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Human Computer Interaction – Lecture Notes 

Cambridge Computer Science Tripos, Part II 

Alan Blackwell 

	

	

	

Overview of content: 

Lecture 1: The scope and challenges of HCI and Interaction Design. 

Lecture 2: Visual representation. Segmentation and variables of the display plane. Modes 
of correspondence 

Lecture 3: Text and gesture interaction. Evolution of interaction hardware. Measurement 
and assessment of novel methods. 

Lecture 4: Inference-based approaches. Bayesian strategies for data entry, and 
programming by example. 

Lecture 5: Augmented reality and tangible user interfaces. Machine vision, fiducial 
markers, paper interfaces, mixed reality. 

Lecture 6: Usability of programming languages. End-user programming, programming for 
children, cognitive dimensions of notations. 

Lecture 7: User-centred design research. Contextual observation, prototyping, think-aloud 
protocols, qualitative data in the design cycle. 

Lecture 8: Usability evaluation methods. Formative and summative methods. Empirical 
measures. Evaluation of part II projects. 
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Lecture 1: What is HCI / Interaction Design? 

With the exception of some embedded software and operating system code, the success of a 
software product is determined by the humans who use the product. These notes give an 
overview of theoretical and practical approaches to making successful and usable software. 
A user-centred design process, as taught in earlier years of the tripos and experienced in 
many group design projects, provides a professional approach to creating software with 
functionality that users need. However, the availability of technical functionality does not 
guarantee that software will be practically usable. Software that is usable for its purpose is 
sometimes described by programmers as “intuitive” (easy to learn, easy to remember, easy 
to apply to new problems) or “powerful” (efficient, effective). These terms are vague and 
unscientific, but they point in the right direction. This course presents scientific approaches 
to building software applications and digital products that are “intuitive” and “powerful”. 

HCI helps us to understand why some software products are good and other software is 
bad. But sadly it is not a guaranteed formula for creating a successful product. In this sense 
it is like architecture or product design. Architects and product designers need a thorough 
technical grasp of the materials they work with, but the success of their work depends on 
the creative application of this technical knowledge. This creativity is a craft skill that in 
those disciplines is learned by working with a master designer in a studio, or from case 
studies of successful designs. A computer science course does not provide sufficient time 
for this kind of training in creative design, but it can provide the essential elements: an 
understanding of the user’s needs, and an understanding of potential solutions. 

There are many different approaches to the study and design of user interfaces. This course 
attempts, so far as possible within 8 lectures, to discuss the important aspects of fields 
including: Interaction Design, User Experience Design (UX), Interactive Systems Design, 
Information Visualisation, Cognitive Ergonomics, Man-Machine Interface (MMI), User 
Interface Design (UI), Human Factors, Cognitive Task Design, Information Architecture 
(IA), Software Product Design, Usability Engineering, User-Centred Design (UCD) and 
Computer Supported Collaborative Work (CSCW). 

These investigations require a wide range of academic styles, extending across all the parts 
of the University. Lack of familiarity with other kinds of investigation and analysis can 
make it hard to absorb or collaborate with other perspectives. The advantages of different 
disciplines can range from those that are interpretive to those that are scientific (both are 
necessary), the first criticized as soft and the second as reductionist, and each relying on 
different kinds of knowledge, with suspicion of those seen as relativist at one extreme or 
positivist at the other. In professional work, the most important attributes for HCI experts 
are to be both creative and practical, placing design at the centre of the field. 
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Notes on recommended reading 

The recommended reading for this course is as follows: 

Interaction Design: Beyond human-computer interaction  by Helen Sharp, Yvonne Rogers 
& Jenny Preece (4th Edition 2015) describes both theoretical approaches and practical 
professional design methods, at the forefront of current practice. There are also copies of 
the earlier editions around Cambridge, which will be useful if the most recent is not 
available. However, note that section and chapter numbering changes between editions. 
The references to specific sections in these notes are all based on the 3rd edition, since there 
are not many copies of the latest one around Cambridge yet. 

HCI Models, Theories and Frameworks: Toward a multidisciplinary science edited by John 
Carroll (2003) provides an in-depth introduction to the most influential theoretical 
approaches across the HCI field. Unfortunately the publisher has let this book go out of 
print, but there are still many copies around Cambridge, and some chapters online, 
including one that has been quite central to the HCI research agenda in Cambridge. 

Research methods for human-computer interaction edited by Paul Cairns and Anna Cox 
(Cambridge University Press 2008) explains the nature of HCI research, and the range of 
methods used, within the context of academic HCI from a UK perspective. 

These notes refer to specific chapters in those books for more detail on specific topics. 
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Lecture 2: Visual representation. 

How can you design computer displays that are as meaningful as possible to human 
viewers? Answering this question requires understanding of visual representation – the 
principles by which markings on a surface are made and interpreted. 

Note: many illustrations referred to in this section are easily available online, though with a 
variety of copyright restrictions. I will show as many as possible in the lecture itself – if 
you want to investigate further, Google should find most of those mentioned. 

Since this lecture was first written, the content has been published for use by a broader 
audience, via the online encyclopedia interactiondesign.org. The online version includes 
illustrations, commentary and critique from other leading HCI researchers, as well as an 
interactive demonstration that will complement the lecture. The original text is reproduced 
here for your convenience in note-taking and revision. 

Typography and text 

For many years, computer displays resembled paper documents. This does not mean that 
they were simplistic or unreasonably constrained. On the contrary, most aspects of modern 
industrial society have been successfully achieved using the representational conventions of 
paper, so those conventions seem to be powerful ones. Information on paper can be 
structured using tabulated columns, alignment, indentation and emphasis, borders and 
shading. All of those were incorporated into computer text displays. Interaction 
conventions, however, were restricted to operations of the typewriter rather than the pencil. 
Each character typed would appear at a specific location. Locations could be constrained, 
like filling boxes on a paper form. And shortcut command keys could be defined using 
onscreen labels or paper overlays. It is not text itself, but keyboard interaction with text that 
is limited and frustrating compared to what we can do with paper (Sellen & Harper 2002).  

But despite the constraints on keyboard interaction, most information on computer screens 
is still represented as text. Conventions of typography and graphic design help us to 
interpret that text as if it were on a page, and human readers benefit from many centuries of 
refinement in text document design. Text itself, including many writing systems as well as 
specialised notations such as algebra, is a visual representation that has its own research 
and educational literature. Documents that contain a mix of bordered or coloured regions 
containing pictures, text and diagrammatic elements can be interpreted according to the 
conventions of magazine design, poster advertising, form design, textbooks and 
encyclopaedias. Designers of screen representations should take care to properly apply the 
specialist knowledge of those graphic and typographic professions. Position on the page, 
use of typographic grids, and genre-specific illustrative conventions should all be taken into 
account. 
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Summary: most screen-based information is interpreted according to textual and 
typographic conventions, in which graphical elements are arranged within a visual grid, 
occasionally divided or contained with ruled and coloured borders. 

Maps and graphs 

The computer has, however, also acquired a specialised visual vocabulary and conventions. 
Before the text-based ‘glass teletype’ became ubiquitous, cathode ray tube displays were 
already used to display oscilloscope waves and radar echoes. Both could be easily 
interpreted because of their correspondence to existing paper conventions. An oscilloscope 
uses a horizontal time axis to trace variation of a quantity over time, as pioneered by 
William Playfair in his 1786 charts of the British economy. A radar screen shows direction 
and distance of objects from a central reference point, just as the Hereford Mappa Mundi of 
1300 organised places according to their approximate direction and distance from 
Jerusalem. Many visual displays on computers continue to use these ancient but powerful 
inventions – the map and the graph. In particular, the first truly large software project, the 
SAGE air defense system, set out to present data in the form of an augmented radar screen 
– an abstract map, on which symbols and text could be overlaid. The first graphics 
computer, the Lincoln Laboratory Whirlwind, was created to show maps, not text. 

Summary: basic diagrammatic conventions rely on quantitative correspondence between a 
direction on the surface and a continuous quantity such as time or distance. These should 
follow established conventions of maps and graphs. 

Schematic drawings 

Ivan Sutherland’s groundbreaking PhD research with Whirlwind’s successor TX-2 
introduced several more sophisticated alternatives (1963). The use of a light pen allowed 
users to draw arbitrary lines, rather than relying on control keys to select predefined 
options. An obvious application, in the engineering context of MIT, was to make 
engineering drawings such as a girder bridge. Lines on the screen are scaled versions of the 
actual girders, and text information can be overlaid to give details of force calculations. 
Plans of this kind, as a visual representation, are closely related to maps. However, where 
the plane of a map corresponds to a continuous surface, engineering drawings need not be 
continuous. Each set of connected components must share the same scale, but white space 
indicates an interpretive break, so that independent representations can potentially share the 
same divided surface – a convention introduced in Diderot’s encyclopedia of 1772, which 
showed pictures of multiple objects on a page, but cut them loose from any shared pictorial 
context. 

Summary: engineering drawing conventions allow schematic views of connected 
components to be shown in relative scale, and with text annotations labelling the parts. 
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White space in the representation plane can be used to help the reader distinguish elements 
from each other rather than directly representing physical space. 

Pictures 

Sutherland also suggested the potential value that computer screens might offer as artistic 
tools.  His Sketchpad system was used to create a simple animated cartoon of a winking 
girl. This is the first computer visual representation that might suffer from the ‘resemblance 
fallacy’, i.e. that drawings are able to depict real object or scenes because the visual 
perception of the flat image simulates the visual perception of the real scene. Sutherland’s 
cartoon could only be called an approximate simulation, but many flat images 
(photographs, photorealistic ray-traced renderings, ‘old master’ oil paintings) have been 
described as though perceiving the representation is equivalent to perceiving a real object.  

In reality, new perspective rendering conventions are invented and esteemed for their 
accuracy by critical consensus, and only more slowly adopted by untrained readers. The 
consensus on preferred perspective shifts across cultures and historical periods, as is 
obvious from comparison of prehistoric, classical, medieval and renaissance artworks. It 
would be naïve to assume that the conventions of today are the final and perfect product of 
technical evolution. As with text, we become so accustomed to interpreting these 
representations that we are blind to the artifice. When even psychological object-
recognition experiments employ line drawings as though they were objects, it can be hard 
to insist on the true nature of the representation. But professional artists are fully aware of 
the conventions they use – the way that a photograph is framed changes its meaning, and a 
skilled pencil drawing is completely unlike visual edge-detection thresholds. A good 
pictorial representation need not simulate visual experience any more than a good painting 
of a unicorn need resemble an actual unicorn. 

Summary: pictorial representations, including line drawings, paintings, perspective 
renderings and photographs rely on shared interpretive conventions for their meaning. It is 
naïve to treat screen representations as though they were simulations of experience in the 
physical world. 

Node-and-link diagrams 

The first impulse of a computer scientist, when given a pencil, seems to be to draw boxes 
and connect them with lines. These node and link diagrams can be analysed in terms of the 
graph structures that are fundamental to the study of algorithms (but unrelated to the visual 
representations known as graphs or charts). A predecessor of these connectivity diagrams 
can be found in electrical circuit schematics, where the exact location of components, and 
the lengths of the wires, can be arranged anywhere, because they are irrelevant to the circuit 
function. Another early program created for the TX-2, this time by Ivan Sutherland’s 
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brother Bert, allowed users to create circuit diagrams of this kind. The distinctive feature of 
a node-and-link connectivity diagram is that, since the position of each node is irrelevant to 
the operation of the circuit, it can be used to carry other information. Marian Petre’s 
research into the work of electronics engineers (1995) catalogued the ways in which they 
positioned components in ways that were meaningful to human readers, but not to the 
computer – like the blank space between Diderot’s objects a form of ‘secondary notation’ – 
use of the plane to assist the reader in ways not related to the technical content.  

Circuit connectivity diagrams have been most widely popularised through the London 
Underground diagram, an invention of electrical engineer Henry Beck. The diagram has 
been clarified by exploiting the fact that most underground travellers are only interested in 
order and connectivity, not location, of the stations on the line. However, popular resistance 
to reading ‘diagrams’ means that this one is more often described as the London 
Undergound ‘map’, despite Beck’s complaints. 

Summary: node and link diagrams are still widely perceived as being too technical for 
broad acceptance. Nevertheless, they can present information about ordering and 
relationships clearly, especially if consideration is given to the value of allowing human 
users to specify positions. 

Icons and symbols 

Maps frequently use symbols to indicate specific kinds of landmark. Sometimes these are 
recognisably pictorial (the standard symbols for tree and church), but others are fairly 
arbitrary conventions (the symbol for a railway station). As the resolution of computer 
displays increased in the 1970s, a greater variety of symbols could be differentiated, by 
making them more detailed, as in the MIT SDMS system that mapped a naval battle 
scenario with symbols for different kinds of ship. However, the dividing line between 
pictures and symbols is ambiguous. Children’s drawings of houses often use conventional 
symbols (door, four windows, triangle roof and chimney) whether or not their own house 
has two storeys, or a fireplace. Letters of the Latin alphabet are shapes with completely 
arbitrary relationship to their phonetic meaning, but the Korean phonetic alphabet is easier 
to learn because the forms mimic the shape of the mouth when pronouncing those sounds. 
The field of semiotics offers sophisticated ways of analysing the basis on which marks 
correspond to meanings. In most cases, the best approach for an interaction designer is 
simply to adopt familiar conventions. When these do not exist, the design task is more 
challenging. 

It is unclear which of the designers working on the Xerox Star coined the term ‘icon’ for 
the small pictures symbolising different kinds of system object. David Canfield Smith 
winningly described them as being like religious icons, which he said were pictures 
standing for (abstract) spiritual concepts. But ‘icon’ is also used as a technical term in 
semiotics. Unfortunately, few of the Xerox team had a sophisticated understanding of 
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semiotics. It was fine art PhD Susan Kare’s design work on the Apple Macintosh that 
established a visual vocabulary which has informed the genre ever since. Some general 
advice principles are offered by authors such as Horton (1994), but the successful design of 
icons is still sporadic. Many software publishers simply opt for a memorable brand logo, 
while others seriously misjudge the kinds of correspondence that are appropriate (my 
favourite blooper was a software engineering tool in which a pile of coins was used to 
access the ‘change’ command). 

It has been suggested that icons, being pictorial, are easier to understand than text, and that 
pre-literate children, or speakers of different languages, might thereby be able to use 
computers without being able to read. In practice, most icons simply add decoration to text 
labels, and those that are intended to be self-explanatory must be supported with textual 
tooltips. The early Macintosh icons, despite their elegance, were surprisingly open to 
misinterpretation. One PhD graduate of my acquaintance believed that the Macintosh folder 
symbol was a briefcase (the folder tag looked like a handle), which allowed her to carry her 
files from place to place when placed inside it. Although mistaken, this belief never caused 
her any trouble – any correspondence can work, so long as it is applied consistently. 

Summary: the design of simple and memorable visual symbols is a sophisticated graphic 
design skill. Following established conventions is the easiest option, but new symbols must 
be designed with an awareness of what sort of correspondence is intended - pictorial, 
symbolic, metonymic (e.g. a key to represent locking), bizarrely mnemonic, but probably 
not monolingual puns. 

Visual metaphor 

The ambitious graphic designs of the Xerox Star/Alto and Apple Lisa/Macintosh were the 
first mass-market visual interfaces. They were marketed to office professionals, making the 
‘cover story’ that they resembled an office desktop a convenient explanatory device. Of 
course, as was frequently noted at the time, these interfaces behaved nothing like a real 
desktop. The mnemonic symbol for file deletion (a wastebasket) was ridiculous if 
interpreted as an object placed on a desk. And nobody could explain why the desk had 
windows in it (the name was derived from the ‘clipping window’ of the graphics 
architecture used to implement them – it was at some later point that they began to be 
explained as resembling sheets of paper on a desk). There were immediate complaints from 
luminaries such as Alan Kay and Ted Nelson that strict analogical correspondence to 
physical objects would become obstructive rather than instructive. Nevertheless, for many 
years the marketing story behind the desktop metaphor was taken seriously, despite the fact 
that all attempts to improve the Macintosh design with more elaborate visual analogies, as 
in General Magic and Microsoft Bob, subsequently failed. 

The ‘desktop’ can be far more profitably analysed (and extended) by understanding the 
representational conventions that it uses. The size and position of icons and windows on the 
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desktop has no meaning, they are not connected, and there is no visual perspective, so it is 
neither a map, graph nor picture. The real value is the extent to which it allows secondary 
notation, with the user creating her own meaning by arranging items as she wishes. 
Window borders separate areas of the screen into different pictorial, text or symbolic 
contexts as in the typographic page design of a textbook or magazine. Icons use a large 
variety of conventions to indicate symbolic correspondence to software operations and/or 
company brands, but they are only occasionally or incidentally organised into more 
complex semiotic structures. 

Summary: theories of visual representation, rather than theories of visual metaphor, are the 
best approach to explaining the conventional Macintosh/Windows ‘desktop’. There is huge 
room for improvement. 

Unified theories of visual representation 

The analysis in this lecture has addressed the most important principles of visual 
representation for screen design, introduced with examples from the early history of 
graphical user interfaces. In most cases, these principles have been developed and 
elaborated within whole fields of study and professional skill – typography, cartography, 
engineering and architectural drafting, art criticism and semiotics. Improving on the current 
conventions requires serious skill and understanding. Nevertheless, interaction designers 
should be able, when necessary, to invent new visual representations. 

One approach is to take a holistic perspective on visual language, information design, 
notations, or diagrams. Specialist research communities in these fields address many 
relevant factors from low-level visual perception to critique of visual culture. Across all of 
them, it can be necessary to ignore (or not be distracted by) technical and marketing claims, 
and to remember that all visual representations simply comprise marks on a surface that are 
intended to correspond to things understood by the reader. The two dimensions of the 
surface can be made to correspond to physical space (in a map), to dimensions of an object, 
to a pictorial perspective, or to continuous abstract scales (time or quantity). The surface 
can also be partitioned into regions that should be interpreted differently. Within any 
region, elements can be aligned, grouped, connected or contained in order to express their 
relationships. In each case, the correspondence between that arrangement, and the intended 
interpretation, must be understood by convention or explained. Finally, any individual 
element might be assigned meaning according to many different semiotic principles of 
correspondence.  

The following table summarises holistic views, as introduced above, drawing principally on 
the work of Bertin, Richards, MacEachren, Blackwell & Engelhardt and Engelhardt. 
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 Graphic Resources Correspondence Design Uses 
Marks Shape 

Orientation 
Size 
Texture 
Saturation 
Colour 
Line 

Literal (visual imitation of physical 
features) 
Mapping (quantity, relative scale) 
Conventional (arbitrary) 
 

Mark position, identify 
category (shape, texture 
colour) 
Indicate direction 
(orientation, line) 
Express magnitude 
(saturation, size, length) 
Simple symbols and 
colour codes 

Symbols Geometric elements 
Letter forms 
Logos and icons 
Picture elements 
Connective elements 

Topological (linking) 
Depictive (pictorial conventions) 
Figurative (metonym, visual puns) 
Connotative (professional and 
cultural association) 
Acquired (specialist literacies) 

Texts and symbolic calculi 
Diagram elements 
Branding 
Visual rhetoric 
Definition of regions 

Regions Alignment grids 
Borders and frames 
Area fills 
White space 
Gestalt integration 

Containment 
Separation 
Framing (composition, 
photography) 
Layering 

Identifying shared 
membership 
Segregating or nesting 
multiple surface 
conventions in panels 
Accommodating labels, 
captions or legends 

Surfaces The plane 
Material object on 
which marks are 
imposed (paper, stone) 
Mounting, orientation 
and display context 
Display medium 

Literal (map) 
Euclidean (scale and angle) 
Metrical (quantitative axes) 
Juxtaposed or ordered (regions, 
catalogues) 
Image-schematic 
Embodied/situated 

Typographic layouts 
Graphs and charts 
Relational diagrams 
Visual interfaces 
Secondary notations 
Signs and displays 

As an example of how one might analyse (or working backwards, design) a complex visual 
representation, consider the case of musical scores. These consist of marks on a paper 
surface, bound into a multi-page book, that is placed on a stand at arms length in front of a 
performer. Each page is vertically divided into a number of regions, visually separated by 
white space and grid alignment cues. The regions are ordered, with that at the top of the 
page coming first. Each region contains two quantitative axes, with the horizontal axis 
representing time duration, and the vertical axis pitch. The vertical axis is segmented by 
lines to categorise pitch class. Symbols placed at a given x-y location indicate a specific 
pitched sound to be initiated at a specific time. A conventional symbol set indicates the 
duration of the sound. None of the elements use any variation in colour, saturation or 
texture. A wide variety of text labels and annotation symbols are used to elaborate these 
basic elements. Music can be, and is, also expressed using many other visual 
representations (see e.g. Duignan 2010 for a survey of representations used in digital music 
processing). 

Sources and Further reading 

The historical examples of early computer representations used in this lecture are mainly 
drawn from Sutherland (Ed. Blackwell & Rodden 2003), Garland (1994), and Blackwell 
(2006). Historical reviews of visual representation in other fields include Ferguson (1992), 
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Pérez-Gómez & Pelletier (1997), McCloud (1993), Tufte (1983). Reviews of human 
perceptual principles can be found in Gregory (1970), Ittelson (1996), Ware (2004), 
Blackwell (2002).  

Advice on principles of interaction with visual representation is distributed throughout the 
HCI literature, but classics include Norman (1988), Horton (1994), Shneiderman 
(Shneiderman & Plaisant 2010, Card et al 1999, Bederson & Shneiderman 2003) and 
Spence (2001). Green’s Cognitive Dimensions of Notations framework has for many years 
provided a systematic classification of the design parameters in interactive visual 
representations. A brief introduction is provided in Blackwell & Green (2003). 

A long list of references is available at the end of the encyclopaedia article based on this 
lecture:  

Blackwell, A.F. (2013), Visual Representation. In M. Soegaard and R.F. Dam, (eds.) The 
Encyclopedia of Human-Computer Interaction, 2nd Ed. Aarhus, Denmark: The Interaction 
Design Foundation. 

https://www.interaction-design.org/encyclopedia/visual_representation.html 
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Visual representation design exercise 
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Lecture 3: Text and gesture interaction 

When technical people are commenting on, or even creating, user interfaces, they often get 
distracted or hung up on the hardware used for input and output. This is a sign that they 
haven’t thought very hard about what is going on underneath, and can be a problem when 
evaluating the potential of new technical advances. There have always been good and bad 
examples of interface designs using control panels, punch cards, teletypes, text terminals, 
bitmap displays, light pens, tablets, mice, touch screens, and so on. With every generation, 
you can hear people debating whether, for example, ‘the mouse is better than a touch 
screen’ or ‘voice input is better than a keyboard’. Debates like this demonstrate only that 
those involved haven’t been able to see past the surface appearance (and the marketing 
spiel of the device manufacturers). Opinions or expertise on purely technical aspects (such 
as wearables, augmented reality, Internet of Things) quickly gets out of date. Sensing and 
display technologies change fast, and it’s more important to understand the principles of 
interaction than the details of a specific interaction device. 

The lecture on visual representation was based on display principles that are independent of 
any particular display hardware. If we consider the interaction principles that are 
independent of any particular hardware, these are: 

 How does the user get content (both data and structure) into digital form? 

 How does the user navigate around the content? 

 How does the user manipulate the content (restructuring, revising, replacing)? 

These are often inter-dependent. The Dasher system for text entry presents an interface in 
which the user ‘navigates’ through a space of possible texts as predicted by a probabilistic 
language model, so it can be considered both as content creation and navigation. It is 
relatively hard to structure and revise text using Dasher, because the language model only 
uses a 5-character context, and many text documents have structure on a larger-scale than 
that. However, Dasher provides an excellent example of an interaction ‘paradigm’ that is 
independent of any particular hardware – it can be controlled using mouse, keys, voice, 
breath, eyetracking, and many other devices. 

General principles: direct manipulation, and interface modes 

At the point where the GUI was about to become popular, HCI researcher Ben 
Shneiderman summarized the important opportunities it provided, under the name Direct 
Manipulation. In fact some of these things were already possible with text interfaces (for 
example after the advent of full-screen text editors), and they remain relevant in more 
recent generations of hardware. It is also possible to use GUI libraries to create bad user 
interfaces that do not support these principles – just being graphical doesn’t make it good! 
The principles of Direct Manipulation as described by Shneiderman are: 
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 An object that is of interest to the user should be continuously visible in the form of 
a graphical representation on the screen 

 Operations on objects should involve physical actions (using a pointing device to 
manipulate the graphical representation) instead of commands with complex syntax 

 The actions that the user makes should be rapid, should offer incremental changes 
over the previous situation, and should be reversible  

 The effect of actions should immediately be visible, so that the user knows what has 
happened 

 There should be a modest set of commands doing everything that a novice might 
need, but it should be possible to expand these, gaining access to more functions as 
the user develops expertise. 

We should also note an additional principle, defined around the same time by Larry Tesler 
at Apple, that the same action should always have the same effect. It’s hard to believe that 
this wouldn’t be done, but he was campaigning against editors like vi, which many people 
found unusable because hitting a key on the keyboard could have different consequences at 
different times. Tesler campaigned against ‘modes’ in the user interface, based on his 
studies of non-technical users (search for ‘nomodes’ to learn more). The largest 
achievement of the ‘windows’ style interface is that the frames around each application 
give the user a clue about different modes – but as Tesler said, removing modes altogether 
is a great ambition. 

Content creation 

Text content: For many years, text content was created using keyboards. Predictive systems 
such as Dasher, or voice dictation systems, provide alternatives to the simple activity of 
producing a string of words. However, the keyboard still rules for serious text content – 
think of writing software, for example. Gesture or voice interaction are OK for simple 
commands or queries, but they are a challenging way to write a novel or an essay. This 
seems unlike to change soon. Perhaps this is why the length of typical texts is getting 
shorter so quickly? Feel free to discuss in a supervision whether there might be a 
relationship between Twitter and Siri, and whether it is easier to pass the Turing test by 
making humans dumber rather than by making machines smarter. It is worth keeping in 
mind that all novel text entry systems are subject to an inter-relationship between speed, 
accuracy and learnability. 

Non-text content: This course won’t say very much about non-text content creation. 
‘Content’ can refer to music, visual arts, film, games, novels and many other genres. To 
understand any of them well, you would have to take a degree in the relevant discipline 
(some available in Cambridge). All of those fields develop their own professional tools, and 
there is a constant stream of ‘amateur’ tools modeled on the professional ones. Cultural 
tastes don’t change that fast (the rate of change is generational, not annual), so digital 
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content creation tools are usually derived from and imitate the artistic tools of previous 
generations (cameras, microphones, mixing desks, typewriters etc). Innovative content 
creation tools appear first in the avant garde contemporary arts, and take a generation to 
reach popular audiences, get taken up by mainstream professional artists, and become 
subject to consumer demand for amateur tools – for example, sampling and mashups were 
first explored in the mid-20th century by ‘musique concrete’ composers using tape 
recorders. The Computer Lab Rainbow Group has always had an active programme of 
research engagement with contemporary artists, developing new digital media tools – in the 
past couple of years, the Sonic Pi system for music composition has been achieving a lot of 
attention. That research continues actively, including student projects, but is outside the 
scope of an introduction to HCI. 

Content manipulation and navigation via deixis 

In order to manipulate content, the user has to be able to refer to specific parts of the 
product (whether text, diagram, video, audio etc) that he or she is working on. In early text 
interfaces, references were made by numbering the lines of a text file (e.g. substitute ‘fred’ 

for ‘frrd’ on line 27 – ‘27;s/frrd/fred/’). As in programming languages, line number 

could be replaced by labels, but it is irritating to give everything names. Imagine a shop 
where everything for sale was given its own unique name, or had to be referred to by index 
position of aisle, shelf, and item. It’s much easier just to point and say ‘I want that one’.  In 
language, this is called deixis – sentences in which the object is identified by pointing at it, 
rather than by naming it. For the same reason, deixis has become universal in computer 
languages, and this is why devices for pointing are so important in user interfaces. 

In early GUIs, the combination of mouse and pointer to achieve deixis was a significant 
invention (hence the WIMP interface – Windows, Icons, Menus, Pointer). Other inventions 
around the same time were the placement of a text cursor between characters, rather than 
identifying a single character (Larry Tesler had a hand in this invention too). But new 
hardware suggests new approaches to deixis – touch screens, augmented reality etc will all 
require new inventions. It’s reasonable to assume that deixis in different media can be 
achieved in different ways too – audio interfaces, cameras, and other devices don’t 
necessarily need to have a cursor. In many cases, what is required is a deictic method that 
relates user ‘gestures’ (detected via any kind of sensing device) with a media ‘location’. 
Navigation is then a matter of supporting user strategies to vary that location, including 
techniques to show local detail within a larger context (via scroll bars, zooming, 
thumbnails, fisheye views, overview maps, structure navigation and so on) 

Simple content manipulations include simply adding more content (perhaps inserted within 
a particular context), or removing content that isn’t required. Anything more complex 
involves modifying the structure of the content. This is an area in which user interface 
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design can build on insights from the usability of programming languages (in a later 
lecture). 

Evaluation of pointing devices and WIMP interfaces 

As with text entry, modern user interfaces involve so much pointing in order to achieve 
deixis, that it is worth optimizing the efficiency of the interaction. Early HCI models based 
their optimization on Fitts' law – an experimental observation that the time it takes to point 
at a given location is related to the size of the target and also the distance from the current 
hand position to the target.  

Fitts original experiment involved two targets of variable size, and separated by a variable 
distance. Experimental subjects were required to touch first one target, then the other, as 
quickly as they could. The time that it takes to do this increased with the Amplitude of the 
movement (i.e. the distance between the targets) and decreased with the Width of the target 
that they were pointing to: 

T = K log2(A / W + 1)       where A = amplitude, W = width 

When evaluating new pointing devices, it can be useful experimentally to measure 
performance over a range of target sizes and motion distances, in order to establish the 
value of the constant in this equation (sometimes called ID: the Index of Difficulty). 

In user interfaces that require a user to make many sequences of repetitive actions (for 
example, people working in telephone call centres or in data entry), it can be useful to 
compare alternative designs by counting the individual actions needed to carry out a 
particular task, including the number and extent of mouse motions, as well as all the keys 
pressed on the keyboard. This Keystroke Level Model can be used to provide a quantitative 
estimate of user performance, and to optimize the design and layout of the interaction 
sequence. It is more difficult to make numerical comparisons of user interfaces in cases 
where the user actions are less predictable – the GOMS model (Goals Operators Methods 
Selection) combines keystroke-level estimates of user actions with an AI planning model 
derived from the 1969 work of Ernst and Newell on a Generalised Problem Solver. The 
GPS operated in a search space characterised by possible intermediate states between some 
initial state and a goal state. Problem solving consisted of finding a series of operations that 
would eventually reach the goal state. This involved recursive application of two heuristics: 
A) select an intermediate goal that will reduce the difference between the current state and 
the desired state, and B) if there is no operation to achieve that goal directly, decompose it 
into sub-goals until the leaves of the sub-goal hierarchy can be achieved by individual 
keystrokes or mouse movements. 

For further reading on KLM and GOMS, see chapter 4 in Carroll, by Bonnie John. 
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Once we can measure interaction efficiency, whether text entry or time to point at a target, 
it is possible to compare alternative designs through controlled experiments with human 
participants. These are described in a later lecture. 
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Lecture 4: Inference 

Mental models – what the user infers about the system 

Don Norman, one of the first generation of cognitive scientists investigating HCI, also 
wrote the first popular book on the topic – The Design of Everyday Things1. What most 
people remember about this book is the example of door handles that are so badly designed 
they need labels telling you to pull them. But his key message, as presented in Part 1a 
Software and Interface Design, was to draw attention to the gulf of evaluation and the gulf 
of execution– how does the user know what the system is doing, and how do they know 
what they need to do, in order to achieve their goals? 

For a review of Norman’s model, see section 3.3.2 in Sharp, Rogers & Preece. 

Computer systems are so complex, that nobody really knows what is happening inside 
(except, possibly, the designer). In the face of incomplete information, the gulf of 
evaluation is unavoidable. The user has to make inferences (or guess) what is happening 
inside. The user’s conclusions form a mental model of the system. One way of thinking 
about the design problem is that the designer must give sufficient clues to the user to 
support that inference process, and help the user form an accurate (or at least adequate) 
mental model. The idea of a visual metaphor is that the screen display simulates some 
more familiar real world object, and that the user’s mental model will then be understood 
by analogy to the real world. 

The metaphor/analogy approach can potentially help with the gulf of execution too. If the 
system behaved exactly like the real world objects depicted, then users would know exactly 
what to do with them. In practice, computer systems never behave exactly like real world 
objects, and the differences can make the system even more confusing. (Why do you have 
windows in your desktop? Why should a Mac user put their USB drive in the trash?) 
Furthermore, designers inadvertently create metaphors that correspond very well to their 
own understanding of the internal behaviour of the system, but users should not be 
expected to know as much as designers. User studies can help to identify what users 
actually know, what they need to know, and how they interpret prototype displays. 

Mental models research 

Mental models research attempts to describe the structure of the mental representations that 
people use for everyday reasoning and problem solving. Common mental models of 
everyday situations are often quite different from scientific descriptions of the same 
phenomena. They may be adequate for basic problem solving, but break down in unusual 

																																																								
1 originally called the Psychology of Everyday Things – he wrote much of it while on sabbatical 
leave at the Applied Psychology Unit in Cambridge, and among other examples, described the 
idiosyncratic voicemail system at the APU 
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situations. For example, many people imagine electricity as being like a fluid flowing 
through the circuit. When electrical wiring was first installed in houses, it appeared very 
similar to gas or water reticulation, including valves to turn the flow on and off, and hoses 
to direct the flow into an appliance. Many people extended this analogy and believed that 
the electricity would leak out of the light sockets if they were left without a lightbulb. This 
mental model did not cause any serious problems - people simply made sure that there were 
lightbulbs in the sockets, and they had no trouble operating electrical devices on the basis 
of their model. 

The psychological nature of unofficial but useful mental models was described in the 
1970s, and these ideas have been widely applied to computer systems. Payne’s study of 
ATM users is a typical example, demonstrating that even though they have never been 
given explicit instruction about the operation of the ATM network, they do have a definite 
mental model of data flow through the network, as well as clear beliefs about information 
such as the location of their account details. As a result of this kind of problem, much of 
your Computer Security course deals with the consequences of user habits derived from 
mental models. 

The basic claim of mental models theory is that if you know the users' beliefs about the 
system they are using, then you can predict their behaviour. The users' mental models allow 
them to make inferences about the results of their actions by a process of mental 
simulation. The user imagines the effect of his or her actions before committing to a 
physical action on the device. This mental simulation process is used to predict the effect of 
an action in accordance with a mental model, and it supports planning of future actions 
through inference on the mental model. Where the model is incomplete, and the user 
encounters a situation that cannot be explained by the mental model, this inference will 
usually rely on analogy to other devices that the user already knows.  

Think aloud studies 

A great deal of cognitive psychology research, including some basic research on mental 
models, has been based on think-aloud studies, in which subjects are asked to carry out 
some task while talking as continuously as possible. The data are collected in the form of a 
verbal protocol, normally transcribed from a tape recording so that subtle points are not 
missed. Use of this technique requires some care. It can be difficult to get subjects to think 
aloud, and some methods of doing so can bias the experimental data. A detailed discussion 
of this kind of study is provided by Ericsson & Simon (1985). 

For a description of think-aloud techniques, see section 7.6.2 in Sharp, Rogers & Preece. 

Performance models of users 

Early HCI research was largely concerned with the performance of the user, measured in 
engineering terms as a system component (‘cognitive psychology’ is closely associated 
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with ‘artificial intelligence’, investigating human performance by simulating it with 
machines). One of the most famous findings in cognitive psychology research, and the one 
most often known to user interface developers, is an observation by George Miller in 1956. 
Miller generalised from a number of studies finding that people can recall somewhere 
between 5 and 9 things at one time - usually referred to as “seven plus or minus two”. 
Surprisingly, this number always seems to be about the same, regardless of what the 
“things” are. It applies to individual digits and letters, meaning that it would be very 
difficult to remember 25 letters. However if the letters are arranged into five 5-letter words 
(apple, grape …), we have no trouble remembering them. We can even remember 5 simple 
sentences reasonably easily. Miller called these units of short-term memory chunks. It is 
rather more difficult to define a chunk than to make the observation - but it clearly has 
something to do with how we can interpret the information. This is often relevant in user 
interfaces - a user may be able to remember a sequence of seven meaningful operations, but 
will be unable to remember them if they seem to be arbitrary combinations of smaller 
elements. 

Short term memory is also very different from long term memory - everything we know. 
Learning is the process of encoding information from short term memory into long term 
memory, where it appears to be stored by association with the other things we already 
know. Current models of long-term memory are largely based on connectionist theories - 
we recall things as a result of activation from related nodes in a network. According to this 
model, we can improve learning and retrieval by providing rich associations - many related 
connections. This is exploited in user interfaces that mimic either real world situations or 
other familiar applications. 

A further subtlety of human memory is that the information stored is not always verbal. 
Short term memory experiments involving recall of lists failed to investigate the way that 
we remember visual scenes. Visual working memory is in fact independent of verbal short 
term memory, and this can be exploited in mnemonic techniques which associate images 
with items to be remembered – display icons combined with associated labels provide this 
kind of dual coding. 

Intelligent interfaces – what the system infers about the user 

A further inference problem is that, in addition to the user not knowing what is happening 
inside the system, the system doesn’t ‘know’ what is happening inside the user. Advanced 
systems can be designed to record and observe user interactions, and on the basis of that 
data, make inferences about what the user intends to do next, and present short-cuts, 
usability cues or other aids. These kinds of ‘intelligent user interface’ are becoming more 
common, but they can also introduce severe usability problems. A notorious early example 
was the Microsoft Word ‘Clippy’, which analysed features of the document, and offered to 
help with automatic formatting (“You appear to be writing a letter …”). Although some 
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users found it useful, a far larger number found the tone patronizing and the automated 
actions inaccurate. Search for ‘Death to Clippy’ to see the extent to which smart user 
interface technology can get it wrong. 

Many intelligent user interfaces emerge from the machine learning community, and 
especially Bayesian inference techniques. Bayesian techniques are more appropriate to 
user interfaces than other techniques for a range of reasons: 

 They don’t necessarily rely on large training sets (as is the case with neural net 
approaches), so they can potentially adapt more quickly to individual users 

 Bayesian consideration of prior probabilities corresponds better to commonsense 
human reasoning under uncertainty.  

 Bayes formula provides a consistent way to combine data from user interactions 
with historical data and heuristic rules. 

An inference framework provides a valuable analytic perspective on many current trends in 
user interaction. For example, the behaviour of Google, or of recommender systems such as 
Amazon or Facebook friend finder, use inference techniques to apply statistical data and 
guess what the user really wants. It remains the case that when the system makes inaccurate 
inferences, the results will be annoying, confusing, or even damaging. This means that 
some advanced research areas, such as Programming by Example (where automated 
scripts or macros are created by inference, after observing repeated actions) provide a 
major challenge for HCI. These are active areas of research in Cambridge at present, and a 
few advanced prototypes are available for experimental use, such as the CoScripter project 
at IBM's Almaden Research Center (Allen Cypher, one of the CoScripter team, has worked 
in this area for many years – his ‘Eager’ prototype at Apple Research was an early success). 
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Lecture 5: Advanced user interface techniques 

This lecture summarises recent and current HCI research into advanced interaction 
technologies, using a variety of projects (especially current research in Cambridge) to 
review the principles introduced elsewhere in the course. 

Virtual reality (VR) 

The term virtual reality originally applied only to full immersion VR, in which simulated 
world is projected onto all walls of a room (CAVE – a recursive acronym for CAVE 
Automatic Virtual Environment), or via a head-mounted display (HMD) which uses 
motion-tracking to change the view as you turn your head, as with the Oculus Rift, 
Samsung Gear VR or HTC Vive. Interaction was always a challenge – data gloves could 
supposedly be used to pick up and interact with objects in the virtual scene. However, 
actual systems tended to use the glove only for gesture recognition, with all the problems of 
training, inference and accuracy that this implies. ‘Natural’ navigation in the real world is 
achieved by walking, but CAVEs were never large enough to walk far, and HMDs with 
motion tracking were normally tethered by cables. In practice, the illusion was always 
fairly limited, unlike the Matrix-style science fiction ideal that motivated it. Marketing 
creep has meant that any interactive 3D environment (including FPS games, Second Life 
etc) have often been called VR, even if presented on a standard monitor, and controlled by 
a mouse. As games players know very well, control of view and camera angle, unless 
constrained by a script, can make arbitrary action in 3D scenes complex. 

Augmented reality 

Augmented reality (AR) systems overlay digital information onto the real world, either 
using partially-transparent head mounted displays such as the Microsoft Hololens, or by 
taking a video feed of an actual scene, and compositing it with computer generated 
elements on a screen, as with platforms such as Wikitude or Layar, or in games such as 
Pokemon Go. A key technical problem is registration –this involves integration of GPS, 
compass orientation, accelerometer for gravity orientation, compass and gyroscopes. 
Various combinations have been included in HMDs, but now that most of these peripherals 
are available on high end mobile phone, we are seeing the emergence of mass-market AR. 

Tangible user interfaces 

Tangible user interfaces (TUIs) use physical objects to control the computer, most often a 
collection of objects arranged on a tabletop to act as ‘physical icons’. An immediate 
problem is that physical objects don’t change their visible state very easily. You can 
include motors and displays in each object (expensive), or project overlaid AR information 
onto them, or just use them as multiple specialized mice/pucks that control elements of the 
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display on a separate screen. In this case, it is necessary to track their positions, perhaps by 
using a large tablet device. If they are just being used as tokens to select a particular 
function or piece of data, an embedded RFID chip can be used to sense when they are 
placed within a certain distance of a reader. 

Machine vision 

Machine vision is a key technology for both AR and TUIs, as a way of recognizing real 
world objects such as buildings (in the case of outdoor AR) or objects on a desk (used for 
TUIs). Many current AR prototypes recognize distinctive objects from a large number of 
low-level visual features, as in the SIFT algorithm. Key problems are to maintain a 
sufficiently large database of object features, track them fast enough to give user feedback 
that responds to camera, gesture or object motion in realtime, and do both of these in 
varying lighting conditions. An alternative is fiducial markers – simple visual markers 
such as barcodes, that can be used to more reliably identify and track objects from camera 
input. They are more robust to changes in camera angle and lighting than object recognition 
algorithms. 

Paper interfaces 

Inspired by the research conducted by Abigail Sellen and Richard Harper (originally at 
Xerox EuroPARC in Cambridge, now at Microsoft Research Cambridge), whose book ‘The 
Myth of the Paperless Office’ analyses the ways in which the properties of paper are 
preferable to computers for many kinds of activity. The book remains a useful resource for 
designers of mobile devices substituting for paper (phones and tablets), but has also 
inspired research in which paper is integrated with digital systems, for example with 
fiducial markers on the page that can be traced by cameras (the Anoto digital pen can 
perhaps be considered an extreme example of gesture recognition implemented with 
fiducial markers). 

Mixed reality 

Mixed reality combines physical objects with information displays, for example by 
projecting digital data onto objects on a table, or onto paper. Fiducial markers can be used 
to determine the identity and location of individual sheets of paper, and project additional 
information onto them. The ISMAR conference series presents new results in Mixed and 
Augmented Reality, often based on machine vision techniques. 

Eye tracking and gaze control 

Originally developed for psychological research into visual attention processes, eye-
trackers are now used fairly routinely in HCI research to study what position on the screen 
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users are looking at. A high resolution close-up camera is used to capture video of one of 
the user’s eyes, and the precise position where they are looking is deduced from the 
position of the pupil, often combined with reflections from a pair of small infrared (LED) 
spotlights. One company sells a device with the camera and spotlights integrated into the 
surround of a monitor, to be unobtrusive. However, almost all systems like this require the 
user to sit fairly still, and to undergo a calibration procedure in which they look at points on 
the screen in sequence. Performance can be poor when there is strong ambient lighting, 
when the user wears spectacles, has watery eyes or shiny skin. Often practice is required to 
get good results.  

Chapter 3 of the Cairns and Cox book (by Natalie Webb and Tony Renshaw) is devoted to 
eyetracking in HCI 

Eye trackers are occasionally used to make gaze-controlled interfaces. At first sight, it 
seems that these might be especially natural and intuitive to use. In practice, natural eye 
movement of fixations and saccades can confuse the eye-tracker inference algorithms, it is 
hard work to keep your eyes fixated on control locations for substantial periods of time, and 
the natural temptation to glance elsewhere (check work in progress, look at the time, look 
down at your hands etc) or to blink excessively must be constantly fought. 

Surface and tabletop interaction 

Surface/tabletop interaction uses large display areas, usually projected, on a flat surface 
such as a wall or table.  User interaction takes place by touching, gesturing, or pointing at 
the display. Many of these systems use camera input, with more accurate recognition of the 
users hands possible by using infrared, rather than visible light. A low-powered infrared 
spotlight is often used to illuminate the scene, rather than relying on body heat (which can 
be confused by other hot objects in the environment – such as computers!). A popular 
technique for many early prototypes was frustrated total internal reflection (FTIR), where 
infrared light is shone inside a flat transparent medium such as a glass panel, and anything 
touching the surface causes infrared to be scattered. This technique can be used to 
recognize fingertip touches, or gestures involving more skin contact, such as multiple 
fingers or even a flat palm. More recently, large LCD screens have made it possible to 
create similar screen sizes in a more convenient package, with either single or multi-touch 
detection. Microsoft have appropriated the research term for all their “Surface” touch 
devices, from coffee-table format to tablets. A motivating scenario for many of these larger 
systems has been the gesture-controlled projection interface in the movie Minority Report. 

Embodied interaction 

A user sitting at a desk, in front of a screen, with a keyboard and mouse on the surface, was 
the default assumption in most classical user interface designs. Most of the new 
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technologies described above are used in other positions, making it necessary to take 
account of how users stand or move around. Machine vision, tracking of infrared markers, 
use of accelerometer data, ‘smart’ fabrics and clothing, and many other techniques can be 
used to analyse and track body positions. These techniques are considered to be potentially 
valuable as a result of the recent boom in Internet of Things startups. The theoretical 
perspectives necessary to account for embodied interaction rather than the ‘disembodied’ 
view of the mind preferred in AI and cognitive science (along with some fairly heavy 
philosophy) are explained in Where The Action Is: The Foundations of Embodied 
Interaction by Paul Dourish (MIT Press 2001). 
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Lecture 6: Usability of programming languages 

For many years, it seemed that conventional text programming would eventually be 
replaced by visual programming languages, where program behaviour is defined by 
drawing diagrams (many proposals resembled software engineering diagrams, such as those 
in UML – flow charts, object interaction, state charts etc). At a time when software 
development methods involved creating a complete specification in diagram form, then 
employing programmers to convert those into code, it seemed as though programming 
could be completely automated. However the fallacy of this reasoning was the same error 
made when FORTRAN (Formula Translation) was considered to be ‘automatic 
programming’ – any representation that defines the program behaviour in sufficiently 
precise detail to be compiled will be more like programming than like design. Drawing 
highly detailed diagrams is often more laborious than writing highly detailed text, so it isn’t 
the case that diagrams will always have superior usability relative to text. 

Many elements of the modern WIMP interface originated in programming language 
research – the ancestor of the Windows and Macintosh GUIs was originally created at 
Xerox PARC as a user interface to the Smalltalk language, and Shneiderman’s principles of 
direct manipulation were originally described as an alternative to programming languages. 
It is likely that research into advanced programming techniques will continue to influence 
future user interfaces. There are also some good examples of programming languages that 
have been designed for use by special groups – end user programmers who are not 
professionally trained in programming, or educational programming languages that 
illustrate programming language principles using graphical display elements. Examples 
include the LabView language for programming laboratory instrumentation and control, 
Max/MSP used for music performance and digital art installations, and Scratch, a 
descendent of Smalltalk that is now used in many schools as a first programming language 
around the ages of 8-10. 

Working programmers have often spent time arguing that their favourite language was the 
best in the world, almost like children arguing whether a tractor is better than a Ferrari. It 
should be clear that different languages are good for different purposes, and for use by 
different people. These often include a broad mix of visual and textual (or even physical 
and tangible) elements, selected to meet specific needs. 

Cognitive Dimensions of Notations 

The usability principles by which we describe what kind of activities a language is being 
used for, and what kinds of visual representation can be useful or not useful for those 
activities, have been collected into guidance for language designers, under the name 
Cognitive Dimensions of Notations (CDs), a programme of work initiated in Cambridge 
under the leadership of Thomas Green. Just as many innovations in programming language 
user interfaces have led to radically different approaches to user interfaces, CDs are one of 
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the most appropriate theoretical frameworks for analysis of completely new content 
manipulation styles. More recent research approaches inspired by the CDs have been the 
“Physics of Notations,” which tries to establish basic principles of visual perception that 
might be relevant (though note the earlier advice in this course, regarding visual 
representation), and “Patterns of User Experience”, which attempts to focus on the 
subjective experience of the user rather than purely observable behavior. In this course, we 
will consider only CDs, since they introduce the main philosophical principles that have 
been applied in developing other design frameworks. 

The CDs are presented as a vocabulary for design discussion. Many of the dimensions 
reflect common usability factors that experienced designers might have noticed, but did not 
have a name for. Giving them a name allows designers to discuss these factors easily. 
Furthermore, CDs are based on the observation that there is no perfect user interface any 
more than a perfect programming language. Any user interface design reflects a set of 
design trade-offs that the designers have had to make. Giving designers a discussion 
vocabulary means that they can discuss the trade-offs that result from their design 
decisions. The nature of the trade-offs is reflected in the structure of the dimensions. It is 
not possible to create a design that has perfect characteristics in every dimensions - making 
improvements along one dimension often results in degradation along another. 

An example dimension is called viscosity, meaning resistance to change. In some notations, 
small conceptual changes can be very expensive to make. Imagine changing a variable 
from int to long in a large Java program. The programmer has to find every function to 
which that variable is passed, check the parameter declarations, check any temporary local 
variables where it is stored, check any calculations using the value, and so on. The idea of 
what the programmer needs to do is simple, but achieving it is hard. This is viscosity. There 
are programming languages that do not suffer from this problem, but they have other 
problems instead – trade-offs. This means that language designers must be able to 
recognise and discuss such problems when planning a new language. The word “viscosity” 
helps that discussion to happen. 

CDs are relevant to a wide range of content manipulation systems – audio and video 
editors, social networking tools, calendar and project management systems, and many 
others. These systems all provide a notation of some kind, and an environment for viewing 
and manipulating the notation. Usability is a function of both the notation and the 
environment. 

Representative cognitive dimensions 

The following list gives brief definitions of the main dimensions, and examples of the 
questions that can be considered in order to determine the effects that these dimensions will 
have on different user activities. 
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Premature commitment: constraints on the order of doing things. 
When you are working with the notation, can you go about the job in any order you like, or 
does the system force you to think ahead and make certain decisions first? If so, what 
decisions do you need to make in advance? What sort of problems can this cause in your 
work? 

Hidden dependencies: important links between entities are not visible. 
If the structure of the product means some parts are closely related to other parts, and changes 
to one may affect the other, are those dependencies visible? What kind of dependencies are 
hidden? In what ways can it get worse when you are creating a particularly large description? 
Do these dependencies stay the same, or are there some actions that cause them to get frozen? 
If so, what are they? 

Secondary notation: extra information in means other than formal syntax. 
Is it possible to make notes to yourself, or express information that is not really recognised as 
part of the notation? If it was printed on a piece of paper that you could annotate or scribble 
on, what would you write or draw? Do you ever add extra marks (or colours or format choices) 
to clarify, emphasise or repeat what is there already? If so, this may constitute a helper device 
with its own notation. 

Viscosity: resistance to change.  
When you need to make changes to previous work, how easy is it to make the change? Why? 
Are there particular changes that are especially difficult to make? Which ones? 

Visibility: ability to view components easily.  
How easy is it to see or find the various parts of the notation while it is being created or 
changed? Why? What kind of things are difficult to see or find? If you need to compare or 
combine different parts, can you see them at the same time? If not, why not? 

Closeness of mapping: closeness of representation to domain.  
How closely related is the notation to the result that you are describing? Why? (Note that if 
this is a sub-device, the result may be part of another notation, not the end product). Which 
parts seem to be a particularly strange way of doing or describing something? 

Consistency: similar semantics are expressed in similar syntactic forms.  
Where there are different parts of the notation that mean similar things, is the similarity clear 
from the way they appear? Are there places where some things ought to be similar, but the 
notation makes them different? What are they? 

Diffuseness: verbosity of language.  
Does the notation a) let you say what you want reasonably briefly, or b) is it long-winded? 
Why? What sorts of things take more space to describe? 

Error-proneness: the notation invites mistakes.  
Do some kinds of mistake seem particularly common or easy to make? Which ones? Do you 
often find yourself making small slips that irritate you or make you feel stupid? What are some 
examples? 

Hard mental operations: high demand on cognitive resources.  
What kind of things require the most mental effort with this notation? Do some things seem 
especially complex or difficult to work out in your head (e.g. when combining several things)? 
What are they? 
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Progressive evaluation: work-to-date can be checked at any time.  
How easy is it to stop in the middle of creating some notation, and check your work so far? 
Can you do this any time you like? If not, why not? Can you find out how much progress you 
have made, or check what stage in your work you are up to? If not, why not? Can you try out 
partially-completed versions of the product? If not, why not? 

Provisionality: degree of commitment to actions or marks.  
Is it possible to sketch things out when you are playing around with ideas, or when you aren't 
sure which way to proceed? What features of the notation help you to do this? What sort of 
things can you do when you don't want to be too precise about the exact result you are trying 
to get? 

Role-expressiveness: the purpose of a component is readily inferred.  
When reading the notation, is it easy to tell what each part is for? Why? Are there some parts 
that are particularly difficult to interpret? Which ones? Are there parts that you really don't 
know what they mean, but you put them in just because it's always been that way? What are 
they? 

Abstraction: types and availability of abstraction mechanisms.  
Does the system give you any way of defining new facilities or terms within the notation, so 
that you can extend it to describe new things or to express your ideas more clearly or 
succinctly? What are they? Does the system insist that you start by defining new terms before 
you can do anything else? What sort of things? These facilities are provided by an abstraction 
manager - a redefinition device. It will have its own notation and set of dimensions. 

Notational activities 

When users interact with content, there are a limited number of activities that they can 
engage in, when considered with respect to the way the structure of the content might 
change. A CDs evaluation must consider which classes of activity will be the primary type 
of interaction for all representative system users. If the needs of different users have 
different relative priorities, those activities can be emphasised when design trade-offs are 
selected. The basic list of activities includes: 

Search  
Finding information by navigating through the content structure, using the facilities provided 
by the environment (e.g. finding a specific value in a spreadsheet). The notation is not 
changing at all, though the parts of it that the users sees will vary. Visibility and hidden 
dependencies can be important factors in search. 

Incrementation		

Adding further content without altering the structure in any way (e.g. adding a new formula to 
a spreadsheet). If the structure will not change, then viscosity is not going to be very 
important. 

Modification		

Changing an existing structure, possibly without adding new content (e.g. changing a 
spreadsheet for use with a different problem). 
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Transcription		

Copying content from one structure or notation to another notation (e.g. reading an equation 
out of a textbook, and converting it into a spreadsheet formula). 

Exploratory	design		

Combining incrementation and modification, with the further characteristic that the desired 
end state is not known in advance (e.g. programming a spreadsheet on the fly or “hacking”). 
Viscosity can make this kind of activity far more difficult. This is why good languages for 
hacking may not be strictly typed, or make greater use of type inference, as maintaining type 
declarations causes greater viscosity. Loosely typed languages are more likely to suffer from 
hidden dependencies (a trade-off with viscosity), but this is not such a problem for exploratory 
design, where the programmer can often hold this information in his head during the relatively 
short development timescale. 

Collaboration	

If the main purpose of the notation is to be shared or discussed with other people, the design 
considerations can be very different to those necessary for working by yourself. 

Chapter 5 of the Carroll book gives a more extended description of Cognitive Dimensions, 
with examples and theoretical background. 
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Lecture 7: User-centred design research 

Observation and task analysis 

The Part 1a Software and Interface Design course mentioned a packaged approach to 
requirements, based on the book Contextual Design: Defining Customer-Centered Systems 
by Hugh Beyer and Karen Holtzblatt (1997). That book provides comparatively step-by-
step guidance through a process with similar motivation to that described here, but does not 
emphasis theoretical concerns or user studies in a more academic HCI research context. 
This course gives more attention to individual research techniques that are often used 
within HCI, and the social science context from which they are derived. 

A guest speaker with wide experience of social scientific field work in commercial contexts 
has been invited to give this lecture. He may mention some of the following techniques: 

Structured interviews 

Most software projects start with a series of meetings in which the system requirements are 
established. The agenda of these meetings is often concerned with many other matters than 
the user interface, however. In fact the people who will use the completed system may not 
even be present. Their requirements are defined by a representative (a system analyst for an 
internal project or a market researcher for a product) who may not have much experience of 
design for usability. 

For this reason, user interface designers often conduct studies specifically to discover the 
requirements of the system users. One of the cheapest and most straightforward techniques 
is to conduct interviews with the users. Interviews must be carefully planned to be 
effective, however. They are generally more or less structured, encompassing a selected 
range of users, and taking care to encourage cooperation from users who may feel 
threatened or anxious. 

A structured interview is based around a set of questions that will be asked of every 
interviewee. This need not necessarily be a long list, but it helps to collect data into a 
common framework, and to ensure that important aspects of the system are not neglected. 

Section 7.4 of Preece, Rogers and Sharp gives far more detail about interview techniques. 

Observational studies 

Observational studies are a less intrusive way of capturing data about users' tasks, and can 
also be more objective. They involve more intensive work, however. An observational 
study of tasks that take place in a fixed location can be conducted by making video 
recordings which are transcribed into a video protocol. This protocol can then be used for 
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detailed analysis of the task - relative amounts of time spent in different sub-tasks, common 
transitions between different sub-tasks, interruptions of tasks and so on. 

Audio recordings can also be used for this purpose in certain domains, but these are less 
likely to be useful for task analysis than they are in think-aloud studies.  

If a task ranges over a number of locations, the investigator has no choice but to follow the 
subject, taking notes or recordings as best as possible. This is sufficiently difficult that 
ethnographic techniques are more likely than passive observation. An alternative is the 
user of diary studies, in which subjects take their own notes, but prompted to pay attention 
to specific times, events or categories. 

Ethnographic field studies 

Ethnographic study methods recognise that the investigator will have to interact directly 
with the subject, but while taking sufficient care to gain reasonably complete and objective 
information. An ethnographic study will attempt to observe subjects in a range of contexts, 
over a substantial period of time, and making a full record using any possible means 
(photography, video and sound recording as well as note-taking) of both activities and the 
artefacts that the subject interacts with. 

Ethnographic methods are becoming increasingly important in HCI, to an extent that many 
technology companies will now employ an anthropologist as their first social science 
expert, rather than a psychologist. In practice, both sets of skills are useful. Cognitive 
descriptions of human performance (often called human factors by engineers) tend to be 
most valuable in detailed assessment and critique of a proposed design. Descriptions of 
mental models can be helpful in elaborating a design concept. But ethnographic observation 
can help to understand technology and products in completely new ways, perhaps leading 
to innovative new concepts. In this respect, ethnography can be considered as a 
contribution to engineering requirements capture in a traditional technology company. 
Younger and trendier companies like to describe the whole process of product concept 
identification, development and refinement as user experience (UX) design. There are 
specialised books and conferences that report methods and research from all of these 
perspectives (e.g. EPIC: the Ethnographic Praxis in Industry Conference; DUX: Designing 
the User Experience; CHI: Human Factors in Computing, etc.). 

HCI researchers tend to have skills in all these techniques, but product designers generally 
want a simpler recipe that doesn’t require them to spend a year or more doing fieldwork. 
Often the biggest problem they have is how to gain a perspective of what it is like to be a 
user, escaping the mindset of their own technical understanding and expectations of the 
product. A useful intermediate technique is to write fictionalised descriptions of the kind of 
person who will use the product, to help the engineer understand what sort of person they 
are based on his or her personal experience. These user personas might be derived from 
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ethnographic fieldwork, or from conventional market research data. They are a particularly 
popular technique in Microsoft, where persona descriptions include photographs 
(presumably of actors), fictional biographies, and descriptions of why this person uses 
computers. Product design then proceeds on the basis that the designer tries to 
accommodate (or ideally charm, assist and delight) this range of fictional people. Two 
Microsoft staff members, Pruitt and Grudin, have written a brief paper explaining their use 
of the technique. 

Sectin 7.6 of Preece, Rogers and Sharp gives far more detail about ethnographic and 
observational techniques. 

Prototyping 

Prototyping is becoming increasingly important as a software design method, particularly 
addressing the problems of developing user interfaces within a strict waterfall development 
model. Companies that use waterfall models have placed increasing emphasis on accurate 
portrayal of the user interface at the specification phase, after finding that the majority of 
specification changes arise from client not understanding the requirements for user 
functionality. In terms of mental models theory, this could be expected - clients who have 
no image of the interface that they will operate are unlikely to have a useful mental model 
of system behaviour.  

If the system can respond in complex ways, it is difficult to appreciate this from static 
figures in a specification, so the specification phase of projects often uses rapid prototyping 
tools to construct a functional user interface. This prototype can be demonstrated to clients 
and used as a basis for discussion. If a spiral development model is adopted rather than a 
waterfall, the prototype can be refined iteratively until the full system functionality is 
achieved. Incremental prototyping requires that the rapid prototyping tool also meets the 
engineering requirements of the final system. If such a tool is not available, an alternative is 
deep prototyping, in which one aspect of the system functionality is fully implemented 
before developing the rest of the interface. 

These common approaches to prototyping are quite different to the prototyping techniques 
that have been found to be successful in developing novel user interfaces. Many product 
designers believe that creativity in the product design process is directly related to the 
number of prototypes produced. HCI research similarly emphasises techniques for 
developing a large number of prototypes, exploring different possible solutions, and 
evaluating the usability of alternatives. This is in contrast to incremental prototyping 
techniques, which encourage cost-saving by using the first solution regardless of its 
usability properties.  

Further discussion of the philosophy of prototyping in HCI can be found in Bill Buxton’s 
popular book Sketching User Experiences (2007) 
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Investigation of multiple prototypes requires low cost techniques for producing prototypes. 
Rather than implementing realistic system functionality, these often use generic graphic 
design tools with some scripting functions: early HCI research often used Apple Hypercard, 
and more recent work uses tools like Flash. Simulations of user interfaces are often 
presented as a click-through prototype – a sequence of simulated screens typically loaded 
into Powerpoint, where a demonstrator moves the mouse pointer to a position on the screen 
and clicks there, pretending that the system is responding to that action (in fact, it always 
advances to the next slide – the demonstrator has to remember where to click to make it 
appear realistic). An even more radical proposal is low-fidelity prototyping, in which the 
prototype user interface is made using controls built from glue and paper. During 
evaluation, the functionality can be implemented using the Wizard of Oz technique - a 
person simulates the machine by responding to user actions with the display of new (paper) 
screens. 

The objective of building multiple prototypes is to investigate design alternatives through 
evaluation with actual users. This might involve simple discussion in a participatory design 
workshop, a more structured interview, or use of think-aloud to study the mental model that 
the user develops when interpreting the prototype. 

Theories of computers and social actors 

When we are designing computer systems that will be closely integrated into a social 
context, we need to consider a number of important properties of social contexts. As 
expressed in the field of Computer-Supported Collaborative Work (CSCW), these are 
broadly derived from specialist perspectives in social science known as ethnomethodology 
and conversation analysis. This approach was popularized by Lucy Suchman, an 
anthropologist at Xerox PARC, in her book Plan and Situated Actions. This book not only 
set an agenda for understanding user interaction that was independent of cognitive 
psychology, but also offered a strong critique of the artificial intelligence techniques on 
which cognitive science was based. The theoretical concerns of her approach are, broadly 
speaking, as follows: 

1. The things that people say relate to the current situation (indexicality). In natural human 
conversation, it is not usually possible to interpret an utterance without knowing the context 
in which it appeared. Social situations are constructed from words, but the same word can 
be used to make very different situations (compare ‘hard labour’ to ‘labour of love’).  

2. Most social actions are made in response to the other people around you and the things 
they do (contingency). It is seldom practical to make a detailed plan in advance, and then 
carry out an exact sequence of actions without change. But plans are necessary and useful; 
so a plan must be flexible. Alternatively, a plan might be a general orientation rather than a 
specification of 'what to do'. Indeed, most plans are in fact of this latter kind. 
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3. In social situations, the things that people say and do are organized in a way that makes 
sense to other people (accountability). If someone does something that does not make 
sense within this framework, this makes him appear irrational, disruptive or mad (whether 
or not his actions seemed logical in his own mind). 

4. If you want to understand why someone said or did something, it is the context they are 
in that gives their actions meaning. Abstract theories or explanations about social actions 
are often proposed at a level that does not help explain the details of social actions (and so 
may not help in design). Nevertheless, and perplexingly, abstract theories are often used by 
people themselves to help give meaning and sense to what they do in any situation. 

All four of these aspects of human behaviour are different to the behaviour of computer 
systems. The semantics of computer languages determines that a particular language 
element should always have the same effect (they are not indexical). Computer plans can be 
derived exactly from a statement of requirements, but it is seldom possible for a computer 
to improvise, other than replanning from scratch (they are not contingent). Computers do 
not behave in the same way as people, participating in social situations, with the result that 
they often do things that seem arbitrary, rather than accountable contributions to a 
conversation. Finally, computers always act according to rules (programs) constructed to 
follow computational theories – the computer itself is not uniquely adequate to explain its 
behaviour. From the perspective of CSCW researchers, these issues are seen as a significant 
problem for the future of natural language interaction, to an extent that relatively few 
natural language researchers work on conversational interaction in these terms. 

If we are designing computer systems that will be used within social situations, we need a 
set of research methods that can provide a ‘remedial’ perspective that makes the computer 
slightly less incompetent as a social actor. We can do this by observing real social actions 
in context (ethnography), writing about what we see at a level that not only what happened 
but why things were done, in a way recognizable to the participants themselves (thick 
description), and making detailed analysis of recordings in order to understand the patterns 
and rules of the situation (work analysis). 

Chapter 13 of the Carroll book (by Graham Button) gives a more detailed introduction to 
ethnomethodological studies of work. 

Methods for analyzing qualitative data 

Despite the name ‘ethnomethodology’, Suchman’s work offers a theoretical critique, rather 
than a methodology for design (the word refers to the study of ethno-methods, that is, 
contingent and accountable patterns of human interaction, and has nothing to do with any 
technical concern).  
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There are some rigorous approaches to analysis of video data, oriented toward these 
concerns, and used by Suchman and others at Xerox. However, these require specialist 
training and may be too time consuming for routine design work as carried out in a 
commercial context.  

In cases where it is necessary to take an open-minded approach to qualitative data such as 
interview transcripts or think-aloud protocols, many HCI researchers use a technique 
known as grounded theory, in which individual statements are coded and categorized in 
response to the data itself, rather than framed by a prior hypothesis or assumptions about 
how users ought to interact.  

Chapter 7 of the Cairns and Cox book gives a good introduction to grounded theory. 
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Lecture 8: Usability evaluation methods 

Summative Evaluation techniques 

Summative evaluation, often performed under the umbrella of usability testing is carried 
out at the end of a project after the system has been built, to assess whether it meets its 
specification, or whether a project was successful. This is in contrast to formative 
evaluation, where the main objective is to contribute to the design of the product, by 
assessing specifications or prototypes before the system has been built. Formative 
evaluation is often analytic (it proceeds by reasoning about the design), while summative 
evaluation is often empirical (it proceeds by making observations or measurements). 
Nevertheless, any combination of formative/summative and analytic/empirical can be 
found. 

The evaluation carried out in most Part II projects is summative in nature. Summative 
evaluation is also used frequently in research situations, where the performance of a new 
interaction technique is assessed for scientific publication. 

However, summative evaluation is not so popular in commercial settings as in academic 
settings. After a system has been built, the creators tend not to be interested in further 
advice – many small companies consider that releasing a product is so cheap that they 
might as well release it as test it. Any usability problems can be resolved in version 2, in 
response to user feedback. An alternative is to use discount usability techniques that are 
less rigorous than academic studies, but still give more information than crossing your 
fingers and hoping that users will like it (although this is also a surprisingly common 
approach in small companies, as is the HiPPO method: “Highest-Paid Person’s Opinion”). 

Larger, more established, companies spend more on summative evaluation of new 
products, because of the danger to their reputation if they were to release a product that was 
very much inferior. For this reason, companies like Microsoft carry out summative 
evaluation studies of all products, before they undergo even early (beta) market release. 
Usability problems can then be tracked and resolved in the same way as other software 
defects, using the same process as for functional bugs found during system testing. 

Controlled experiments 

(Note that this material has previously been covered in Part 1a Software and Interface 
Design. This more extended treatment is included to extend the relationship to 
mathematical statistics, and for its continued relevance to HCI more broadly). 

The most common empirical method used in HCI research, derived from its origins in 
human factors and experimental psychology, is the controlled experiment. An experiment is 
based on a number of observations (measurements made while someone is using an 
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experimental interface). A typical measurement might be “How long did Fred take to finish 
task A?” or “How many errors did he make”? A wide range of alternative measurements 
are possible, including heart rate or other exotic biological data. However we most often 
assume, as in the discussion of KLM and GOMS, that it is a good thing if interfaces allow 
us to do something quickly.  

A single observation of speed is not very interesting, however. If Fred did the task again, he 
would take a different amount of time, and if someone else did it, it would take an even 
more different amount of time. We therefore collect sets of measurements, and compare 
averages. The sets might be multiple observations of one person performing a task over 
many trials, or of a range of people (experimental participants) performing the same task 
under controlled conditions. As with most human performance, the measured results will 
usually be found to have a normal distribution. 

A typical HCI experiment involves one or more experimental treatments that modify the 
user interface. A very simple example might test the question: “How long does Fred take to 
finish task A when using a good UI, compared to a bad UI?” The result will often be that 
the good UI is usually faster to use than the bad, but not in every trial. If we plot the 
measurements, we find two overlapping normal distributions, and we must therefore 
compare the effect of treatments relative to the spread in the population distribution. We 
need to know whether the difference between the averages is the result of ordinary random 
variation, or the effect of the changes we made to the user interface.  

This involves a statistical significance test such as the t-test. The t-test and other similar 
tests such as ANOVA (analysis of variance) answer the question “What is the probability 
that the observed difference in means could have occurred simply by random variation?”. 
The idea that the experimental difference might just have been a random variation is called 
a null hypothesis, and it is important to remember that this is always a possibility in any 
experiment. We generally hope that the probability was very low – i.e. that the observed 
difference is because we designed a really good interface, rather than luck. In HCI research, 
we usually insist that the probability of the result being due to random variation (p) is less 
than 0.05, or 5%. Good quality research results are normally based on experiments with 
significance values p < 0.01, which can be expressed as ‘we reject the null hypothesis, with 
99% confidence’. 

If large amounts of data are available (for example, if you are Google, and have millions of 
people interacting with your product), then a simple binary measurement may be sufficient 
to provide useful evaluation. This is commonly used in A/B testing, where two versions of 
a design are created, and then compared using a measure such as “click-through” – is a user 
more likely to click on a button in design A or design B? Significance testing with binary 
data can be carried out using a binomial test to see whether the variation between the two is 
greater than would be expected by chance. 



40	

Variation in controlled experiments 

Some computer scientists find it surprising that one can draw scientific conclusions from 
measurements that are different every time we make them, and even offer the opinion that 
the basis of HCI in probability and statistics instead of mathematical proof is a fundamental 
flaw in HCI research. This is rather fatalistic. Everyone knows that people are different. If 
there were no way to measure the value of a user interface for a wide range of different 
people, there would be no chance of progress in user interface development. It is important, 
however, that we are aware of the sources of variation in the measurements.  

These	include:	

 Variations	in	the	task	participant	(changing	with	day	of	the	week	and	time	of	day);	

 The	effect	of	the	treatment	(i.e.	the	user	interface	improvements	that	we	made);	

 Individual	differences	between	experimental	subjects	(e.g.	IQ);	

 Different	stimuli	for	each	task;	

 Distractions	during	the	trial	(sneezing,	dropping	things);	

 Motivation	of	the	subject;	

 Accidental	hints	or	intervention	by	the	experimenter;	

 Or	other	random	factors.	

The statistical techniques used in sophisticated experiments isolate these kinds of factors, 
and try to account for them separately in order to gain a good understanding of the effects 
of the experimental treatments. Fortunately over a large number of trials all of these factors 
tend to combine into a pattern of random variation within the normal distribution, as 
predicted by the central limit theorem. The central limit theorem and further null-
hypothesis testing techniques are beyond the scope of this course. A reasonably simple 
introductory text on experiment design is Robson's Experiment, Design and Statistics in 
Psychology.  

A briefer summary of the most important principles is given in section 14.3 of Preece, 
Rogers and Sharp. 

A more serious concern in this kind of research is the validity of the result. Is the effect 
being measured really produced in response to the treatment (internal validity). Would the 
observed effect generalise to other situations besides the precise context of the experiment? 
What exactly was the mechanism by which the effect occurred? Is there some established 
HCI work or psychological theory that can explain it? Could it be replicated if you repeated 
the experiment with slight variations (older users, for example, or a different model of 
computer)? In order to avoid these potential criticisms, HCI researchers often try to use 
experimental tasks and context that have good external or environmental validity - they are 
as close as possible to the situation in which the interface will really be used. 

Chapter 6 of the Cairns and Cox book gives very useful advice on statistical argument in 
HCI, while chapter 9 (by Alan Dix) has an excellent discussion on validity and theory. 
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Think aloud studies 

Although not really experiments (they are often conducted without a hypothesis, and the 
data is qualitative rather than quantitative), controlled studies in HCI often use the think-
aloud technique (described in an earlier lecture) to gain insight into the way the user has 
interpreted a prototype.  

When used as a rigorous scientific technique, a great deal of care is taken to ensure that the 
users vocalizes every thought they are aware of, and the recording is transcribed and 
analysed in detail for evidence of particular mental processes. 

However in a commercial context, the think-aloud protocol can seem much more like real-
time evaluation feedback, in which users are simply asked to make as many comments as 
possible on the user interface. This may not provide very much scientific insight, but at 
least it avoids the problem of users who spend an hour using a new system, then say almost 
nothing in the way of feedback. 

There is some discussion of think-aloud in section 7.6.2 of Preece, Rogers and Sharp 

Other empirical techniques 

Hypothesis testing is a very useful technique for making quantifiable statements about 
improvements in a user interface. It also hides a lot of useful information, however. 
Experimental subjects usually have a lot of useful feedback about the interface that they are 
trying, but there is no easy way to incorporate this into statistical analyses. Instead, we use 
a range of other techniques to capture and aggregate interpretative reports from system 
users. 

Surveys 

Surveys include a range of techniques for collecting report data from a population. The 
most familiar types of survey are public opinion polls and market research surveys, but 
there are a much greater range of survey applications. Surveys are usually composed of a 
combination of closed and open questions. Closed questions require a yes/no answer, or a 
choice on a Likert scale - this is the familiar 1 to 5 scale asking respondents to rank the 
degree to which they agree with a statement. Closed questions are useful for statistical 
comparisons of different groups of respondents. In open questions the respondent is asked 
to compose a free response to the question. The latter requires a methodical coding 
technique to structure the content of the responses across the population, and is particularly 
useful for discovering information that the investigator was not expecting. 

Questionnaires 

Questionnaires are a particular type of survey. (Interview studies of a sample population are 
also a form of survey). Questionnaires are generally used to gather responses from a larger 
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sample, and can be administered by email as well as on paper. A discussion of the issues 
that can be encountered in questionnaire studies is available on-line at: 
http://kmi.open.ac.uk/people/paulm/summer98/question.html. 

Chapter 7 of Preece, Rogers and Sharp gives detailed advice on data collection using 
questionnaires and interviews. 

Field tests  

Some very successful software companies have carried out field testing of their products in 
addition to field studies at the specification phase. A well-documented example is the 
“follow-me-home” programme carried out by Intuit Inc. after the release of their Quicken 
product. Company researchers selected customers at random, when they were buying a 
shrink-wrapped copy of Quicken in a store. The researcher then went home with the 
customer in order to observe them as they read the manuals, installed the product, and used 
it for their home financial management. Intuit directly attribute the impressive success of 
the product to this type of exercise, and to the observational studies they carried out during 
initial product planning. (Quicken survived an assault from a Microsoft product priced at a 
predatory $15, and Microsoft later made a bid of $1.5 billion to buy Intuit). Intuit continues 
to thrive as an independent company, and all members of staff, from directors to 
programmers, are expected to spend at least 10% of their time visiting customers to 
understand user needs. 

Chapter 14 of Preece, Rogers and Sharp discusses field studies. 

Bad evaluation techniques 

Some user interface developers use evaluation techniques that are practically useless. 
Unfortunately these techniques can even be found in some published research in computer 
science. This section is included as a warning to interpret such results with great care. 

Simple subjective reports seldom give useful information about interface usability. When 
users are shown a shiny new interface next to a tatty old one, they will often say that they 
like the new one better, regardless of its usability. There are many circumstances in which a 
person's introspective feelings about their mental performance is not a good predictor of 
actual performance, so this type of report is unreliable as well as open to bias. 

Some research proposes a usability hypothesis, then does not test it at all. “It was proposed 
that more colours should be used in order to increase usability”. This type of statement is 
speculation rather than science; designing novel user interfaces without any kind of 
experimental testing is rather pointless. 

There is a great deal of variation between different people in their ability to use different 
interfaces. This may result from different mental models, different cognitive skills, 
different social contexts and many other factors. Any conclusions drawn from an 
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observation of only one person must therefore be very suspect. Unfortunately, many user 
interfaces are developed based on observations of a single person - the programmer. The 
introspection of the user interface developer about his or her performance may have little 
relevance to users, unless he or she has a great deal of personal knowledge and insight.  

The word “intuitive” is often used in discussion of user interfaces to summarise theories 
based on all the above, so should be considered a danger sign, if it is used to describe the 
advantages of a particular user interface design, without any further specific detail or 
empirical evidence.  

Formative evaluation techniques 

In system testing (as described in Part 1a Software Design), development costs can be 
minimized by finding bugs as early as possible in the software development cycle. The 
same applies to usability ‘bugs’ – it is far more useful to identify potential problems before 
the system is built than after it. Formative evaluation describes studies that are carried out 
as part of the design process. 

To some extent, formative evaluation can be carried out simply by inviting usability 
experts, or representative users, to review product plans and specifications, and offer their 
opinion. A more formalized approach to soliciting user opinions is participatory design 
methods, where representative users take part in design activities, perhaps structured in a 
way that means they do not have to learn too much technical jargon, but can concentrate on 
the way they are likely to interact with the user interface. A more formalized approach to 
engaging with usability experts is via techniques such as heuristic evaluation, where a 
panel of experts review a proposed user interface one screen at a time, assessing whether it 
meets some predefined set of ‘heuristic’ criteria for good usability. 

Formative evaluation using Cognitive Dimensions of Notations 

There are also more theoretically motivated techniques for formative evaluation. The 
Cognitive Dimensions of Notations can be applied in ‘checklist’ style, as with Heuristic 
Evaluation. However, it is more useful to apply the dimensions more broadly, to consider 
both user needs and potential general approaches to the design. At this level, all design 
work can be considered ‘evaluative’, in the sense that designers are always having to 
evaluate which are the best options or trade-offs in the final product. 

Formative evaluation using Cognitive Walkthrough 

The Cognitive Walkthrough method is a structured analytic approach to assessing usability 
early in the project. The authors, Lewis and Polson, apply their own theory of exploratory 
learning, called “CE+”. Further details of the CE+ theory are not important - the CW 
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method itself expresses quite clearly what are the assumptions and applicability of the 
theory. 

Behaviour model 

The	model	of	a	user	carrying	out	a	task	through	exploratory	learning	involves	four	basic	
phases:	

1) The model describes how a notional user sets a goal to be accomplished with the 
system. A typical goal will be expressed in terms of the expected capabilities of the 
system, such as “check spelling of this document”.  

2) The model describes how the notional user searches the interface for currently 
available actions. The availability of actions may be observable as the presence of 
menu items, of buttons, of available command-line inputs, etc. 

3) The model describes how the notional user selects the action that seems likely to make 
progress toward the goal.  

4) The model describes how the notional user performs the selected action and evaluates 
the system's feedback for evidence that progress is being made toward the current 
goal. 

Evaluation procedure 

The evaluation procedure is based on a manual simulation of a notional user iteratively 
carrying out the stages of the behavioural model. Note that users themselves are not 
involved – CW is a methodical approach to guessing the needs of real users, but without the 
difficulty and expense of recruiting actual sample users for observation. Before evaluation 
can start, the evaluators need to have access to the following information: 

1) A general description of the type of users who would be expected to use the system, 
and the relevant knowledge that these users would be expected to have. 

2) A description of one or more representative tasks to be used in the evaluation. 

3) For each of the tasks, a list of the correct actions that should be performed in order to 
complete the task. 

The evaluation is conducted by the interface designer, and by a group of peers. This group 
includes a nominated scribe who records the results of the evaluation and a facilitator who 
is responsible for the smooth running of the evaluation process. The scribe and the 
facilitator are also active members of the evaluation group. 

The group of evaluators move through each of the tasks, considering the user interface at 
each step. At each step, they examine the interface and tell a story about why the notional 
user would choose that action. These stories are then evaluated according to an 
information-processing model derived from the exploratory learning behavioural model: 

1) consider what the notional user's current goal would be; 

2) evaluate the accessibility of the correct control; 

3) evaluate the quality of the match between the control's label and the goal; and 

4) evaluate the feedback that would be provided to the notional user after the action. 
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Section 15.2.2 of Preece Rogers and Sharp summarises the Cognitive Walkthrough process. 

More information on cognitive walkthrough is available in a brief description presented at 
the ACM conference on Human Factors in Computing Systems in 1995: 

http://doi.acm.org/10.1145/223355.223735 

An alternative printed source is this chapter in a book on usability inspection (available in 
the CL library):  

Wharton, C., Rieman, J., Lewis, C., and Polson, P. The cognitive walkthrough method: A 
practitioner's guide. In J. Nielsen and R. Mack (Eds.), Usability inspection methods. John 
Wiley & Sons, Inc., New York, NY, 1994. 

Evaluation of Part II projects 

A substantial proportion of the marks for a Part II project are awarded for proper 
evaluation. In most projects, this tends to be summative – formative evaluation work could 
be reported in the ‘preparation’ or even ‘implementation’ sections of the dissertation.  

Non-HCI projects 

In all projects, whether or not they include a user interface component, empirical measures 
are considered to offer stronger evidence for the quality of your work, and a higher degree 
of scientific rigour. Empirical evaluation involves taking measurements (perhaps of 
compile times, or network traffic estimates). Most empirical measurements are not exact, so 
it will be necessary to make a number of measurements, and report the degree of variance 
as well as the mean. Empirical results are particularly convincing if they offer a comparison 
– either comparing performance of your system to an existing one, or comparing earlier and 
later versions of your work. Where a comparison is being made, and there is some variance 
in measurements, it is necessary to give some statistical evidence to support the claim that 
the observed difference was not the result of random variation. 

Projects with user interfaces 

All of the above applies to projects that do not include user interfaces. If the project does 
includes a user interface, or is an interactive system, then some kind of user study will be 
appropriate.  

It is not expected that user studies at undergraduate level should be large or time 
consuming, to the extent of those carried out in professional HCI research projects. This 
means that number of participants is likely to be small, and there may be substantial 
variation between them. A statistical significance test of an experimental comparison, for 
an undergraduate project addressing a problem of realistic complexity, is unlikely to reach 
the 95% significance level expected of professional research. You (and your supervisors 
and directors of studies) should not be worried about this – most undergraduate machine 
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learning projects do not achieve 95% statistical accuracy either, and even undergraduate 
compiler implementations seldom succeed in 19 out of 20 independent trials (because most 
of them never compile 20 different programs!) 

In cases where it is not feasible to gather sufficient quantitative data for a statistically 
significant comparison at the 95% level, it is perfectly appropriate to report the mean of 
two samples, along with a confidence interval. This can be expressed graphically as ‘error 
bars’ on the estimated mean. Your main concern should be to estimate the effect size, rather 
than be too concerned with variability in your sample – you want to know what impact 
does your system have on user performance? 

Evaluation of user interfaces need not be quantitative, of course. In cases where speed and 
accuracy measurements are not meaningful ways to assess your project, any of the 
qualitative methods described above could provide useful evaluations: think-aloud studies, 
interviews, questionnaires, observational studies, or even field trials. Where there is a lot of 
variation between users, it can be a good idea to interview them and ask why. 

Ethical issues with human participants! 

There are a number of simple precautions that you should take, when conducting research 
involving human participants. Fortunately, these are fairly straightforward for routine 
technology evaluation studies. Nevertheless, you should review the guidance provided for 
those in the Cambridge School of Technology who are working with human participants. 

Last resort evaluation 

As a last resort (for example, if your project is incomplete), you could carry out a formative 
evaluation and report this in the evaluation section of your dissertation. Either Cognitive 
Walkthrough, or Cognitive Dimensions of Notations, could be used for this purpose. 
However, note that industry practice is for such evaluations to be carried out by 
independent evaluators, not by the same person who did the technical design. If you carry 
out a formative evaluation yourself, try hard to be honest, and even hard on yourself. 
Otherwise, your results are likely to be obviously biased and subjective, and will not 
impress examiners. It is also worth remembering that choosing an analytic technique rather 
than an empirical one (i.e. not basing your conclusions on measurements or observations of 
the system in use), will always plant suspicion in the minds of the examiners that you have 
chosen to do this because the system doesn’t work, meaning that proper summative 
evaluation wasn’t an option. 


