
Lecture 3: Index Representation and Tolerant
Retrieval

Information Retrieval
Computer Science Tripos Part II

Helen Yannakoudakis1

Natural Language and Information Processing (NLIP) Group

helen.yannakoudakis@cl.cam.ac.uk

2018

1Based on slides from Simone Teufel and Ronan Cummins
99

helen.yannakoudakis@cl.cam.ac.uk

Overview

1 Recap

2 Dictionaries

3 Wildcard queries

4 Spelling correction

IR System components

IR System
Query

Document

Collection

Set of relevant

documents

Document Normalisation

Indexer

U
I

Ranking/Matching ModuleQ
u
e
ry

 N
o
rm

.

Indexes

Last time: The indexer

100

Challenges with equivalence classing

A term is an equivalence class of tokens.

How do we define equivalence classes?

Example: we want to match U.S.A. to USA – can this fail?

Numbers (3/20/91 vs. 20/3/91)

Case folding

Stemming (Porter stemmer)

Lemmatisation

Equivalence classing challenges in other languages

101

Positional indexes

Postings lists in a non-positional index: each posting is just a
docID

Postings lists in a positional index: each posting is a docID
and a list of positions

Example query: “to be or not to be”

With a positional index, we can answer

phrase queries
proximity queries

102

IR System components

IR System
Query

Document

Collection

Set of relevant

documents

Today: more indexing, some query normalisation

103

Upcoming

Data structures for dictionaries

Hashes
Trees
k-term index
Permuterm index

Tolerant retrieval: What to do if there is no exact match
between query term and document term

Spelling correction

104

Overview

1 Recap

2 Dictionaries

3 Wildcard queries

4 Spelling correction

Inverted Index

Brutus 1 2 4 45 31 11 174173

Caesar 1321 2 4 5 6 16 57

Calpurnia 54 1012 31

8

9

4

179

105

Dictionaries

Dictionary: the data structure for storing the term vocabulary

Term vocabulary: the data

For each term, we need to store a couple of items:

document frequency
pointer to postings list

How do we look up a query term qi in the dictionary at query
time?

106

Data structures for looking up terms

Two different types of implementations: hashes and search
trees.

Some IR systems use hashes, some use search trees.

Criteria for when to use hashes vs. search trees:

How many terms are we likely to have?
Is the number likely to remain fixed, or will it keep growing?
What are the relative frequencies with which various terms will
be accessed?

107

Hashes

Hash table: an array with a hash function

Input key; output integer: index in array.
Hash function: determine where to store / search key.
Hash function that minimises chance of collisions

Use all info provided by key (among others).

Each vocabulary term (key) is hashed into an integer.

At query time: hash each query term, locate entry in array.

Pros: Lookup in a hash is faster than lookup in a tree.
(Lookup time is constant.)

Cons:

No easy way to find minor variants (resume vs. résumé)
No prefix search (all terms starting with automat)
Need to rehash everything periodically if vocabulary keeps
growing
Hash function designed for current needs may not suffice in a
few years’ time

108

Hashes

Hash table: an array with a hash function

Input key; output integer: index in array.
Hash function: determine where to store / search key.
Hash function that minimises chance of collisions

Use all info provided by key (among others).

Each vocabulary term (key) is hashed into an integer.

At query time: hash each query term, locate entry in array.

Pros: Lookup in a hash is faster than lookup in a tree.
(Lookup time is constant.)

Cons:

No easy way to find minor variants (resume vs. résumé)
No prefix search (all terms starting with automat)
Need to rehash everything periodically if vocabulary keeps
growing
Hash function designed for current needs may not suffice in a
few years’ time

108

Search trees overcome many of these issues

Simplest tree: binary search tree

Figure: partition vocabulary terms into two subtrees, those whose first
letter is between a and m, and the rest (actual terms stored in the leafs).

Anything that is on the left subtree is smaller than what’s on the right.

Trees solve the prefix problem (find all terms starting with automat).

109

Binary search tree

Cost of operations depends on height of tree.

Keep height minimum / keep binary tree balanced: for each
node, heights of subtrees differ by no more than 1.

O(logM) search for balanced trees, where M is the size of the
vocabulary.

Search is slightly slower than in hashes

But: re-balancing binary trees is expensive (insertion and
deletion of terms).

110

B-tree

Need to mitigate re-balancing problem – allow the number of
sub-trees under an internal node to vary in a fixed interval.

B-tree definition: every internal node has a number of children
in the interval [a, b] where a, b are appropriate positive
integers, e.g., [2, 4].

Figure: every internal node has between 2 and 4 children.

111

Trie (from trie in retrieval)

t

o e

d
na

n

n

i

A

An ordered tree data structure for strings
A tree where the keys are strings (keys “tea”, “ted”)
Each node is associated with a string inferred from the position of the
node in the tree (node stores bit indicating whether string is in collection)

Tries can be searched by prefixes: all descendants of a node have a
common prefix of the string associated with that node

Search time linear on length of term / key 2

The trie is sometimes called radix tree or prefix tree
2
See https://thenextcode.wordpress.com/2015/04/12/trie-vs-bst-vs-hashtable/

112

Trie with postings

t

o e

d
na

n

n

i

A

67444

206 117 2476

302

5774310993

1 2 3 5 6 7 8 ...

10423 14301 17998 ...

15 28 29 100 103 298 ...

1 3 4 7 8 9

249 11234 23001 ...

12 56 233 1009 ...

20451 109987 ...

113

Overview

1 Recap

2 Dictionaries

3 Wildcard queries

4 Spelling correction

Wildcard queries

hel*

Find all docs containing any term beginning with “hel”

Easy with trie: follow letters h-e-l and then lookup every term
you find there

*hel

Find all docs containing any term ending with “hel”

Maintain an additional trie for terms backwards

Then retrieve all terms in subtree rooted at l-e-h

In both cases:

This procedure gives us a set of terms that are matches for
the wildcard queries

Then retrieve documents that contain any of these terms

114

How to handle * in the middle of a term

hel*o

We could look up “hel*” and “*o” in the tries as before and
intersect the two term sets (expensive!).

Solution: permuterm index – special index for general wildcard
queries

115

Permuterm index

For term hello$ (given $ to match the end of a term), store each of these
rotations in the dictionary (trie):

hello$, ello$h, llohe, lohel, o$hell, $hello : permuterm vocabulary

Rotate every wildcard query, so that
the * occurs at the end:
for hel*o$, look up o$hel*

Problem: Permuterm more than quadrupels the size of the dictionary compared
to normal trie (empirical number).

116

k-gram indexes

More space-efficient than permuterm index

Enumerate all character k-grams (sequence of k characters)
occurring in a term and store in a dictionary

Character bi-grams from April is the cruelest month

$a ap pr ri il l$ $i is s$ $t th he e$ $c cr ru ue el le es st t$ $m mo
on nt th h$

$ special word boundary symbol

A postings list that points to all vocabulary terms containing
a k-gram

117

k-gram indexes

Note that we have two different kinds of inverted indexes:

The term–document inverted index for finding documents
based on a query consisting of terms

The k-gram index for finding terms based on a query
consisting of k-grams

118

Processing wildcard queries in a (char) bigram index

Query hel* can now be run as:

$h AND he AND el

... but this will show up many false positives like heel.

Post-filter, then look up surviving terms in term–document
inverted index.

k-gram vs. permuterm index

k-gram index is more space-efficient
permuterm index does not require post-filtering.

119

Overview

1 Recap

2 Dictionaries

3 Wildcard queries

4 Spelling correction

Spelling correction

an asterorid that fell form the sky

information need: britney spears

queries: britian spears, britney’s
spears, brandy spears, prittany
spears

In an IR system, spelling correction is only ever run on queries.

The general philosophy in IR is: don’t change the documents
(exception: OCR’ed documents)

120

Spelling correction

In an IR system, spelling correction is only ever run on queries.

The general philosophy in IR is: don’t change the documents
(exception: OCR’ed documents)

Two different methods for spelling correction:
Isolated word spelling correction

Check each word on its own for misspelling
Will only attempt to catch first typo above

Context-sensitive spelling correction

Look at surrounding words
Should correct both typos above

121

Isolated word spelling correction

There is a list of “correct” words – for instance a standard
dictionary (Webster’s, OED. . .)

Then we need a way of computing the distance between a
misspelled word and a correct word

for instance Edit/Levenshtein distance
k-gram overlap

Return the “correct” word that has the smallest distance to
the misspelled word.

informaton → information

122

Edit distance

Edit distance between two strings s1 and s2 is defined as the
minimum number of basic operations that transform s1 into
s2.

Levenshtein distance: Admissible operations are insert,
delete and replace

Levenshtein distance

dog – do 1 (delete)
cat – cart 1 (insert)
cat – cut 1 (replace)
cat – act 2 (delete+insert)

123

Levenshtein distance: Distance matrix

s n o w

0 1 2 3 4

o 1 1 2 3 4

s 2 1 3 3 3

l 3 3 2 3 4

o 4 3 3 2 3

124

Dynamic Programming

Cormen et al:

Optimal substructure: The optimal solution contains within it
subsolutions, i.e, optimal solutions to subproblems

Overlapping subsolutions: The subsolutions overlap and would
be computed over and over again by a brute-force algorithm.

For edit distance:

Subproblem: edit distance of two prefixes

Overlap: most distances of prefixes are needed 3 times (when
moving right, diagonally, down in the matrix)

125

Example: Edit Distance oslo – snow

s n o w

0 1 1 2 2 3 3 4 4

o
1
1

1 2

2

1

2 3

2

2

2 4

3

2

4 5

3

3

s
2
2

1 2

3

1

2 3

2

2

3 3
3

3

3 4

4

3

l
3
3

3 2
4

2

2 3

3

2

3 4

3

3

4 4
4

4

o
4
4

4 3
5

3

3 3
4

3

2 4

4

2

4 5

3

3

cost operation input output

1 delete o *
0 (copy) s s
1 replace l n
0 (copy) o o
1 insert * w

126

Example: Edit Distance oslo – snow

s n o w

0 1 1 2 2 3 3 4 4

o
1
1

1 2

2

1
2 3

2

2

2 4

3

2

4 5

3

3

s
2
2

1 2

3

1

2 3

2

2

3 3
3

3

3 4

4

3

l
3
3

3 2
4

2

2 3

3

2

3 4

3

3

4 4
4

4

o
4
4

4 3
5

3

3 3
4

3

2 4

4

2

4 5

3

3

cost operation input output

1 delete o *
0 (copy) s s
1 replace l n
0 (copy) o o
1 insert * w

126

Example: Edit Distance oslo – snow

s n o w

0 1 1 2 2 3 3 4 4

o
1
1

1 2

2 1

2 3

2

2

2 4

3

2

4 5

3

3

s
2
2

1 2

3

1

2 3

2

2

3 3
3

3

3 4

4

3

l
3
3

3 2
4

2

2 3

3

2

3 4

3

3

4 4
4

4

o
4
4

4 3
5

3

3 3
4

3

2 4

4

2

4 5

3

3

cost operation input output

1 delete o *
0 (copy) s s
1 replace l n
0 (copy) o o
1 insert * w

126

Example: Edit Distance oslo – snow

s n o w

0 1 1 2 2 3 3 4 4

o
1
1

1 2

2 1
2 3

2

2
2 4

3

2

4 5

3

3

s
2
2

1 2

3

1

2 3

2

2

3 3
3

3

3 4

4

3

l
3
3

3 2
4

2

2 3

3

2

3 4

3

3

4 4
4

4

o
4
4

4 3
5

3

3 3
4

3

2 4

4

2

4 5

3

3

cost operation input output

1 delete o *
0 (copy) s s
1 replace l n
0 (copy) o o
1 insert * w

126

Example: Edit Distance oslo – snow

s n o w

0 1 1 2 2 3 3 4 4

o
1
1

1 2

2 1
2 3

2 2

2 4

3

2

4 5

3

3

s
2
2

1 2

3

1

2 3

2

2

3 3
3

3

3 4

4

3

l
3
3

3 2
4

2

2 3

3

2

3 4

3

3

4 4
4

4

o
4
4

4 3
5

3

3 3
4

3

2 4

4

2

4 5

3

3

cost operation input output

1 delete o *
0 (copy) s s
1 replace l n
0 (copy) o o
1 insert * w

126

Example: Edit Distance oslo – snow

s n o w

0 1 1 2 2 3 3 4 4

o
1
1

1 2

2 1
2 3

2 2
2 4

3

2
4 5

3

3

s
2
2

1 2

3

1

2 3

2

2

3 3
3

3

3 4

4

3

l
3
3

3 2
4

2

2 3

3

2

3 4

3

3

4 4
4

4

o
4
4

4 3
5

3

3 3
4

3

2 4

4

2

4 5

3

3

cost operation input output

1 delete o *
0 (copy) s s
1 replace l n
0 (copy) o o
1 insert * w

126

Example: Edit Distance oslo – snow

s n o w

0 1 1 2 2 3 3 4 4

o
1
1

1 2

2 1
2 3

2 2
2 4

3 2

4 5

3

3

s
2
2

1 2

3

1

2 3

2

2

3 3
3

3

3 4

4

3

l
3
3

3 2
4

2

2 3

3

2

3 4

3

3

4 4
4

4

o
4
4

4 3
5

3

3 3
4

3

2 4

4

2

4 5

3

3

cost operation input output

1 delete o *
0 (copy) s s
1 replace l n
0 (copy) o o
1 insert * w

126

Example: Edit Distance oslo – snow

s n o w

0 1 1 2 2 3 3 4 4

o
1
1

1 2

2 1
2 3

2 2
2 4

3 2
4 5

3

3

s
2
2

1 2

3

1

2 3

2

2

3 3
3

3

3 4

4

3

l
3
3

3 2
4

2

2 3

3

2

3 4

3

3

4 4
4

4

o
4
4

4 3
5

3

3 3
4

3

2 4

4

2

4 5

3

3

cost operation input output

1 delete o *
0 (copy) s s
1 replace l n
0 (copy) o o
1 insert * w

126

Example: Edit Distance oslo – snow

s n o w

0 1 1 2 2 3 3 4 4

o
1
1

1 2

2 1
2 3

2 2
2 4

3 2
4 5

3 3

s
2
2

1 2

3

1

2 3

2

2

3 3
3

3

3 4

4

3

l
3
3

3 2
4

2

2 3

3

2

3 4

3

3

4 4
4

4

o
4
4

4 3
5

3

3 3
4

3

2 4

4

2

4 5

3

3

cost operation input output

1 delete o *
0 (copy) s s
1 replace l n
0 (copy) o o
1 insert * w

126

Example: Edit Distance oslo – snow

s n o w

0 1 1 2 2 3 3 4 4

o
1
1

1 2

2 1
2 3

2 2
2 4

3 2
4 5

3 3

s
2
2

1 2

3

1
2 3

2

2

3 3
3

3

3 4

4

3

l
3
3

3 2
4

2

2 3

3

2

3 4

3

3

4 4
4

4

o
4
4

4 3
5

3

3 3
4

3

2 4

4

2

4 5

3

3

cost operation input output

1 delete o *
0 (copy) s s
1 replace l n
0 (copy) o o
1 insert * w

126

Example: Edit Distance oslo – snow

s n o w

0 1 1 2 2 3 3 4 4

o
1
1

1 2

2 1
2 3

2 2
2 4

3 2
4 5

3 3

s
2
2

1 2

3 1

2 3

2

2

3 3
3

3

3 4

4

3

l
3
3

3 2
4

2

2 3

3

2

3 4

3

3

4 4
4

4

o
4
4

4 3
5

3

3 3
4

3

2 4

4

2

4 5

3

3

cost operation input output

1 delete o *
0 (copy) s s
1 replace l n
0 (copy) o o
1 insert * w

126

Example: Edit Distance oslo – snow

s n o w

0 1 1 2 2 3 3 4 4

o
1
1

1 2

2 1
2 3

2 2
2 4

3 2
4 5

3 3

s
2
2

1 2

3 1
2 3

2

2
3 3
3

3

3 4

4

3

l
3
3

3 2
4

2

2 3

3

2

3 4

3

3

4 4
4

4

o
4
4

4 3
5

3

3 3
4

3

2 4

4

2

4 5

3

3

cost operation input output

1 delete o *
0 (copy) s s
1 replace l n
0 (copy) o o
1 insert * w

126

Example: Edit Distance oslo – snow

s n o w

0 1 1 2 2 3 3 4 4

o
1
1

1 2

2 1
2 3

2 2
2 4

3 2
4 5

3 3

s
2
2

1 2

3 1
2 3

2 2
3 3
3 3

3 4

4 3

l
3
3

3 2
4 2

2 3

3 2
3 4

3 3
4 4
4 4

o
4
4

4 3
5 3

3 3
4 3

2 4

4 2
4 5

3 3

cost operation input output

1 delete o *
0 (copy) s s
1 replace l n
0 (copy) o o
1 insert * w

126

Example: Edit Distance oslo – snow

s n o w

0 1 1 2 2 3 3 4 4

o
1
1

1 2

2 1
2 3

2 2
2 4

3 2
4 5

3 3

s
2
2

1 2

3 1
2 3

2 2
3 3
3 3

3 4

4 3

l
3
3

3 2
4 2

2 3

3 2
3 4

3 3
4 4
4 4

o
4
4

4 3
5 3

3 3
4 3

2 4

4 2
4 5

3 3

Edit distance oslo–snow is 3!

cost operation input output

1 delete o *
0 (copy) s s
1 replace l n
0 (copy) o o
1 insert * w

126

Example: Edit Distance oslo – snow

s n o w

0 1 1 2 2 3 3 4 4

o
1
1

1 2

2 1
2 3

2 2
2 4

3 2
4 5

3 3

s
2
2

1 2

3 1
2 3

2 2
3 3
3 3

3 4

4 3

l
3
3

3 2
4 2

2 3

3 2
3 4

3 3
4 4
4 4

o
4
4

4 3
5 3

3 3
4 3

2 4

4 2
4 5

3 3

How do I read out the editing operations that transform oslo into snow?

cost operation input output

1 delete o *
0 (copy) s s
1 replace l n
0 (copy) o o
1 insert * w

126

Example: Edit Distance oslo – snow

s n o w

0 1 1 2 2 3 3 4 4

o
1
1

1 2

2 1
2 3

2 2
2 4

3 2
4 5

3 3

s
2
2

1 2

3 1
2 3

2 2
3 3
3 3

3 4

4 3

l
3
3

3 2
4 2

2 3

3 2
3 4

3 3
4 4
4 4

o
4
4

4 3
5 3

3 3
4 3

2 4

4 2
4 5

3 3

cost operation input output

1 delete o *
0 (copy) s s
1 replace l n
0 (copy) o o

1 insert * w

126

Example: Edit Distance oslo – snow

s n o w

0 1 1 2 2 3 3 4 4

o
1
1

1 2

2 1
2 3

2 2
2 4

3 2
4 5

3 3

s
2
2

1 2

3 1
2 3

2 2
3 3
3 3

3 4

4 3

l
3
3

3 2
4 2

2 3

3 2
3 4

3 3
4 4
4 4

o
4
4

4 3
5 3

3 3
4 3

2 4

4 2
4 5

3 3

cost operation input output

1 delete o *
0 (copy) s s
1 replace l n

0 (copy) o o
1 insert * w

126

Example: Edit Distance oslo – snow

s n o w

0 1 1 2 2 3 3 4 4

o
1
1

1 2

2 1
2 3

2 2
2 4

3 2
4 5

3 3

s
2
2

1 2

3 1
2 3

2 2
3 3
3 3

3 4

4 3

l
3
3

3 2
4 2

2 3

3 2
3 4

3 3
4 4
4 4

o
4
4

4 3
5 3

3 3
4 3

2 4

4 2
4 5

3 3

cost operation input output

1 delete o *
0 (copy) s s

1 replace l n
0 (copy) o o
1 insert * w

126

Example: Edit Distance oslo – snow

s n o w

0 1 1 2 2 3 3 4 4

o
1
1

1 2

2 1
2 3

2 2
2 4

3 2
4 5

3 3

s
2
2

1 2

3 1
2 3

2 2
3 3
3 3

3 4

4 3

l
3
3

3 2
4 2

2 3

3 2
3 4

3 3
4 4
4 4

o
4
4

4 3
5 3

3 3
4 3

2 4

4 2
4 5

3 3

cost operation input output

1 delete o *

0 (copy) s s
1 replace l n
0 (copy) o o
1 insert * w

126

Example: Edit Distance oslo – snow

s n o w

0 1 1 2 2 3 3 4 4

o
1
1

1 2

2 1
2 3

2 2
2 4

3 2
4 5

3 3

s
2
2

1 2

3 1
2 3

2 2
3 3
3 3

3 4

4 3

l
3
3

3 2
4 2

2 3

3 2
3 4

3 3
4 4
4 4

o
4
4

4 3
5 3

3 3
4 3

2 4

4 2
4 5

3 3

cost operation input output

1 delete o *
0 (copy) s s
1 replace l n
0 (copy) o o
1 insert * w

126

Each cell of Levenshtein matrix

Cost of getting here from
my upper left neighbour (by
copy or replace)

Cost of getting here from my
upper neighbour (by delete)

Cost of getting here from my
left neighbour (by insert)

Minimum cost out of these

127

Levenshtein Distance: Four cells

s n o w

0 1 1 2 2 3 3 4 4

o
1
1

1 2

2 1
2 3

2 2
2 4

3 2
4 5

3 3

s
2
2

1 2

3 1
2 3

2 2
3 3
3 3

3 4

4 3

l
3
3

3 2
4 2

2 3

3 2
3 4

3 3
4 4
4 4

o
4
4

4 3
5 3

3 3
4 3

2 4

4 2
4 5

3 3

Example: (2, 2):

Upper left: cost to replace “o” to “s” (cost: 0+1)

Upper right: come from above where I have already inserted “s”: all I need to do is
delete “o” (cost: 1+1)

Bottom left: come from left neighbour where I have deleted “o”: all I need to do is
insert “s” (cost: 1+1)

Then choose the minimum of the three (bottom right).

128

Using edit distance for spelling correction

Given a query, enumerate all character sequences within a
pre-set edit distance.

Intersect this list with our list of “correct” words.

Suggest terms in the intersection to user.

129

k-gram indexes for spelling correction

Enumerate all k-grams in the query term

Misspelled word bordroom

bo – or – rd – dr – ro – oo – om

Use k-gram index to retrieve “correct” words that match
query term k-grams
Threshold by number of matching k-grams
Eg. only vocabularly terms that differ by at most 3 k-grams

rd aboard ardent boardroom border

or border lord morbid sordid

bo aboard about boardroom border

- - - -

- - - -

- - - -

130

Context-sensitive Spelling correction

One idea: hit-based spelling correction

flew form munich

Enumerate corrections of each of the query terms

flew → flea
form → from
munich → munch

Holding all other terms fixed, try all possible phrase queries
for each replacement candidate

flea form munich – 62 results
flew from munich –78900 results
flew form munch – 66 results

Not efficient. Better source of information: large corpus of queries,
not documents

131

General issues in spelling correction

User interface

automatic vs. suggested correction
“Did you mean” only works for one suggestion; what about
multiple possible corrections?
Trade-off: Simple UI vs. powerful UI

Cost

Potentially very expensive
Avoid running on every query
Maybe just those that match few documents

132

Takeaway

What to do if there is no exact match between query term
and document term

Data structures for tolerant retrieval:

Dictionary as hash, B-tree or trie
k-gram index and permuterm for wildcards
k-gram index and edit-distance for spelling correction

133

Reading

Wikipedia article ”trie”

MRS chapter 3.1, 3.2, 3.3

134

	Recap
	Dictionaries
	Wildcard queries
	Spelling correction

