Lecture 3: Index Representation and Tolerant
Retrieval

Information Retrieval
Computer Science Tripos Part Il

Helen Yannakoudakis!

Natural Language and Information Processing (NLIP) Group
.3 UNIVERSITY OF
¥ CAMBRIDGE

helen.yannakoudakis@cl.cam.ac.uk

2018

!Based on slides from Simone Teufel and Ronan Cummins

helen.yannakoudakis@cl.cam.ac.uk

© Recap

IR System components

Document
Collection

|

‘ Document Normalisation ‘

[Indexer ‘\

IR System [Cﬁ

Query

Cu
Query Norm,|

Indexes
S |
Ranking/Matching Module

|

Set of relevant
documents

Last time: The indexer

100

Challenges with equivalence classing

@ A term is an equivalence class of tokens.

@ How do we define equivalence classes?

@ Example: we want to match U.S.A. to USA — can this fail?
e Numbers (3/20/91 vs. 20/3/91)

@ Case folding

e Stemming (Porter stemmer)

@ Lemmatisation

@ Equivalence classing challenges in other languages

101

Positional indexes

@ Postings lists in a non-positional index: each posting is just a
doclD

@ Postings lists in a positional index: each posting is a doclD
and a list of positions

@ Example query: “to be or not to be”

@ With a positional index, we can answer

e phrase queries
e proximity queries

102

IR System components

Document
Collection

|

IR System

Query |——

Query Norm,|

X
Ranking/Matching Module

Set of relevant
documents

Today: more indexing, some query normalisation

103

@ Data structures for dictionaries

Hashes

Trees

k-term index

e Permuterm index

@ Tolerant retrieval: What to do if there is no exact match
between query term and document term

@ Spelling correction

104

© Dictionaries

Inverted Index

(1211 -[31] { 48] {173 -174]
Caesar[d] —~[1]-[2]-{4)-[5] -[e] - 16] - 57] -[132] {173
Calpurnia [4] —[2]-/31]-[54]-{101

105

Dictionaries

Dictionary: the data structure for storing the term vocabulary

Term vocabulary: the data
For each term, we need to store a couple of items:

e document frequency
e pointer to postings list

@ How do we look up a query term q; in the dictionary at query
time?

106

Data structures for looking up terms

@ Two different types of implementations: hashes and search
trees.

@ Some IR systems use hashes, some use search trees.

@ Criteria for when to use hashes vs. search trees:

e How many terms are we likely to have?

o Is the number likely to remain fixed, or will it keep growing?

e What are the relative frequencies with which various terms will
be accessed?

107

@ Hash table: an array with a hash function

e Input key; output integer: index in array.
e Hash function: determine where to store / search key.
e Hash function that minimises chance of collisions

@ Use all info provided by key (among others).

Each vocabulary term (key) is hashed into an integer.

At query time: hash each query term, locate entry in array.

Pros: Lookup in a hash is faster than lookup in a tree.
(Lookup time is constant.)

e Cons:

No easy way to find minor variants (resume vs. résumé)

No prefix search (all terms starting with automat)

Need to rehash everything periodically if vocabulary keeps

growing

e Hash function designed for current needs may not suffice in a
few years' time

108

Search trees overcome many of these issues

@ Simplest tree: binary search tree

T

LR

Sody gl

@ Figure: partition vocabulary terms into two subtrees, those whose first
letter is between a and m, and the rest (actual terms stored in the leafs).

@ Anything that is on the left subtree is smaller than what's on the right.
@ Trees solve the prefix problem (find all terms starting with automat).

109

Binary search tree

@ Cost of operations depends on height of tree.

@ Keep height minimum / keep binary tree balanced: for each
node, heights of subtrees differ by no more than 1.

@ O(log M) search for balanced trees, where M is the size of the
vocabulary.

@ Search is slightly slower than in hashes

@ But: re-balancing binary trees is expensive (insertion and
deletion of terms).

110

@ Need to mitigate re-balancing problem — allow the number of
sub-trees under an internal node to vary in a fixed interval.

@ B-tree definition: every internal node has a number of children
in the interval [a, b] where a, b are appropriate positive
integers, e.g., [2, 4].

@ Figure: every internal node has between 2 and 4 children.

111

Trie (from trie in retrieval)

&
Jh

@ An ordered tree data structure for strings
@ A tree where the keys are strings (keys “tea”, “ted”)
@ Each node is associated with a string inferred from the position of the
node in the tree (node stores bit indicating whether string is in collection)
@ Tries can be searched by prefixes: all descendants of a node have a
common prefix of the string associated with that node
@ Search time linear on length of term / key 2
@ The trie is sometimes called radix tree or prefix tree

2See https://thenextcode.wordpress.com/2015/04 /12 /trie-vs-bst-vs-hashtable/

112

Trie with postings

kg|R9]100] 103298 ...

n
0 @@@

n
é\@
n
d 302

1T 2476

WRBEEZE.-

10423] [14301] [17998] ...
109987 ...

113

© Wildcard queries

Wildcard queries

hel* |
o Find all docs containing any term beginning with “hel”

@ Easy with trie: follow letters h-e-I and then lookup every term
you find there

*hel |
e Find all docs containing any term ending with “hel”
@ Maintain an additional trie for terms backwards

@ Then retrieve all terms in subtree rooted at |-e-h

In both cases:

@ This procedure gives us a set of terms that are matches for
the wildcard queries

@ Then retrieve documents that contain any of these terms

114

How to handle * in the middle of a term

hel*o |

@ We could look up “hel*" and “*o" in the tries as before and
intersect the two term sets (expensive!).

@ Solution: permuterm index — special index for general wildcard
queries

115

Permuterm index

For term hello$ (given $ to match the end of a term), store each of these
rotations in the dictionary (trie):

hello$, ello$h, llohe, lohel, o$hell, $hello : permuterm vocabularyJ

Rotate every wildcard query, so that
the * occurs at the end:
for hel*o$, look up o$hel*

Problem: Permuterm more than quadrupels the size of the dictionary compared
to normal trie (empirical number).

116

@ More space-efficient than permuterm index

@ Enumerate all character k-grams (sequence of k characters)
occurring in a term and store in a dictionary

Character bi-grams from

$a ap prriil I$ $iis s$ $t th he e$ $c cr ru ue el le es st t$ $m mo
on nt th h$

@ $ special word boundary symbol

@ A postings list that points to all vocabulary terms containing
a k-gram

etr ——{ beetroot metric petrify retrieval

117

Note that we have two different kinds of inverted indexes:

@ The term—document inverted index for finding documents
based on a query consisting of terms

@ The k-gram index for finding terms based on a query
consisting of k-grams

118

Processing wildcard queries in a (char) bigram index

Query hel* can now be run as:

$h AND he AND el |

... but this will show up many false positives like heel.

Post-filter, then look up surviving terms in term—document
inverted index.
@ k-gram vs. permuterm index

o k-gram index is more space-efficient
e permuterm index does not require post-filtering.

119

@ Spelling correction

Spelling correction

an asterorid that fell form the skyJ

information need: britney spears

queries: britian spears, britney’s
spears, brandy spears, prittany
spears

@ In an IR system, spelling correction is only ever run on queries.

@ The general philosophy in IR is: don’t change the documents
(exception: OCR’ed documents)

120

Spelling correction

@ In an IR system, spelling correction is only ever run on queries.

@ The general philosophy in IR is: don’t change the documents
(exception: OCR’ed documents)
@ Two different methods for spelling correction:
o Isolated word spelling correction

@ Check each word on its own for misspelling
o Will only attempt to catch first typo above

o Context-sensitive spelling correction

@ Look at surrounding words
@ Should correct both typos above

121

Isolated word spelling correction

@ There is a list of “correct” words — for instance a standard
dictionary (Webster's, OED. . .)
@ Then we need a way of computing the distance between a
misspelled word and a correct word
o for instance Edit/Levenshtein distance
o k-gram overlap
@ Return the “correct” word that has the smallest distance to
the misspelled word.

informaton — information)

122

o Edit distance between two strings s; and s, is defined as the
minimum number of basic operations that transform s; into

5.

@ Levenshtein distance: Admissible operations are insert,

delete and replace

Levenshtein distance

dog
cat
cat
cat

do 1 (delete)

cart 1 (insert)
cut 1 (replace)
act 2 (delete+tinsert)

123

e
=
)
(g0}
£
[0}
O
=
(g0}
i}
2
)]
o
O
c
Q)
i}
2
o
=
[0}
s
=
)
C
(D)
>
[}
—l

[s|nfofw]

3

213 |4

213 |4

3133

1
1
1

0
1
2

313(2|3|4

413|132

(0]

124

Dynamic Programming

Cormen et al:

@ Optimal substructure: The optimal solution contains within it
subsolutions, i.e, optimal solutions to subproblems

@ Overlapping subsolutions: The subsolutions overlap and would
be computed over and over again by a brute-force algorithm.

For edit distance:
@ Subproblem: edit distance of two prefixes

@ Overlap: most distances of prefixes are needed 3 times (when
moving right, diagonally, down in the matrix)

125

Example: Edit Distance OSLO — SNOW

1 [s I n [o [w |
0 | 1(1 | 2[2 | 3[3 | a[a
] 1 | 1[2 || 2[3 || 2[4 | 4[5
1|21 | 2[2 || 32 || 33
] 2 || 1[2 || 2][3 | 3[3 | 3[4
2 | 31 | 2[2 | 3[3 | a3
3 [32 | 2[3 || 3|4 | 44
3 | a2 | 3[2 | 3[3 | a[a
. a2 || 4[3 | 3[3 || 2[4 | 4[5
a | 53 || a[3 | 22 | 33

Edit distance OSLO-SNOW is 3! (minimum number of basic operations that
transform OSLO to SNOW)

How do | read out the editing operations that transform OSLO into SNOW?

cost operation || input | output

1 delete H o ‘ *

B,

Each cell of Levenshtein matrix

Cost of getting here from | Cost of getting here from my
my upper left neighbour (by | upper neighbour (by delete)
copy or replace)
Cost of getting here from my | Minimum cost out of these
left neighbour (by insert)

127

Levenshtein Distance: Four cells

] | s [n J o [w |
0 | 11 | 212 || 3[3 | 4|34
; 1] 1]2 23 24 || 45
1| 2(1 | 22| 32| 33
. 2 [1]2 23 3(3 | 3|4
2 || 371 | 272 || 3[3 || 43
| 3 3(2 | 2]3 304 || 44
3 | 4|2 312 33 4 | 4
4 || 413 || 313 || 2/4 || 45
© 4 || 5[3 43 42 33

Example: (2, 2):
@ Upper left: cost to replace “0" to “s” (cost: 0+1)
@ Upper right: come from above where | have already inserted “s”: all | need to do is
delete “o” (cost: 141)
@ Bottom left: come from left neighbour where | have deleted “o”: all | need to do is
insert “s” (cost: 1+1)
@ Then choose the minimum of the three (bottom right).

128

Using edit distance for spelling correction

@ Given a query, enumerate all character sequences within a
pre-set edit distance.

@ Intersect this list with our list of “correct” words.

@ Suggest terms in the intersection to user.

129

k-gram indexes for spelling correction

@ Enumerate all k-grams in the query term

Misspelled word

bo—or —rd —dr — ro — oo — om

@ Use k-gram index to retrieve “correct” words that match
query term k-grams

@ Threshold by number of matching k-grams

@ Eg. only vocabularly terms that differ by at most 3 k-grams

BO	—-	aboard	—-	about	—+oardroon’{—'	border	
OR	—-	border	—-	lord I—-	morbid	—-	sordid
RD	—-	aboard	—-	ardent	—+oardroon'{—'	border	

130

Context-sensitive Spelling correction

One idea: hit-based spelling correction

flew form munich)

@ Enumerate corrections of each of the query terms

flew — flea
form — from
munich — munch

@ Holding all other terms fixed, try all possible phrase queries
for each replacement candidate

flea form munich — 62 results
flew from munich —=78900 results
flew form munch — 66 results

Not efficient. Better source of information: large corpus of queries,
not documents

131

General issues in spelling correction

@ User interface
@ automatic vs. suggested correction
e “Did you mean” only works for one suggestion; what about
multiple possible corrections?
e Trade-off: Simple Ul vs. powerful Ul
@ Cost

e Potentially very expensive
e Avoid running on every query
e Maybe just those that match few documents

132

@ What to do if there is no exact match between query term
and document term
o Data structures for tolerant retrieval:

e Dictionary as hash, B-tree or trie
e k-gram index and permuterm for wildcards
e k-gram index and edit-distance for spelling correction

133

o Wikipedia article "trie”
@ MRS chapter 3.1, 3.2, 3.3

134

	Recap
	Dictionaries
	Wildcard queries
	Spelling correction

