Lecture 4: Term Weighting and the Vector Space Model

Information Retrieval Computer Science Tripos Part II

Helen Yannakoudakis¹

Natural Language and Information Processing (NLIP) Group

helen.yannakoudakis@cl.cam.ac.uk

2018

¹Based on slides from Simone Teufel and Ronan Cummins

Overview

- Recap
- 2 Why ranked retrieval?
- 3 Term frequency
- 4 Zipf's Law and tf-idf weighting
- 5 The vector space model

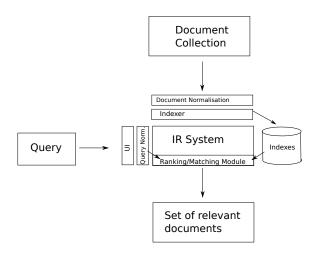
Overview

- Recap
- 2 Why ranked retrieval?
- Term frequency
- 4 Zipf's Law and tf-idf weighting
- The vector space model

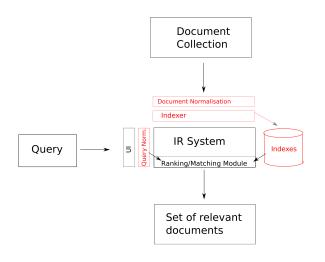
Recap: Tolerant Retrieval

- What to do when there is no exact match between query term and document term?
- Dictionary as hash, B-tree, trie
- Wildcards via permuterm
- and k-gram index
- k-gram index and edit-distance for spelling correction

IR System Components

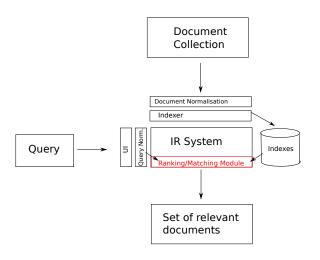


IR System Components



Finished with indexing, query normalisation

IR System Components



Today: the matcher

6

Upcoming

- Ranking search results: why it is important (as opposed to just presenting a set of unordered Boolean results)
- Term frequency: This is a key ingredient for ranking.
- Tf-idf ranking: best known traditional ranking scheme
- And one explanation for why it works: Zipf's Law
- Vector space model: One of the most important formal models for information retrieval (along with Boolean and probabilistic models)

7

Overview

- Recap
- 2 Why ranked retrieval?
- Term frequency
- 4 Zipf's Law and tf-idf weighting
- The vector space model

Ranked retrieval

- Thus far, our queries have been Boolean.
 - Documents either match or don't.
- Good for expert users with precise understanding of their needs and of the collection.
- Also good for applications: Applications can easily consume 1000s of results.
- Not good for the majority of users.
- Don't want to write Boolean queries or wade through 1000s of results.
- This is particularly true of web search.

• Boolean queries often have either too few or too many results.

• Boolean queries often have either too few or too many results.

Boolean queries often have either too few or too many results.

• Boolean queries often have either too few or too many results.

• Boolean queries often have either too few or too many results.

 It takes a lot of skill to come up with a query that produces a manageable number of hits (OR vs. AND).

Ranked retrieval models

- Solution: ranked retrieval!
- Condition: Results that are more relevant are ranked higher than results that are less relevant. (i.e., the ranking algorithm works.)
- Size of results returned not an issue, assuming ranking algorithm works.
- (Normally associated with) Free text queries: words in a human language rather than query language.

Scoring as the basis of ranked retrieval

- Rank documents in the collection according to how relevant they are to a query.
- Assign a score to each query–document pair, say in [0,1].
- This score measures how well document and query "match".

Scoring as the basis of ranked retrieval

- Rank documents in the collection according to how relevant they are to a query.
- Assign a score to each query-document pair, say in [0,1].
- This score measures how well document and query "match".
- If the query consists of just one term ...

lioness

- Score should be 0 if the query term does not occur in the document.
- The more frequent the query term in the document, the higher the score.
- We will look at a number of alternatives for doing this.

Take 1: Scoring with the Jaccard coefficient

- A commonly used measure of overlap of two sets.
- Let A and B be two sets.
- Jaccard coefficient:

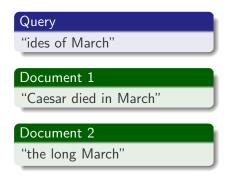
$$JACCARD(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

$$(A \neq \emptyset \text{ or } B \neq \emptyset)$$

- JACCARD(A, A) = 1
- JACCARD(A, B) = 0 if $A \cap B = 0$
- A and B don't have to be the same size.
- Always assigns a number between 0 and 1.

Jaccard coefficient: Scoring example

 What is the query-document match score that the Jaccard coefficient computes for:



- JACCARD(q, d1) = 1/6
- JACCARD(q, d2) = 1/5

What's wrong with Jaccard?

- It doesn't consider term frequency (how many occurrences a term has).
- It also does not consider that some (rare) terms are inherently more informative than frequent terms.
- We need a more sophisticated way of normalizing for the length of a document.
 - Later in this lecture, we'll use $|A \cap B|/\sqrt{|A \cup B|}$ (cosine) . . .
 - ...instead of $|A \cap B|/|A \cup B|$ (Jaccard) for length normalization.

Overview

- Recap
- 2 Why ranked retrieval?
- 3 Term frequency
- 4 Zipf's Law and tf-idf weighting
- The vector space model

Binary incidence matrix

. . .

	Anthony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
Anthony	i	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
Caesar	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
CLEOPATRA	1	0	0	0	0	0	
MERCY	1	0	1	1	1	1	
WORSER	1	0	1	1	1	0	

Each document is represented as a binary vector $\in \{0,1\}^{|V|}$.

Binary incidence matrix

. . .

	Anthony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
Anthony	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
Caesar	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
Cleopatra	1	0	0	0	0	0	
MERCY	1	0	1	1	1	1	
WORSER	1	0	1	1	1	0	

Each document is represented as a binary vector $\in \{0,1\}^{|V|}$.

Count matrix

. . .

	Anthony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra						
Anthony	157	73	0	0	0	1	
Brutus	4	157	0	2	0	0	
Caesar	232	227	0	2	1	0	
Calpurnia	0	10	0	0	0	0	
CLEOPATRA	57	0	0	0	0	0	
MERCY	2	0	3	8	5	8	
WORSER	2	0	1	1	1	5	

Each document is now represented as a count vector $\in \mathbb{N}^{|V|}$.

Count matrix

	Anthony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra						
Anthony	157	73	0	0	0	1	
Brutus	4	157	0	2	0	0	
Caesar	232	227	0	2	1	0	
Calpurnia	0	10	0	0	0	0	
CLEOPATRA	57	0	0	0	0	0	
MERCY	2	0	3	8	5	8	
WORSER	2	0	1	1	1	5	

. . .

Each document is now represented as a count vector $\in \mathbb{N}^{|V|}$.

Bag of words model

- Vector representation doesn't consider the order of words in a document (but considers the counts).
- Represented the same way:

John is quicker than Mary Mary is quicker than John

- This is called a bag of words model.
- In a sense, this is a step back: The positional index was able to distinguish these two documents.
 - (though we can recover positional information...)

Term frequency tf

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- How can we use tf when computing query-document match scores?
- We could just use tf as is ("raw term frequency").
- A document with tf = 10 occurrences of the term is more relevant than a document with tf = 1 occurrence of the term.
- But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.

• The log frequency weight of term t in d is defined as follows:

$$\mathbf{w}_{t,d} = \left\{ egin{array}{ll} 1 + \log_{10} \mathsf{tf}_{t,d} & \mathsf{if} \; \mathsf{tf}_{t,d} > 0 \\ 0 & \mathsf{otherwise} \end{array}
ight.$$

• The log frequency weight of term *t* in *d* is defined as follows:

$$\mathbf{w}_{t,d} = \begin{cases} 1 + \log_{10} \mathsf{tf}_{t,d} & \text{if } \mathsf{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{\mathsf{tf}_{t,d} \mid 0 \mid 1 \mid 2 \mid 10 \mid 1000 \mid}{\mathsf{w}_{t,d} \mid 0 \mid 1 \mid 1.3 \mid 2 \mid 4}$$

• The log frequency weight of term t in d is defined as follows:

$$\mathbf{w}_{t,d} = \left\{ \begin{array}{ll} 1 + \log_{10} \mathsf{tf}_{t,d} & \text{if } \mathsf{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{array} \right.$$

 Score for a document-query pair: sum over terms t in both q and d:

$$\mathsf{tf} ext{-matching-score}(q,d) = \sum_{t \in q \cap d} (1 + \log \mathsf{tf}_{t,d})$$

• The log frequency weight of term *t* in *d* is defined as follows:

$$\mathbf{w}_{t,d} = \left\{ \begin{array}{ll} 1 + \log_{10} \mathsf{tf}_{t,d} & \text{if } \mathsf{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{array} \right.$$

 Score for a document-query pair: sum over terms t in both q and d:

$$\textstyle \mathsf{tf\text{-}matching\text{-}score}(q,d) = \sum_{t \in q \cap d} (1 + \log \mathsf{tf}_{t,d}) \, \big| \,$$

• Note: the score is 0 if none of the query terms is present in the document.

Overview

- Recap
- 2 Why ranked retrieval?
- Term frequency
- 4 Zipf's Law and tf-idf weighting
- The vector space model

Frequency in document vs. frequency in collection

- In addition, to term frequency (the frequency of the term in the document) . . .
- ... we also want to reward terms which are rare in the document collection overall.
- Now: excursion to an important statistical observation about language.

Zipf's law

 How many frequent vs. infrequent words should we expect in a collection?

Zipf's law

- How many frequent vs. infrequent words should we expect in a collection?
- In natural language, there are a small number of very high-frequency words and a large number of low-frequency words.
- Word frequency distributions obey a power law (Zipf's law)

Zipf's law

- How many frequent vs. infrequent words should we expect in a collection?
- In natural language, there are a small number of very high-frequency words and a large number of low-frequency words.
- Word frequency distributions obey a power law (Zipf's law)

Zipf's law

The i^{th} most frequent word has frequency cf_i proportional to 1/i: $cf_i \propto \frac{1}{i}$

- cf_i is collection frequency: the number of occurrences of the word t_i in the collection.
- A word's frequency in a corpus is inversely proportional to its rank.

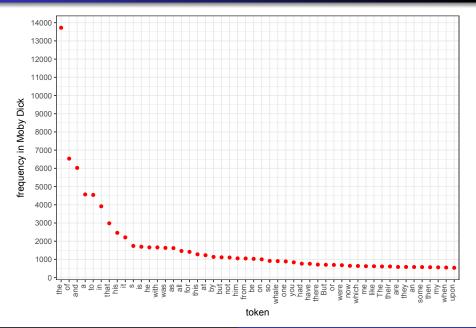
Zipf's law

Zipf's law

The i^{th} most frequent term has frequency cf_i proportional to 1/i: $cf_i \propto \frac{1}{i}$

- So if the most frequent term (*the*) occurs cf_1 times, then the second most frequent term (*of*) has half as many occurrences $cf_2 = \frac{1}{2}cf_1 \dots$
- ... and the third most frequent term (and) has a third as many occurrences $cf_3 = \frac{1}{3}cf_1$ etc.
- Equivalent: $cf_i = p \cdot i^k$ and $\log cf_i = \log p + k \log i$ (for k = -1)

There are a small number of high-frequency words...



Zipf's Law: Examples from 5 Languages

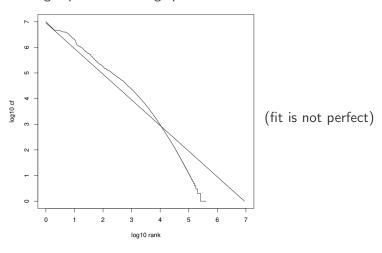
500Mw

Top 10 most frequent words in some large language samples:

English		German		Spanish		Italian		Dutch	
1 the	61,847	1 der	7,377,879	1 que	32,894	1 non	25,757	1 de	4,770
2 of	29,391	2 die	7,036,092	2 de	32,116	2 di	22,868	2 en	2,709
3 and	26,817	3 und	4,813,169	3 no	29,897	3 che	22,738	3 het/'t	2,469
4 a	21,626	4 in	3,768,565	4 a	22,313	4 è	18,624	4 van	2,259
5 in	18,214	5 den	2,717,150	5 la	21,127	5 e	17,600	5 ik	1,999
6 to	16,284	6 von	2,250,642	6 el	18,112	6 la	16,404	6 te	1,935
7 it	10,875	7 zu	1,992,268	7 es	16,620	7 il	14,765	7 dat	1,875
8 is	9,982	8 das	1,983,589	8 y	15,743	8 un	14,460	8 die	1,807
9 to	9,343	9 mit	1,878,243	9 en	15,303	9 a	13,915	9 in	1,639
10 was	9,236	10 sich	1,680,106	10 lo	14,010	10 per	10,501	10 een	1,637
BNC,		"Deutscher		subtitles,		subtitles,		subtitles,	
100Mw	Wortschatz",		27.4Mw		5.6Mw		800Kw		

Zipf's law for Reuters

Plotting Zipf curves in log space:



Other collections (allegedly) obeying power laws

- Sizes of settlements
- Frequency of access to web pages
- Income distributions amongst top earning 3% individuals
- Korean family names
- Size of earthquakes
- Word senses per word
- Notes in musical performances
- . . .

Desired weight for rare terms

- Rare terms are more informative than frequent terms (recall stopwords).
- Frequent terms: not very determinant when it comes to matching query-document pairs.
- Consider a term in the query that is rare in the collection (e.g., ARACHNOCENTRIC).
- A document containing this term is very likely to be relevant to the query.
- → We want high weights for rare terms like ARACHNOCENTRIC.

- Frequent terms are less informative than rare terms.
- Consider a term in the query that is frequent in the collection (e.g., GOOD, INCREASE, LINE).
- A document containing this term is more likely to be relevant than a document that doesn't . . .

- Frequent terms are less informative than rare terms.
- Consider a term in the query that is frequent in the collection (e.g., GOOD, INCREASE, LINE).
- A document containing this term is more likely to be relevant than a document that doesn't ...
- ... but words like GOOD, INCREASE and LINE are not sure indicators of relevance.

- Frequent terms are less informative than rare terms.
- Consider a term in the query that is frequent in the collection (e.g., GOOD, INCREASE, LINE).
- A document containing this term is more likely to be relevant than a document that doesn't
- ... but words like GOOD, INCREASE and LINE are not sure indicators of relevance.
- ullet For frequent terms like GOOD, INCREASE, and LINE, we want positive weights . . .

- Frequent terms are less informative than rare terms.
- Consider a term in the query that is frequent in the collection (e.g., GOOD, INCREASE, LINE).
- A document containing this term is more likely to be relevant than a document that doesn't ...
- ... but words like GOOD, INCREASE and LINE are not sure indicators of relevance.
- ullet \to For frequent terms like GOOD, INCREASE, and LINE, we want positive weights ...
- ... but lower weights than for rare terms.

Document frequency

- We want high weights for rare terms like ARACHNOCENTRIC.
- We want low (positive) weights for frequent words like GOOD, INCREASE, and LINE.

Document frequency

- We want high weights for rare terms like ARACHNOCENTRIC.
- We want low (positive) weights for frequent words like GOOD, INCREASE, and LINE.
- We will use document frequency to factor this into computing the matching score.
- The document frequency is the number of documents in the collection that the term occurs in.

idf weight

- df_t is the document frequency, the number of documents that t occurs in.
- \bullet df_t is an inverse measure of the informativeness of term t.

idf weight

- df_t is the document frequency, the number of documents that t occurs in.
- \bullet df_t is an inverse measure of the informativeness of term t.
- We define the idf weight of term t as follows:

$$\mathsf{idf}_t = \mathsf{log}_{10} \, \frac{\mathit{N}}{\mathsf{df}_t}$$

(*N* is the number of documents in the collection.)

• idf_t is a measure of the informativeness of the term.

idf weight

- df_t is the document frequency, the number of documents that t occurs in.
- \bullet df_t is an inverse measure of the informativeness of term t.
- We define the idf weight of term t as follows:

$$\mathsf{idf}_t = \mathsf{log}_{10} \, \frac{\mathit{N}}{\mathsf{df}_t}$$

(*N* is the number of documents in the collection.)

- \bullet idf_t is a measure of the informativeness of the term.
- $\log \frac{N}{df_t}$ instead of $\frac{N}{df_t}$ to "dampen" the effect of idf.
- Note that we use the log transformation for both term frequency and document frequency.

Examples for idf (suppose N = 1,000,000)

Compute idf_t using the formula: $idf_t = log_{10} \frac{1,000,000}{df_t}$

term	df _t	idf_t
calpurnia	1	6
animal	100	4
sunday	1000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

Effect of idf on ranking

- idf affects the ranking of documents for queries with at least two terms.
- For example, in the query "arachnocentric line", idf weighting increases the relative weight of ARACHNOCENTRIC and decreases the relative weight of LINE.

Effect of idf on ranking

- idf affects the ranking of documents for queries with at least two terms.
- For example, in the query "arachnocentric line", idf weighting increases the relative weight of ARACHNOCENTRIC and decreases the relative weight of LINE.
- idf has little effect on ranking for one-term queries.

Collection frequency vs. Document frequency

	Collection	Document		
Term	frequency	frequency		
INSURANCE	10440	3997		
TRY	10422	8760		

- Collection frequency of t: number of tokens of t in the collection
- Document frequency of t: number of documents t occurs in
- Clearly, INSURANCE is a more discriminating search term and should get a higher weight.
- This example suggests that df (and idf) is better for weighting than cf (and "icf").

tf-idf weighting

 The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$ext{tf-idf weight} \ w_{t,d} = \left(1 + \log \operatorname{tf}_{t,d}
ight) \cdot \log rac{ extit{N}}{\operatorname{df}_t}$$

- tf weight
- idf weight
- Best known weighting scheme in information retrieval (alternative names: tf.idf, tf x idf)
- Increases wrt number of occurrences in document (tf)
- Increases wrt the rarity of the term in the entire collection (idf)

tf-idf weighting

 The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log rac{\mathcal{N}}{\mathsf{df}_t}$$

- tf weight
- idf weight
- Best known weighting scheme in information retrieval (alternative names: tf.idf, tf x idf)
- Increases wrt number of occurrences in document (tf)
- Increases wrt the rarity of the term in the entire collection (idf)

tf-idf weighting

 The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$ext{tf-idf weight} \ w_{t,d} = \left(1 + \log \operatorname{tf}_{t,d}
ight) \cdot \log rac{ extit{N}}{\operatorname{df}_t}$$

- tf weight
- idf weight
- Best known weighting scheme in information retrieval (alternative names: tf.idf, tf x idf)
- Increases wrt number of occurrences in document (tf)
- Increases wrt the rarity of the term in the entire collection (idf)

Overview

- Recap
- 2 Why ranked retrieval?
- Term frequency
- 4 Zipf's Law and tf-idf weighting
- The vector space model

Binary incidence matrix

. . .

	Anthony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
Anthony	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
Caesar	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
Cleopatra	1	0	0	0	0	0	
MERCY	1	0	1	1	1	1	
WORSER	1	0	1	1	1	0	

Each document is represented as a binary vector $\in \{0,1\}^{|V|}$.

Count matrix

. . .

	Anthony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
Anthony	157	73	0	0	0	1	
Brutus	4	157	0	2	0	0	
Caesar	232	227	0	2	1	0	
Calpurnia	0	10	0	0	0	0	
Cleopatra	57	0	0	0	0	0	
MERCY	2	0	3	8	5	8	
WORSER	2	0	1	1	1	5	

Each document is now represented as a count vector $\in \mathbb{N}^{|V|}$.

$\mathsf{Binary} \to \mathsf{count} \to \mathsf{weight} \; \mathsf{matrix}$

. . .

	Anthony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
Anthony	5.25	3.18	0.0	0.0	0.0	0.35	
Brutus	1.21	6.10	0.0	1.0	0.0	0.0	
Caesar	8.59	2.54	0.0	1.51	0.25	0.0	
Calpurnia	0.0	1.54	0.0	0.0	0.0	0.0	
CLEOPATRA	2.85	0.0	0.0	0.0	0.0	0.0	
MERCY	1.51	0.0	1.90	0.12	5.25	0.88	
WORSER	1.37	0.0	0.11	4.15	0.25	1.95	

Each document is now represented as a real-valued vector of tf–idf weights $\in \mathbb{R}^{|V|}$.

$\mathsf{Binary} \to \mathsf{count} \to \mathsf{weight} \ \mathsf{matrix}$

. . .

	Anthony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
Anthony	5.25	3.18	0.0	0.0	0.0	0.35	
Brutus	1.21	6.10	0.0	1.0	0.0	0.0	
Caesar	8.59	2.54	0.0	1.51	0.25	0.0	
Calpurnia	0.0	1.54	0.0	0.0	0.0	0.0	
CLEOPATRA	2.85	0.0	0.0	0.0	0.0	0.0	
MERCY	1.51	0.0	1.90	0.12	5.25	0.88	
WORSER	1.37	0.0	0.11	4.15	0.25	1.95	

Each document is now represented as a real-valued vector of tf–idf weights $\in \mathbb{R}^{|V|}$.

Documents as vectors

- Each document is now represented as a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.
- ullet So we have a |V|-dimensional real-valued vector space.
- Terms are axes of the space.
- Documents are points or vectors in this space.
- Very high-dimensional: tens of millions of dimensions when you apply this to web search engines.
- Each vector is very sparse most entries are zero.

Queries as vectors

- Key idea 1: do the same for queries: represent them as vectors in the high-dimensional space
- Key idea 2: Rank documents according to their proximity to the query
- proximity \approx similarity of vectors \approx inverse of distance
- This allows us to rank relevant documents higher than non-relevant documents

How do we formalize vector space similarity?

- First cut: (negative) distance between two points
- (= distance between the end points of the two vectors)
- Euclidean distance?

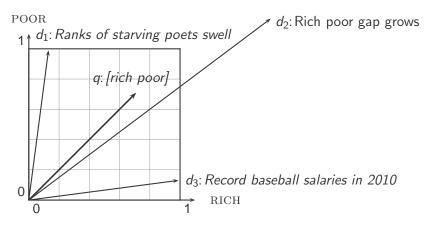
How do we formalize vector space similarity?

- First cut: (negative) distance between two points
- (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea . . .

How do we formalize vector space similarity?

- First cut: (negative) distance between two points
- (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea . . .
- ... because Euclidean distance is large for vectors of different lengths.

Why distance is a bad idea



The Euclidean distance of \vec{q} and $\vec{d_2}$ is large although the distribution of terms in the query q and the distribution of terms in the document d_2 is very similar.

Use angle instead of distance

- Rank documents according to angle with query.
- Thought experiment: take a document d and append it to itself. Call this document d' (d' is twice as long as d).
- "Semantically" d and d' have the same content.
- The angle between the two documents is 0, corresponding to maximal similarity . . .
- ... even though the Euclidean distance between the two documents can be quite large.

From angles to cosines

- The following two notions are equivalent.
 - Rank documents according to the angle between query and document in increasing order
 - Rank documents according to cosine(query,document) in decreasing order
- Cosine is a monotonically decreasing function of the angle for the interval $[0^{\circ}, 180^{\circ}]$

Length normalization

- How do we compute the cosine?
- A vector can be (length-) normalized by dividing each of its components by its length – here we use the L₂ norm:

$$||x||_2 = \sqrt{\sum_i x_i^2}$$

- This maps vectors onto the unit sphere . . .
- ...since after normalization:

$$||x||_2 = \sqrt{\sum_i x_i^2} = 1.0$$

- Effect on the two documents *d* and *d'* (*d* appended to itself) from earlier slide: they have identical vectors after length-normalization.
- Long documents and short documents have weights of the same order of magnitude.

Cosine similarity between query and document

$$\cos(\vec{q}, \vec{d}) = \text{SIM}(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- q_i is the tf-idf weight of term i in the query.
- d_i is the tf-idf weight of term i in the document.
- $|\vec{q}|$ and $|\vec{d}|$ are the lengths of \vec{q} and \vec{d} .
- This is the cosine similarity of \vec{q} and \vec{d} or, equivalently, the cosine of the angle between \vec{q} and \vec{d} .

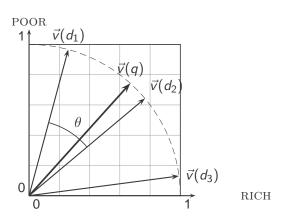
Cosine for normalized vectors

 For normalized vectors, the cosine is equivalent to the dot product or scalar product:

$$\cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_{i} q_i \cdot d_i$$

(if \vec{q} and \vec{d} are length-normalized).

Cosine similarity illustrated



How similar are the following novels?

SaS: Sense and Sensibility

PaP: Pride and Prejudice

WH: Wuthering Heights

Term frequencies (raw counts)

	(-		/
term	SaS	PaP	WH
AFFECTION	115	58	20
JEALOUS	10	7	11
GOSSIP	2	0	6
WUTHERING	0	0	38

Term frequencies (raw counts)

	(10	(raw counts)			
term	SaS	PaP	WH		
AFFECTION	115	58	20		
JEALOUS	10	7	11		
GOSSIP	2	0	6		
WUTHERING	0	0	38		

Log frequency woighting

weighting					
SaS	PaP	WH			
3.06	2.76	2.30			
2.0	1.85	2.04			
1.30	0.00	1.78			
0.00	0.00	2.58			

	Term frequencies				
	(ra	aw coun	ts)		
term	SaS	PaP	WH		
AFFECTION	115	58	20		
JEALOUS	10	7	11		
GOSSIP	2	0	6		
WUTHERING	0	0	38		

Log frequency weighting					
SaS PaP WH					
3.06	2.76	2.30			
2.0	1.85	2.04			
1.30	0.00	1.78			
0.00	0.00	2.58			

Log frequency weighting						
and length normalisation						
SaS PaP WH						
0.789	0.832	0.524				
0.515	0.555	0.465				
0.335	0.000	0.405				
0.000	0.000	0.588				

WUTHERING

Term frequencies (raw counts) SaS PaP WH term 58 20 AFFECTION 10 11 **JEALOUS** GOSSIP 6 38

0

weighting					
SaS PaP WH					
3.06 2.76 2.30					
2.0 1.85 2.04					
1.30 0.00 1.78					
0.00 0.00 2.58					

Log frequency

•
$$cos(SaS,PaP) \approx 0.789 * 0.832 + 0.515 * 0.555 + 0.335 * 0.0 + 0.0 * 0.0 \approx 0.94$$
.

Term frequencies (raw counts) SaS PaP WH

	(
term	SaS	PaP	WH		
AFFECTION	115	58	20		
JEALOUS	10	7	11		
GOSSIP	2	0	6		
WUTHERING	0	0	38		

Log frequency weighting

Sas	гаг	VVII	
3.06	2.76	2.30	
2.0	1.85	2.04	
1.30	0.00	1.78	
0.00	0.00	2.58	
			_

****\/\L

Log frequency weighting and length normalisation

and length normalisation				
SaS	PaP	WH		
0.789	0.832	0.524		
0.515	0.555	0.465		
0.335	0.000	0.405		
0.000	0.000	0.588		

- $cos(SaS,PaP) \approx 0.789 * 0.832 + 0.515 * 0.555 + 0.335 * 0.0 + 0.0 * 0.0 \approx 0.94$
- $cos(SaS,WH) \approx 0.79$
- $cos(PaP,WH) \approx 0.69$

Components of tf-idf weighting

Term	frequency	Docum	ent frequency	Nor	malization
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{df_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \dots + w_M^2}}$
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log \frac{N-df_t}{df_t}\}$	u (pivoted unique)	1/u
b (boolean)	$\begin{cases} 1 & \text{if } tf_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}$, $lpha < 1$
L (log ave)	$\frac{1 + \log(tf_{t,d})}{1 + \log(aVe_{t \in d}(tf_{t,d}))}$				

Components of tf-idf weighting

Term f	requency	Docum	ent frequency	Nor	malization
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{df_r}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \dots + w_M^2}}$
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log \tfrac{\mathit{N}-\mathit{df}_t}{\mathit{df}_t}\}$	u (pivoted unique)	1/u
b (boolean)	$\begin{cases} 1 & \text{if } tf_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}, \ lpha < 1$
L (log ave)	$\frac{1 + \log(tf_{t,d})}{1 + \log(\textit{ave}_{t \in \textit{d}}(tf_{t,d}))}$				

Best known combination of weighting options

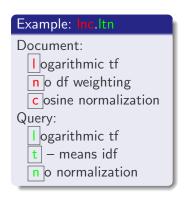
Components of tf-idf weighting

Term f	frequency	Docum	ent frequency	Nor	malization
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{df_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \dots + w_M^2}}$
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log \frac{N-df_t}{df_t}\}$	u (pivoted unique)	1/u
b (boolean)	$\begin{cases} 1 & \text{if } tf_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}$, $lpha < 1$
L (log ave)	$\frac{1 + \log(tf_{t,d})}{1 + \log(\textit{ave}_{t \in \textit{d}}(tf_{t,d}))}$				

Default: no weighting

tf-idf example

- Many search engines allow for different weightings for queries and documents.
- Notation: ddd.qqq (denotes combination in use based on acronyms in previous slide)



Query: "best car insurance". Document: "car insurance auto insurance".

word			query				docu	ment		product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto										
best										
car										
insurance										

Query: "best car insurance". Document: "car insurance auto insurance".

word			query				docu	ment		product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0									
best	1									
car	1									
insurance	1									

Query: "best car insurance". Document: "car insurance auto insurance".

word			query				docu	ment		product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0					1				
best	1					0				
car	1					1				
insurance	1					2				

Query: "best car insurance". Document: "car insurance auto insurance".

word			query				docu	ment		product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0				1				
best	1	1				0				
car	1	1				1				
insurance	1	1				2				

Query: "best car insurance". Document: "car insurance auto insurance".

word			query				docu	ment		product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0				1	1			
best	1	1				0	0			
car	1	1				1	1			
insurance	1	1				2	1.3			

Query: "best car insurance". Document: "car insurance auto insurance".

word			query					product		
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000			1	1			
best	1	1	50000			0	0			
car	1	1	10000			1	1			
insurance	1	1	1000			2	1.3			

Query: "best car insurance". Document: "car insurance auto insurance".

word			query					product		
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3		1	1			
best	1	1	50000	1.3		0	0			
car	1	1	10000	2.0		1	1			
insurance	1	1	1000	3.0		2	1.3			

Query: "best car insurance". Document: "car insurance auto insurance".

word			query					product		
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1			
best	1	1	50000	1.3	1.3	0	0			
car	1	1	10000	2.0	2.0	1	1			
insurance	1	1	1000	3.0	3.0	2	1.3			

Query: "best car insurance". Document: "car insurance auto insurance".

word			query					product		
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1			
best	1	1	50000	1.3	1.3	0	0			
car	1	1	10000	2.0	2.0	1	1			
insurance	1	1	1000	3.0	3.0	2	1.3			

Query: "best car insurance". Document: "car insurance auto insurance".

word			query					product		
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1	1		
best	1	1	50000	1.3	1.3	0	0	0		
car	1	1	10000	2.0	2.0	1	1	1		
insurance	1	1	1000	3.0	3.0	2	1.3	1.3		

Query: "best car insurance". Document: "car insurance auto insurance".

word			query					product		
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1	1	0.52	
best	1	1	50000	1.3	1.3	0	0	0	0	
car	1	1	10000	2.0	2.0	1	1	1	0.52	
insurance	1	1	1000	3.0	3.0	2	1.3	1.3	0.68	

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted term frequency, df: document frequency, idf: inverse document frequency, weight: the final weight of the term in the query or document, n'lized: document weights after cosine normalization, product: the product of final query weight and final document weight

$$\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$$

 $1/1.92\approx 0.52$

 $1.3/1.92 \approx 0.68$

Query: "best car insurance". Document: "car insurance auto insurance".

word	query					document				product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0	0	0	0	0
car	1	1	10000	2.0	2.0	1	1	1	0.52	1.04
insurance	1	1	1000	3.0	3.0	2	1.3	1.3	0.68	2.04

Query: "best car insurance". Document: "car insurance auto insurance".

word	query					document				product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0	0	0	0	0
car	1	1	10000	2.0	2.0	1	1	1	0.52	1.04
insurance	1	1	1000	3.0	3.0	2	1.3	1.3	0.68	2.04

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted term frequency, df: document frequency, idf: inverse document frequency, weight: the final weight of the term in the query or document, n'lized: document weights after cosine normalization, product: the product of final query weight and final document weight

Final similarity score between query and document: $\sum_i w_{qi} \cdot w_{di} = 0 + 0 + 1.04 + 2.04 = 3.08$

Summary: Ranked retrieval in the vector space model

- Represent the query as a weighted tf-idf vector.
- Represent each document as a weighted tf-idf vector.
- Compute the cosine similarity between the query vector and each document vector.
- Rank documents with respect to the query.
- Return the top K (e.g., K = 10) to the user.

Reading

- MRS, Chapter 5.1.2 (Zipf's Law)
- MRS, Chapter 6 (Term Weighting)