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Named Entity Recognition

v

Identify all named entities in text

Bill Gates says mosquitoes scare him more than sharks
This reaction will produce 2,4-dinitrotoluene.
This reaction will produce 2,4- and 2,6-dinitrotoluene.

(usually) classify complete NE as PER, LOC etc

NER is very important for many practical applications:
search, information extraction, sentiment extraction . ..

Also as a preprocessor to parsing.

v

v

v
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LNER overview

NER as an ML problem

Bill|I Gates|I says|O mosquitoes|O
scare|O him|O more|O than|O sharks|O

» Annotate tokens with | (in NER) or O (not in NER), or with
a more complex scheme (e.g., |IOB).

» Sequence classification (possibly multiple classifiers).
» Pretokenized input. POS tagging etc to supply features.

» Often highly complex set of features, including gazeteers,
Wikipedia etc etc

» maybe hand-written rules (e.g., to help create training data)
» NER is VERY domain and genre dependent.
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Simple 10:

Bill|I Gates|I says|O mosquitoes|O
scare |0 him|O more|O than|O sharks|O

IOB (also called BIO) with class labels:

Bill |B-PER Gates|I-PER says|O mosquitoes|O
scare |0 him|O more|O than|O sharks|O

» and others: BMEWO (beginning, middle, end, single word),
BMEWO+ (adds tags to everything).

» The tagging scheme matters a lot for performance.

» Similar schemes in other contexts (e.g., character-based
NN morphology models).

» The general case: nested NERs — essentially a form of
parsing.

lingpipe-blog.com/2009/10/14/coding-chunkers-as-taggers-io-bio-bmewo-and-bmewo/


lingpipe-blog.com/2009/10/14/coding-chunkers-as-taggers-io-bio-bmewo-and-bmewo/
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LMa><imum Entropy Models

Maximum Entropy Model (MEM)

» MEM/MaxEnt is another name for multinomial logistic
regression.

» MaxEnt is a discriminative classifier, especially useful
when can’t estimate full probabilities properly.

» Maximum Entropy Markov Models (MEMM): better for NER
than HMM because allows for heterogeneous mix of
features.

» Conditional Random Field (CRF) is an extension of
MEMM.

» Slides in this section heavily based on J+M.
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LMa><imum Entropy Models

MEM schematically

P(c|f) = —exp E w;f)

where Z normalizes, w; is a weight and f; is a numerically
valued feature.

» actually w and f depend on class
» discriminative rather than generative
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MEM vs NB

P(lf) = Zexp(3 wif)

(MaxEnt, schematic)
n
[1 P(filc)P(c)
P(clf) = =

P(f)
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LMa><imum Entropy Models

Linear regression: a recap

N

y=wo+Y wxf
i=1

Where w are weights and f are features.
Rewritten using an intercept feature, fy, with value 1:

N
y=> wixf
=0

Weights chosen to minimize sum of squares of differences
between prediction and observation.
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LMa><imum Entropy Models

Logistic regression: probabilistic classification

Abstractly we want (where f is the feature vector associated
with observation x):

N
P(y = true|x) =) w;x f
i=0

—

=w-f

but what we’re predicting won'’t be a probability.
Instead, we predict the log of the odds (logit function).

P(y = true|x) Loz
I —w-
n<1 — P(y = true|x) w-f
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Logistic regression, continued

Classify observation as ‘true’ if:
P(y = true|x) > P(y = false|x)
That is:

P(y = true|x)
1 — P(y = true|x)

or:
w-f>0

So logistic regression involves learning a hyperplane with true
above and false below.



Machine Learning for Language Processing (L101)
LMa><imum Entropy Models

MaxEnt: Multinomial logistic regression

=

N
1
P(clx) = zexp (2; wc,-f,->
where Z is the normalization factor

Z=> exp

e ()
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MaxEnt: Multinomial logistic regression

with numerical-valued features

N

(z wc,-f,-)
P(clx) = =
> exp

e (e
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LMa><imum Entropy Models

MaxEnt: Multinomial logistic regression

with booean-valued features:
N
exp (Z wgfi(c, x))

i=0

> exp (Z weifi(c/, x))

c'eC

P(clx) =

Features include the class:

fi(c, x) = 1if word; ends in “ic’ & ¢ = CJ
= 0 otherwise
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LMa><imum Entropy Models

Training and using MaxEnt models

» MaxEnt can be used for hard classification: in effect, a
linear expression that separates class from other classes.

» but MaxEnt also gives a probability distribution: necessary
for sequence classification.

» Training maximizes the log likelihood of the training
samples (but regularization to penalize large weights).

» Training process makes no assumptions beyond data:
model should fit constraints and have maximum entropy.

» Equivalent to maximizing the likelihood for multinomial
logistic regression.
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LMa><imum Entropy Models

MaxEnt Markov Model: MEMM

» Viterbi (as HMM) for most probable sequence of classes.
» MEMM vs HMM (assuming bigram features).

P(Q|O) =[] P(ailai-1, 0) (MEMM)
i=1

P(Q|O) = HPOI|qI H P(qilqi-1) (HMM)

where Q is state sequence and O is observations.
» But MEMM can use much more complex features.
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LMa><imum Entropy Models

NER: state of the art

» CRF (Conditional Random Field), introduced in 2001.
Global normalization of probabilities: theoretically better
than MEMM (practically not always much difference,
slower to train).

» Recently, various LSTM models proposed: much cleaner,
less domain-dependent, don’t need external gazeteers,
performance at least as good as best previous models.

» Small, limited standard test sets, still quite low
performance for some languages.



Machine Learning for Language Processing (L101)
LNEFI in practice

Annotating NERs

» Deciding on span:
The New York Stock Exchange fell today.

New York Stock Exchange or The New York Stock
Exchange?
» Nested or overlapping NEs?
The New York Stock Exchange fell today.
The New York and Chicago Stock Exchanges fell today.

» Named entity or ordinary noun phrase?
Queen Elizabeth, the Queen, the Queen of England, the
queen of England, a queen of England.
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Chemistry NERs (Corbett, Murray-Rust et al
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Chemistry NER (Corbett and Copestake, 2008)

» Used cascaded classifiers: preclassifier (character
ngrams), first-order MEMM, entity type rescorer.

» Complex feature examples:
4G=ceti
the character sequence ‘c’ ‘e’ ‘' ‘i’ is in the token
bg:0:1:ct=CJ_w=acid
token is of type CJ (chemical adjective) according to
preclassifier and next token is ‘acid’

» Use probability estimates to experiment with precision vs
recall.
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Precision and recall

» Precision: percentage of NERs found that were correct
» Recall: percentage of annotated NERs that were found
» F-measure: combined precision and recall

2PR

f=prr
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Chemistry NERs: precision and recall
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Beyond F;

Confidence scores allow precision/recall to be varied:

» High precision: good where high redundancy but high cost
to checking result. e.g., normal search

» High recall: good where little or no redundancy, false
positives not as important as false negatives.
e.g., exhaustive search
e.g., chemistry NER as preprocessor to parsing —
because unrecognised NER leads to very bad parse
results
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Next time

» Your next session is Tuesday 17th at 12, seminar with Ted.

» My next lecture is Thursday 19th at 3pm (kernels and
perceptrons).
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