task:
classifying relationships between unconnected words in a
sentence.



Machine Learning for Language Processing (L101)

Interpreting English compound nouns using kernel methods

Kernel methods vs deep learning

I Deep learning is now potentially an alternative to kernels
for structured input.

I Deep learning is perhaps theoretically more interesting
when you don’t know much about the structure of the
problem (because less feature engineering, can potentially
learn structure) but sometimes very difficult to apply to
NLP problems.

I Kernel methods can be fast: Ó Séaghdha’s linear kernels
took 45 minutes to train on Google 5-gram with a slow
CPU.

I Various hybrid methods are being proposed.


	The story so far
	Perceptron algorithm
	Kernels
	Interpreting English compound nouns using kernel methods

