
Foundations of Computer Science

Computer Science Tripos Part IA 2017/18

Alan Mycroft and Amanda Prorok
Computer Laboratory

University of Cambridge

{am21,asp45}@cam.ac.uk

Notes copyright © 2017 by Lawrence C. Paulson

Contents

1 Introduction to Programming 1

2 Recursion and Efficiency 16

3 Lists 28

4 More on Lists 39

5 Sorting 50

6 Datatypes and Trees 61

7 Dictionaries and Functional Arrays 73

8 Functions as Values 84

9 Sequences, or Lazy Lists 97

10 Queues and Search Strategies 107

11 Polynomial Arithmetic 119

12 Elements of Procedural Programming 129

I Foundations of Computer Science 1

This course has two aims. The first is to teach programming. The second is

to present some fundamental principles of computer science, especially algorithm

design. Most students will have some programming experience already, but there

are few people whose programming cannot be improved through greater knowledge

of basic principles. Please bear this point in mind if you have extensive experience

and find parts of the course rather slow.

The programming in this course is based on the language ML and mostly con-

cerns the functional programming style. Functional programs tend to be shorter and

easier to understand than their counterparts in conventional languages such as C. In

the space of a few weeks, we shall cover many fundamental data structures and

learn basic methods for estimating efficiency.

Learning Guide

Suggestions for further reading, discussion topics, exercises and past exam ques-

tions appear at the end of each lecture. Extra reading is mostly drawn from Paul-

son’s book ML for the Working Programmer (2nd ed), which also contains many

exercises. You can find relevant exam questions in the Part IA papers from 1998

onwards. From 2013, mutable lists are no longer part of the syllabus.

The course materials webpage1 contains information on various ML systems

that you can install on your computer. There are copies of lecture notes, sample

programs, programming exercises and other useful documents. You will also find a

cryptic but complete description of Standard ML’s syntax.

Thanks to David Allsopp, Stuart Becker, Gavin Bierman, Chloë Brown, Silas

Brown, Qi Chen, David Cottingham, William Denman, Robert Harle, Daniel

Hulme, Frank King, Jack Lawrence-Jones, Joseph Lord, Dimitrios Los, Farhan

Mannan, James Margetson, David Morgan, Sridhar Prabhu, Frank Stajano, Thomas

Tuerk, Xincheng Wang, Philip Withnall and Assel Zhiyenbayeva for pointing out

errors in these notes. Corrections and suggestions are welcome and will be ac-

knowledged in the next printing.

Reading List

Paulson’s book is not based on these notes, but there is some overlap. The

Hansen/Rischel and Ullman books are good alternatives. The Little MLer is a rather

quirky tutorial on recursion and types.

• Paulson, Lawrence C. (1996). ML for the Working Programmer. Cambridge

University Press (2nd ed.).

• Mads Tofte (2009). Tips for Computer Scientists on Standard ML. This

“cheat sheet” overview of ML is available at http://www.itu.dk/people/

tofte/publ/tips.pdf.

• Hansen, Michael and Rischel, Hans (1999) Introduction to Programming Us-

ing SML. Addison-Wesley.

• Ullman, J. D. (1998) Elements of ML97 Programming. Prentice Hall.

1http://www.cl.cam.ac.uk/teaching/current/FoundsCS/

I Foundations of Computer Science 2

• M. Felleisen and D. P. Friedman (1998). The Little MLer. MIT Press.

Why do we teach Standard ML?

NB. This section does not form part of the course, but people keep asking this

question anyway, so here is some justification. You may prefer to read this section

after finishing the course.

This question has two parts, firstly “why are we teaching a language of the

ML family, rather than your favourite language from school or other experience

(perhaps Scratch, Python, Scheme, C, C#, C++, Java etc.)?”

Our answer is that ML is a very expressive language quite close to mathematics,

and we can explore quite deep concepts very simply, for example a function which

takes a function as argument and returns a function as result (just like integration),

or for example a variable whose value is a pair of a string and a list of integers.

ML’s flexible but unobtrusive type system also rejects many erroneous programs

before executing them (you’d like this property for your heart pacemaker or other

safety critical systems). Lectures on Java immediately follow after this course, and

we’d encourage you to reflect on “which language is ‘better’ and why”.

Learning how to think about programming in ML makes it easier to ask later

“how do I represent a given concept in some other language”.

The other part of this questions is “why are we teaching SML (Standard ML)

rather than some other language in the ML family, such as OCaml or Microsoft’s

F#?”

To a large extent this is a matter of choice as the dialects differ only in the

fine syntactic details and availability of libraries. This course, along with teaching

resources such as “past exam questions”, has traditionally used SML.

Wikipedia can be a useful source of information about various concepts in com-

puter science, for example try searching for SML, however remember there is no

formal editorial control and its pages can contain errors or just lack an educational

context.

I Foundations of Computer Science 3

Slide 101

Computers: a child can use them; NOBODY can fully understand them!

We can master complexity through levels of abstraction.

Focus on 2 or 3 levels at most!

Recurring issues:

• what services to provide at each level

• how to implement them using lower-level services

• the interface: how the two levels should communicate

A basic concept in computer science is that large systems can only be under-

stood in levels, with each level further subdivided into functions or services of some

sort. The interface to the higher level should supply the advertised services. Just as

important, it should block access to the means by which those services are imple-

mented. This abstraction barrier allows one level to be changed without affecting

levels above. For example, when a manufacturer designs a faster version of a pro-

cessor, it is essential that existing programs continue to run on it. Any differences

between the old and new processors should be invisible to the program.

Modern processors have elaborate specifications, which still sometimes leave

out important details. In the old days, you then had to consult the circuit diagrams.

I Foundations of Computer Science 4

Slide 102

Example I: Dates

Abstract level: dates over a certain interval

Concrete level: typically 6 characters: YYMMDD

(where each character is represented by 8 bits)

Date crises caused by INADEQUATE internal formats:

• Digital’s PDP-10: using 12-bit dates (good for at most 11 years)

• 2000 crisis: 48 bits could be good for lifetime of universe!

Digital Equipment Corporation’s date crisis occurred in 1975. The PDP-10 was

a 36-bit mainframe computer. It represented dates using a 12-bit format designed

for the tiny PDP-8. With 12 bits, one can distinguish 212 = 4096 days or 11 years.

The most common industry format for dates uses six characters: two for the

year, two for the month and two for the day. The most common “solution” to the

year 2000 crisis is to add two further characters, thereby altering file sizes. Others

have noticed that the existing six characters consist of 48 bits, already sufficient to

represent all dates over the projected lifetime of the universe:

248 = 2.8 × 1014 days = 7.7 × 1011 years!

Mathematicians think in terms of unbounded ranges, but the representation we

choose for the computer usually imposes hard limits. A good programming lan-

guage like ML lets one easily change the representation used in the program. But if

files in the old representation exist all over the place, there will still be conversion

problems. The need for compatibility with older systems causes problems across

the computer industry.

I Foundations of Computer Science 5

Slide 103

Example II: Floating-Point Numbers

Computers have integers like 1066 and reals like 1.066 × 103.

A floating-point number is represented by two integers.

The concept of DATA TYPE involves

• how a value is represented inside the computer

• the suite of operations given to programmers

• valid and invalid (or exceptional) results, such as “infinity”

Computer arithmetic can yield incorrect answers!!

In science, numbers written with finite precision and a decimal exponent are

said to be in standard form. The computational equivalent is the floating point num-

ber. These are familiar to anybody who has used a scientific calculator. Internally,

a float consists of two integers.

Because of its finite precision, floating-point computations are potentially inac-

curate. To see an example, use your pocket calculator to compute (21/10000)10000. I

get 1.99999959! With certain computations, the errors spiral out of control. Many

programming languages fail to check whether even integer computations fall within

the allowed range: you can add two positive integers and get a negative one!

Most computers give us a choice of precisions. In 32-bit precision, integers

typically range from 231 − 1 (namely 2,147,483,647) to −231; reals are accurate

to about six decimal places and can get as large as 1035 or so. For reals, 64-bit

precision is often preferred. Early languages like Fortran required variables to be

declared as INTEGER, REAL or COMPLEX and barred programmers from mixing

numbers in a computation. Nowadays, programs handle many different kinds of

data, including text and symbols. The concept of data type can ensure that different

types of data are not combined in a senseless way.

Inside the computer, all data are stored as bits. In most programming languages,

the compiler uses types to generate correct machine code, and types are not stored

during program execution. In this course, we focus almost entirely on programming

in a high-level language: ML.

I Foundations of Computer Science 6

Slide 104

Goals of Programming

• to describe a computation so that it can be done mechanically :

—Expressions compute values.

—Commands cause effects.

• to do so efficiently and CORRECTLY, giving the right answers

quickly

• to allow easy modification as needs change

—Through an orderly structure based on abstraction principles

—Such as modules or (Java) classes

Programming in-the-small concerns the writing of code to do simple, clearly

defined tasks. Programs provide expressions for describing mathematical formu-

lae and so forth. (This was the original contribution of FORTRAN, the FORmula

TRANslator.) Commands describe how control should flow from one part of the

program to the next.

As we code layer upon layer, we eventually find ourselves programming in-the-

large: joining large modules to solve some messy task. Programming languages

have used various mechanisms to allow one part of the program to provide inter-

faces to other parts. Modules encapsulate a body of code, allowing outside access

only through a programmer-defined interface. Abstract Data Types are a simpler

version of this concept, which implement a single concept such as dates or floating-

point numbers.

Object-oriented programming is the most complicated approach to modularity.

Classes define concepts, and they can be built upon other classes. Operations can be

defined that work in appropriately specialized ways on a family of related classes.

Objects are instances of classes and hold the data that is being manipulated.

This course does not cover Standard ML’s sophisticated module system, which

can do many of the same things as classes. You will learn all about objects when

you study Java.

I Foundations of Computer Science 7

Slide 105

Why Program in ML?

It is interactive.

It has a flexible notion of data type.

It hides the underlying hardware: no crashes.

Programs can easily be understood mathematically.

It distinguishes naming something from UPDATING MEMORY.

It manages storage for us.

Standard ML is the outcome of years of research into programming languages.

It is unique, defined using a mathematical formalism (an operational semantics) that

is both precise and comprehensible. Several supported compilers are available, and

thanks to the formal definition, there are remarkably few incompatibilities among

them.

Because of its connection to mathematics, ML programs can be designed and

understood without thinking in detail about how the computer will run them. Al-

though a program can abort, it cannot crash: it remains under the control of the

ML system. It still achieves respectable efficiency and provides lower-level prim-

itives for those who need them. Most other languages allow direct access to the

underlying machine and even try to execute illegal operations, causing crashes.

The only way to learn programming is by writing and running programs. If you

have a computer, consider installing Standard ML on it. Our preferred implemen-

tation is Poly/ML,1 because it is efficient and well-supported. Alternatives such as

SML of New Jersey and Moscow ML are worth considering. On the other hand,

other ML dialects such as OCaml and F# expect a different syntax and will not run

any of our examples as presented.

1http://www.polyml.org/

I Foundations of Computer Science 8

Slide 106

The Area of a Circle: A = πr 2

val pi = 3.14159;

> val pi = 3.14159 : real

pi * 1.5 * 1.5;

> val it = 7.0685775 : real

fun area (r) = pi*r*r;

> val area = fn : real -> real

area 2.0;

> val it = 12.56636 : real

The first line of this simple ML session is a value declaration. It makes the

name pi stand for the real number 3.14159. (Such names are called identifiers.)

ML echoes the name (pi) and type (real) of the declared identifier.

The second line computes the area of the circle with radius 1.5 using the formula

A = πr2. We use pi as an abbreviation for 3.14159. Multiplication is expressed

using *, which is called an infix operator because it is written between its two

operands.

ML replies with the computed value (about 7.07) and its type (again real).

Strictly speaking, we have declared the identifier it, which ML provides to let us

refer to the value of the last expression entered at top level.

To work abstractly, we should provide the service “compute the area of a circle,”

so that we no longer need to remember the formula. This sort of encapsulated

computation is called a function. The third line declares the function area. Given

any real number r, it returns another real number, computed using the area formula;

note that the function has type real->real.

The fourth line calls function area supplying 2.0 as the argument. A circle

of radius 2 has an area of about 12.6. Note that the brackets around a function’s

argument are optional, both in declaration and in use.

The function uses pi to stand for 3.14159. Unlike what you may have seen in

other programming languages, pi cannot be “assigned to” or otherwise updated.

Its meaning within area will persist even if we issue a new val declaration for pi

afterwards.

I Foundations of Computer Science 9

Slide 107

Raising a Number to a Power

fun npower(x,n) : real =

if n=0

then 1.0

else x * npower(x, n-1);

> val npower = fn : real * int -> real

Mathematical Justification (for x 6= 0):

x0 = 1

xn+1 = x × xn.

The function npower raises its real argument x to the power n, a non-negative

integer. The function is recursive: it calls itself. This concept should be familiar

from mathematics, since exponentiation is defined by the rules shown above. You

may also have seen recursion in the product rule for differentiation: (u · v)′ =
u · v′ + u′ · v. In finding the derivative of u · v, we recursively find the derivatives of

u and v, combining them to obtain the desired result. The recursion is meaningful

because it terminates: we reduce the problem to two smaller problems, and this

cannot go on forever. The ML programmer uses recursion heavily.

For n ≥ 0, the equation xn+1 = x × xn yields an obvious computation:

x3 = x × x2 = x × x × x1 = x × x × x × x0 = x × x × x .

The equation clearly holds even for negative n. However, the corresponding com-

putation runs forever:

x−1 = x × x−2 = x × x × x−3 = · · ·

Remark: function npower contains both an integer constant (0) and a real con-

stant (1.0). The decimal point makes all the difference. The ML system will notice.

I Foundations of Computer Science 10

Slide 108

An Aside: Overloading

Functions defined for both int and real:

• operators ~ + - *

• relations < <= > >=

The type checker requires help! — a type constraint

fun square (x) = x * x; AMBIGUOUS

fun square (x:real) = x * x; Clear

Now for a tiresome but necessary aside. In most languages, the types of argu-

ments and results must always be specified. ML is unusual that it normally infers

the types itself. However, sometimes ML needs a hint; function npower has a type

constraint to say its result is real. Such constraints are required when overload-

ing would otherwise make a function’s type ambiguous. ML chooses type int by

default or, in earlier versions, prints an error message. All programming languages

have trouble points such as these.

Nearly all programming languages overload the arithmetic operators. We don’t

want to have different operators for each type of number! Some languages have

just one type of number, converting automatically between different formats; this is

slow and could lead to unexpected rounding errors.

Type constraints are allowed almost anywhere. We can put one on any occur-

rence of x in the function. We can constrain the function’s result:

fun square x = x * x : real;

fun square x : real = x * x;

ML treats the equality test specially. Expressions like

if x=y then . . .

are fine provided x and y have the same type and equality testing is possible for that

type. (We discuss equality further in a later lecture.)

Note that x <> y is ML for x 6= y.

I Foundations of Computer Science 11

Slide 109

Conditional Expressions and Type bool

if b then x else y

not(b) negation of b

p andalso q ≡ if p then q else false

p orelse q ≡ if p then true else q

A Boolean-valued function!

fun even n = (n mod 2 = 0);

> val even = fn : int -> bool

A characteristic feature of the computer is its ability to test for conditions and

act accordingly. In the early days, a program might jump to a given address de-

pending on the sign of some number. Later, John McCarthy defined the conditional

expression to satisfy

(if true then x else y) = x

(if false then x else y) = y

ML evaluates the expression if B then E1 else E2 by first evaluating B.

If the result is true then ML evaluates E1 and otherwise E2. Only one of the two

expressions E1 and E2 is evaluated! If both were evaluated, then recursive functions

like npower above would run forever.

The if-expression is governed by an expression of type bool, whose two values

are true and false. In modern programming languages, tests are not built into

“conditional branch” constructs but have an independent status.

Tests, or Boolean expressions, can be expressed using relational operators such

as < and =. They can be combined using the Boolean operators for negation (not),

conjunction (andalso) and disjunction (orelse). New properties can be declared

as functions: here, to test whether an integer is even.

Note. The andalso and orelse operators evaluate their second operand only

if necessary. They cannot be defined as functions: ML functions evaluate all their

arguments. (In ML, any two-argument function can be turned into an infix operator.)

I Foundations of Computer Science 12

Slide 110

Efficiently Raising a Number to a Power

fun power(x,n) : real =

if n=1 then x

else if even n then power(x*x, n div 2)

else x * power(x*x, n div 2);

Mathematical Justification:

x1 = x

x2n = (x2)n

x2n+1 = x × (x2)n.

For large n, computing powers using xn+1 = x × xn is too slow to be practical.

The equations above are much faster. Example:

212 = 46 = 163 = 16 × 2561 = 16 × 256 = 4096.

Instead of n multiplications, we need at most 2 lg n multiplications, where lg n is

the logarithm of n to the base 2.

We use the function even, declared previously, to test whether the exponent is

even. Integer division (div) truncates its result to an integer: dividing 2n + 1 by 2

yields n.

A recurrence is a useful computation rule only if it is bound to terminate. If

n > 0 then n is smaller than both 2n and 2n + 1. After enough recursive calls,

the exponent will be reduced to 1. The equations also hold if n ≤ 0, but the corre-

sponding computation runs forever.

Our reasoning assumes arithmetic to be exact; fortunately, the calculation is

well-behaved using floating-point.

I Foundations of Computer Science 13

Slide 111

Summary of ML’s Numeric Types

int: the integers

• constants 0 1 ~1 2 ~2 0032 . . .

• infixes + - * div mod

real: the floating-point numbers

• constants 0.0 ~1.414 3.94e~7 . . .

• infixes + - * /

• functions Math.sqrt Math.sin Math.ln . . .

The underlined symbols val and fun are keywords: they may not be used as

identifiers. Here is a complete list of ML’s keywords.

abstype and andalso as case datatype do else end eqtype exception

fn fun functor handle if in include infix infixr let local

nonfix of op open orelse raise rec

sharing sig signature struct structure

then type val where while with withtype

The negation of x is written ~x rather than -x, please note. Most languages use

the same symbol for minus and subtraction, but ML regards all operators, whether

infix or not, as functions. Subtraction takes a pair of numbers, but minus takes a

single number; they are distinct functions and must have distinct names. Similarly,

we may not write +x.

Computer numbers have a finite range, which if exceeded gives rise to an Over-

flow error. Some ML systems can represent integers of arbitrary size.

If integers and reals must be combined in a calculation, ML provides functions

to convert between them:

real : int -> real convert an integer to the corresponding real

floor : real -> int convert a real to the greatest integer not exceeding it

ML’s libraries are organized using modules, so we use compound identifiers

such as Math.sqrt to refer to library functions. In Moscow ML, library units are

loaded by commands such as load"Math";. There are thousands of library func-

tions, including text-processing and operating systems functions in addition to the

usual numerical ones.

I Foundations of Computer Science 14

Slide 112

Syntax You Must Know

Declarations

val Id = E

fun Id Args = E

Expressions

if E then E else E

E andalso E

E orelse E

E : T

This page summarises the syntax presented so far. Here, Id denotes an identi-

fier, E denotes an expression and T denotes a type.

As we have seen, simple values and functions can be declared. The argument

of a function can be a single identifier or a group of arguments. This will be gener-

alised again later.

The simplest expressions are identifiers (declared as above) and constants. They

can be combined using infix operators, as outlined on the previous slide. We have

seen the if-then-else expression form, which makes a choice depending on a truth

value. We have seen the built-in operators andalso and orelse, which combine

truth values.

Finally, we have seen that a type constraint such as : real can be inserted in a

program. An expression that has been constrained in this way is still an expression.

A comprehensive specification of ML syntax is available on the course website.

See Course materials, and near the bottom of this page, Full syntax of Standard ML.

Learning guide. Related material is in ML for the Working Programmer, pages

1–47, and especially 17–32.

Exercise 1.1 One solution to the year 2000 bug involves storing years as two digits,

but interpreting them such that 50 means 1950 and 49 means 2049. Comment on

the merits and demerits of this approach.

Exercise 1.2 Using the date representation of the previous exercise, code ML func-

tions to (a) compare two years (b) add/subtract some given number of years from

I Foundations of Computer Science 15

another year. (You may need to look ahead to the next lecture for ML’s comparison

operators.)

Exercise 1.3 Why would no competent programmer write an expression of the

form if . . . then true else false? What about expressions of the form

if . . . then false else true?

Exercise 1.4 Functions npower and power both have type constraints, but only one

of them actually needs it. Try to work out which function does not need its type

constraint merely by looking at its declaration.

Exercise 1.5 Because computer arithmetic is based on binary numbers, simple dec-

imals such as 0.1 often cannot be represented exactly. Write a function that per-

forms the computation

x + x + · · · + x
︸ ︷︷ ︸

n

where x has type real. (It is essential to use repeated addition rather than mul-

tiplication!) Different ML systems deliver different results. Arithmetic under

Poly/ML is much more accurate than under SML/NJ . The value computed with

n = 1000000 and x = 0.1 may print as 100000.0, which looks exact. If that

happens, then evaluate the expression it - 100000.0.

An error of this type has been blamed for the failure of an American Patriot

Missile battery to intercept an incoming Iraqi missile during the first Gulf War. The

missile hit an American Army barracks, killing 28.

Exercise 1.6 Another example of the inaccuracy of floating-point arithmetic takes

the golden ratio φ ≈ 1.618 . . . as its starting point:

γ0 = 1 +
√

5

2
and γn+1 = 1

γn − 1
.

In theory, it is easy to prove that γn = · · · = γ1 = γ0 for all n > 0. Code this

computation in ML and report the value of γ50. Hint: in ML,
√

5 is expressed as

Math.sqrt 5.0.

II Foundations of Computer Science 16

Slide 201

Expression Evaluation

E0 ⇒ E1 ⇒ · · · ⇒ En ⇒ v

Sample evaluation for power:

power(2, 12) ⇒ power(4, 6)

⇒ power(16, 3)

⇒ 16 × power(256, 1)

⇒ 16 × 256 ⇒ 4096.

Expression evaluation concerns expressions and the values they return. This

view of computation may seem to be too narrow. It is certainly far removed from

computer hardware, but that can be seen as an advantage. For the traditional concept

of computing solutions to problems, expression evaluation is entirely adequate.

Starting with E0, the expression Ei is reduced to Ei+1 until this process con-

cludes with a value v. A value is something like a number that cannot be further

reduced.

We write E ⇒ E ′ to say that E is reduced to E ′. Mathematically, they are

equal: E = E ′, but the computation goes from E to E ′ and never the other way

around.

Computers also interact with the outside world. For a start, they need some

means of accepting problems and delivering solutions. Many computer systems

monitor and control industrial processes. This role of computers is familiar now, but

was never envisaged in the early days. Computer pioneers focused on mathematical

calculations. Modelling interaction and control requires a notion of states that can

be observed and changed. Then we can consider updating the state by assigning to

variables or performing input/output, finally arriving at conventional programs as

coded in C, for instance.

For now, we remain at the level of expressions, which is usually termed func-

tional programming.

II Foundations of Computer Science 17

Slide 202

Example: Summing the First n Integers

fun nsum n =

if n=0 then 0

else n + nsum (n-1);

> val nsum = fn: int -> int

nsum 3 ⇒ 3 + nsum 2

⇒ 3 + (2 + nsum 1)

⇒ 3 + (2 + (1 + nsum 0))

⇒ 3 + (2 + (1 + 0)) ⇒ . . . ⇒ 6

The function call nsum n computes the sum 1+· · ·+n rather naïvely, hence the

initial n in its name. The nesting of parentheses is not just an artifact of our notation;

it indicates a real problem. The function gathers up a collection of numbers, but

none of the additions can be performed until nsum 0 is reached. Meanwhile, the

computer must store the numbers in an internal data structure, typically the stack.

For large n, say nsum 10000, the computation might fail due to stack overflow.

We all know that the additions can be performed as we go along. How do we

make the computer do that?

II Foundations of Computer Science 18

Slide 203

Iteratively Summing the First n Integers

fun summing (n,total) =

if n=0 then total

else summing (n-1, n + total);

> val summing = fn : int * int -> int

summing (3, 0) ⇒ summing (2, 3)

⇒ summing (1, 5)

⇒ summing (0, 6) ⇒ 6

Function summing takes an additional argument: a running total. If n is zero

then it returns the running total; otherwise, summing adds to it and continues. The

recursive calls do not nest; the additions are done immediately.

A recursive function whose computation does not nest is called iterative or tail-

recursive. Many functions can be made iterative by introducing an argument anal-

ogous to total, which is often called an accumulator.

The gain in efficiency is sometimes worthwhile and sometimes not. The func-

tion power is not iterative because nesting occurs whenever the exponent is odd.

Adding a third argument makes it iterative, but the change complicates the func-

tion and the gain in efficiency is minute; for 32-bit integers, the maximum possible

nesting is 30 for the exponent 231 − 1.

II Foundations of Computer Science 19

Slide 204

Recursion Versus Iteration: Some Comments

Iterative normally refers to a loop—coded using while, for instance.

Tail-recursion is efficient only if the compiler detects it.

Mainly it saves space, though iterative code can run faster.

DON’T make programs iterative unless the gain is significant.

A classic book by Abelson and Sussman [1] used iterative to mean tail-

recursive. It describes the Lisp dialect known as Scheme. Iterative functions pro-

duce computations resembling those that can be done using while-loops in conven-

tional languages.

Many algorithms can be expressed naturally using recursion, but only awk-

wardly using iteration. There is a story that Dijkstra sneaked recursion into Algol-

60 by inserting the words “any other occurrence of the procedure name denotes

execution of the procedure”. By not using the word “recursion”, he managed to slip

this amendment past sceptical colleagues.

Obsession with tail recursion leads to a coding style in which functions have

many more arguments than necessary. Write straightforward code first, avoiding

only gross inefficiency. If the program turns out to be too slow, tools are available

for pinpointing the cause. Always remember KISS (Keep It Simple, Stupid).

I hope you have all noticed by now that the summation can be done even more

efficiently using the arithmetic progression formula

1 + · · · + n = n(n + 1)/2.

II Foundations of Computer Science 20

Slide 205

Stupidly Summing the First n Integers

fun stupSum n =

if n=0 then 0

else n + (stupSum(n-1) + stupSum(n-1)) div 2;

The function calls itself 2n times!

Bigger inputs mean higher costs—but what’s the growth rate?

Now let us consider how to estimate various costs associated with a program.

Asymptotic complexity refers to how costs—usually time or space—grow with in-

creasing inputs. Space complexity can never exceed time complexity, for it takes

time to do anything with the space. Time complexity often greatly exceeds space

complexity.

The function stupSum calls itself twice in each recursive step. This function is

contrived, but many mathematical formulas refer to a particular quantity more than

once. In ML, we can create a local binding to a computed value using the local

declaration syntax let D in E end, where D is a series of of declarations. In

the following expression, y is computed once and used twice:

let val y = power(x,20)

in f(y) + g(x,y) end

Fast hardware does not make good algorithms unnecessary. On the contrary,

faster hardware magnifies the superiority of better algorithms. Typically, we want

to handle the largest inputs possible. If we double our processing power, what do

we gain? How much can we increase n, the input to our function? With stupSum,

we can only go from n to n + 1. We are limited to this modest increase because the

function’s running time is proportional to 2n . With the function npower, defined in

the previous lecture, we can go from n to 2n: we can handle problems twice as big.

With power we can do much better still, going from n to n2.

II Foundations of Computer Science 21

Slide 206

Some Illustrative Figures

complexity 1 second 1 minute 1 hour gain

n 1000 60,000 3,600,000 ×60

n lg n 140 4,893 200,000 ×41

n2 31 244 1,897 ×8

n3 10 39 153 ×4

2n 9 15 21 +6

complexity = milliseconds of runtime given an input of size n

This table (excerpted from a 40-year-old book! [2, page 3]) illustrates the effect

of various time complexities. The left-hand column indicates how many millisec-

onds are required to process an input of size n. The other entries show the maximum

size of n that can be processed in the given time (one second, minute or hour).

The table illustrates how large an input can be processed as a function of time.

As we increase the computer time per input from one second to one minute and

then to one hour, the size of the input increases accordingly.

The top two rows (complexities n and n lg n) increase rapidly: for n, by a factor

of 60. The bottom two start out close together, but n3 (which grows by a factor

of 3.9) pulls well away from 2n (whose growth is only additive). If an algorithm’s

complexity is exponential then it can never handle large inputs, even if it is given

huge resources. On the other hand, suppose the complexity has the form nc, where

c is a constant. (We say the complexity is polynomial.) Doubling the argument then

increases the cost by a constant factor. That is much better, though if c > 3 the

algorithm may not be considered practical.

II Foundations of Computer Science 22

Slide 207

Comparing Algorithms: O Notation

Formally, define f (n) = O(g(n)) provided | f (n)| ≤ c|g(n)|
| f (n)| is bounded for some constant c and all sufficiently large n.

Intuitively, Look at the most significant term.

Ignore constant factors: they seldom dominate and are often transitory

Example: consider n2 instead of 3n2 + 34n + 433.

The cost of a program is usually a complicated formula. Often we should con-

sider only the most significant term. If the cost is n2 + 99n + 900 for an input of

size n, then the n2 term will eventually dominate, even though 99n is bigger for

n < 99. The constant term 900 may look big, but it is soon dominated by n2.

Constant factors in costs can be ignored unless they are large. For one thing,

they seldom make a difference: 100n2 will be better than n3 in the long run: or

asymptotically, to use the jargon. Moreover, constant factors are seldom stable.

They depend upon details such as which hardware, operating system or program-

ming language is being used. By ignoring constant factors, we can make compar-

isons between algorithms that remain valid in a broad range of circumstances.

The ‘Big O’ notation is commonly used to describe efficiency—to be precise,

asymptotic complexity. It concerns the limit of a function as its argument tends

to infinity. It is an abstraction that meets the informal criteria that we have just

discussed. In the definition, sufficiently large means there is some constant n0 such

that | f (n)| ≤ c|g(n)| for all n greater than n0. The role of n0 is to ignore finitely

many exceptions to the bound, such as the cases when 99n exceeds n2.

The notation f (n) = O(g(n)) is misleading: this is no identity, but states that

g is an upper bound for f . A number of related ‘Bachmann–Landau notations’ can

be defined, such as Knuth’s �: f (n) = �(g(n)) states that g is a lower bound

for f asymptotically. If g is both an upper and a lower bound for f then we write

f (n) = 2(g(n)).

II Foundations of Computer Science 23

Slide 208

Simple Facts About O Notation

O(2g(n)) is the same as O(g(n))

O(log10 n) is the same as O(ln n)

O(n2 + 50n + 36) is the same as O(n2)

O(n2) is contained in O(n3)

O(2n) is contained in O(3n)

O(log n) is contained in O(
√

n)

O notation lets us reason about the costs of algorithms easily.

• Constant factors such as the 2 in O(2g(n)) drop out: we can use O(g(n))

with twice the value of c in the definition.

• Because constant factors drop out, the base of logarithms is irrelevant.

• Insignificant terms drop out. To see that O(n2 + 50n + 36) is the same as

O(n2), consider that n2 + 50n + 36/n2 converges to 1 for increasing n.

If c and d are constants (that is, they are independent of n) with 0 < c < d then

O(nc) is contained in O(nd)

O(cn) is contained in O(dn)

O(log n) is contained in O(nc)

To say that O(cn) is contained in O(dn) means that the former gives a tighter bound

than the latter. For example, if f (n) = O(2n) then f (n) = O(3n) trivially, but the

converse does not hold.

II Foundations of Computer Science 24

Slide 209

Common Complexity Classes

O(1) constant

O(log n) logarithmic

O(n) linear

O(n log n) quasi-linear

O(n2) quadratic

O(n3) cubic

O(an) exponential (for fixed a)

Logarithms grow very slowly, so O(log n) complexity is excellent. Because O

notation ignores constant factors, the base of the logarithm is irrelevant!

Under linear we might mention O(n log n), which occasionally is called quasi-

linear, and which scales up well for large n.

An example of quadratic complexity is matrix addition: forming the sum of

two n × n matrices obviously takes n2 additions. Matrix multiplication is of cubic

complexity, which limits the size of matrices that we can multiply in reasonable

time. An O(n2.81) algorithm exists, but it is too complicated to be of much use,

even though it is theoretically better.

An exponential growth rate such as 2n restricts us to small values of n. Already

with n = 20 the cost exceeds one million. However, the worst case might not arise

in normal practice. ML type-checking is exponential in the worst case, but not for

ordinary programs.

II Foundations of Computer Science 25

Slide 210

Sample Costs in O Notation

function time space

npower, nsum O(n) O(n)

summing O(n) O(1)

n(n + 1)/2 O(1) O(1)

power O(log n) O(log n)

stupSum O(2n) O(n)

Recall (Lect. 2) that npower computes xn by repeated multiplication while nsum

naïvely computes the sum 1 + · · · + n. Each obviously performs O(n) arithmetic

operations. Because they are not tail recursive, their use of space is also O(n).

The function summing is a version of nsum with an accumulating argument; its

iterative behaviour lets it work in constant space. O notation spares us from having

to specify the units used to measure space.

Even ignoring constant factors, the units chosen can influence the result. Multi-

plication may be regarded as a single unit of cost. However, the cost of multiplying

two n-digit numbers for large n is itself an important question, especially now that

public-key cryptography uses numbers hundreds of digits long.

Few things can really be done in constant time or stored in constant space.

Merely to store the number n requires O(log n) bits. If a program cost is O(1),

then we have probably assumed that certain operations it performs are also O(1)—

typically because we expect never to exceed the capacity of the standard hardware

arithmetic.

With power, the precise number of operations depends upon n in a complicated

way, depending on how many odd numbers arise, so it is convenient that we can just

write O(log n). An accumulating argument could reduce its space cost to O(1).

II Foundations of Computer Science 26

Slide 211

Some Simple Recurrence Relations

T (n): a cost we want to bound using O notation

Typical base case: T (1) = 1

Some recurrences:

T (n + 1) = T (n) + 1 O(n)

T (n + 1) = T (n) + n O(n2)

T (n) = T (n/2) + 1 O(log n)

T (n) = 2T (n/2) + n O(n log n)

To analyse a function, inspect its ML declaration. Recurrence equations for the

cost function T (n) can usually be read off. Since we ignore constant factors, we

can give the base case a cost of one unit. Constant work done in the recursive step

can also be given unit cost; since we only need an upper bound, this unit represents

the larger of the two actual costs. We could use other constants if it simplifies the

algebra.

For example, recall our function nsum:

fun nsum n =

if n=0 then 0 else n + nsum (n-1);

Given n+1, it performs a constant amount of work (an addition and subtraction) and

calls itself recursively with argument n. We get the recurrence equations T (0) = 1

and T (n + 1) = T (n) + 1. The closed form is clearly T (n) = n + 1, as we can

easily verify by substitution. The cost is linear.

This function, given n + 1, calls nsum, performing O(n) work. Again ignoring

constant factors, we can say that this call takes exactly n units.

fun nsumsum n =

if n=0 then 0 else nsum n + nsumsum (n-1);

We get the recurrence equations T (0) = 1 and T (n + 1) = T (n) + n. It is easy to

see that T (n) = (n − 1) + · · · + 1 = n(n − 1)/2 = O(n2). The cost is quadratic.

The function power divides its input n into two, with the recurrence equation

T (n) = T (n/2) + 1. Clearly T (2n) = n + 1, so T (n) = O(log n).

II Foundations of Computer Science 27

Learning guide. Related material is in ML for the Working Programmer, pages

48–58. The material on type checking (pages 63–67) may interest the more enthu-

siastic student.

Exercise 2.1 Code an iterative version of the function power.

Exercise 2.2 Add a column to the table shown in Slide 206 with the heading 60

hours.

Exercise 2.3 Let g1, . . . , gk be functions such that gi (n) ≥ 0 for i = 1, . . . , k

and all sufficiently large n. Show that if f (n) = O(a1g1(n) + · · · + ak gk(n)) then

f (n) = O(g1(n) + · · · + gk(n)).

Exercise 2.4 Find an upper bound for the recurrence given by T (1) = 1 and

T (n) = 2T (n/2) + 1. You should be able to find a tighter bound than O(n log n).

III Foundations of Computer Science 28

Slide 301

Lists

[3,5,9];

> [3, 5, 9] : int list

it @ [2,10];

> [3, 5, 9, 2, 10] : int list

rev [(1,"one"), (2,"two")];

> [(2, "two"), (1, "one")] : (int*string) list

A list is an ordered series of elements; repetitions are significant. So [3,5,9]

differs from [5,3,9] and from [3,3,5,9].

All elements of a list must have the same type. Above we see a list of integers

and a list of (integer, string) pairs. One can also have lists of lists, such as [[3], [],

[5,6]], which has type int list list.

In the general case, if x1, . . . , xn all have the same type (say τ) then the list

[x1, . . . , xn] has type (τ)list.

Lists are the simplest data structure that can be used to process collections of

items. Conventional languages use arrays, whose elements are accessed using sub-

scripting: for example, A[i] yields the i th element of the array A. Subscripting

errors are a known cause of programmer grief, however, so arrays should be re-

placed by higher-level data structures whenever possible.

The infix operator @, called append, concatenates two lists. Also built-in is rev,

which reverses a list. These are demonstrated in the session above.

III Foundations of Computer Science 29

Slide 302

The List Primitives

The two kinds of list

nil or [] is the empty list

x::l is the list with head x and tail l

List notation

[x1, x2, . . . , xn] ≡ x1

head

:: (x2 :: · · · (xn :: nil))
︸ ︷︷ ︸

tail

The operator ::, called cons (for ‘construct’), puts a new element on to the head

of an existing list. While we should not be too preoccupied with implementation

details, it is essential to know that :: is an O(1) operation. It uses constant time and

space, regardless of the length of the resulting list. Lists are represented internally

with a linked structure; adding a new element to a list merely hooks the new element

to the front of the existing structure. Moreover, that structure continues to denote

the same list as it did before; to see the new list, one must look at the new :: node

(or cons cell) just created.

Here we see the element 1 being consed to the front of the list [3,5,9]:

:: → · · · :: → :: → :: → nil

↓ ↓ ↓ ↓
1 3 5 9

Given a list, taking its first element (its head) or its list of remaining elements (its

tail) also takes constant time. Each operation just follows a link. In the diagram

above, the first ↓ arrow leads to the head and the leftmost → arrow leads to the tail.

Once we have the tail, its head is the second element of the original list, etc.

The tail is not the last element; it is the list of all elements other than the head!

III Foundations of Computer Science 30

Slide 303

Getting at the Head and Tail

fun null [] = true

| null (x::l) = false;

> val null = fn : 'a list -> bool

fun hd (x::l) = x;

> Warning: pattern matching is not exhaustive

> val hd = fn : 'a list -> 'a

tl [7,6,5];

> val it = [6, 5] : int list

The empty list has neither head nor tail. Applying hd or tl to nil is an error—

strictly speaking, an exception. The function null can be used to check for the

empty list beforehand. Taking a list apart using combinations of hd and tl is hard

to get right. Fortunately, it is seldom necessary because of pattern-matching.

The declaration of null above has two clauses: one for the empty list (for which

it returns true) and one for non-empty lists (for which it returns false).

The declaration of hd above has only one clause, for non-empty lists. They have

the form x::l and the function returns x, which is the head. ML prints a warning to

tell us that calling the function could raise exception Match, which indicates failure

of pattern-matching. The declaration of tl is similar to hd.

These three primitive functions are polymorphic, allowing flexibility in the

types of their arguments and results. Note their types!

null : 'a list -> bool is a list empty?

hd : 'a list -> 'a head of a non-empty list

tl : 'a list -> 'a list tail of a non-empty list

Symbols ’a, ’b, . . . are called type variables and stand for any types. Code written

using these functions is checked for type correctness at compile time. And this

guarantees strong properties at run time, for example that the elements of any list

all have the same type.

These functions are polymorphic because they do nothing to list elements but

copy them. Note that ML does all type checking at compile time. This is very

different from “dynamically typed” languages such as Python or Scheme, where

values are tagged with their types at runtime and checked only then.

III Foundations of Computer Science 31

Slide 304

Computing the Length of a List

fun nlength [] = 0

| nlength (x::xs) = 1 + nlength xs;

> val nlength = fn: 'a list -> int

nlength[a, b, c] ⇒ 1 + nlength[b, c]
⇒ 1 + (1 + nlength[c])
⇒ 1 + (1 + (1 + nlength[]))
⇒ 1 + (1 + (1 + 0))

⇒ . . . ⇒ 3

Most list processing involves recursion. This is a simple example; patterns can

be more complex.

Observe the use of a vertical bar (|) to separate the function’s clauses. We have

one function declaration that handles two cases. To understand its role, consider the

following faulty code:

fun nlength [] = 0;

> Warning: pattern matching is not exhaustive

> val nlength = fn: 'a list -> int

fun nlength (x::xs) = 1 + nlength xs;

> Warning: pattern matching is not exhaustive

> val nlength = fn: 'a list -> int

These are two declarations, not one. First we declare nlength to be a function that

handles only empty lists. Then we redeclare it to be a function that handles only

non-empty lists; it can never deliver a result. We see that a second fun declaration

replaces any previous one rather than extending it to cover new cases.

Now, let us return to the declaration shown on the slide. The length function is

polymorphic: it applies to all lists regardless of element type! Most programming

languages lack such flexibility.

Unfortunately, this length computation is naïve and wasteful. Like nsum in

Lect. 2, it is not tail-recursive. It uses O(n) space, where n is the length of its input.

As usual, the solution is to add an accumulating argument.

III Foundations of Computer Science 32

Slide 305

Efficiently Computing the Length of a List

fun addlen (n, []) = n

| addlen (n, x::xs) = addlen (n+1, xs);

> val addlen = fn: int * 'a list -> int

addlen(0, [a, b, c]) ⇒ addlen(1, [b, c])
⇒ addlen(2, [c])
⇒ addlen(3, [])
⇒ 3

Patterns can be as complicated as we like. Here, the two patterns are (n,[])

and (n,x::xs).

Function addlen is again polymorphic. Its type mentions the integer accumu-

lator.

Now we may declare an efficient length function. It is simply a wrapper for

addlen, supplying zero as the initial value of n.

fun length xs = addlen(0,xs);

> val length = fn : 'a list -> int

The recursive calls do not nest: this version is iterative. It takes O(1) space. Obvi-

ously its time requirement is O(n) because it takes at least n steps to find the length

of an n-element list.

III Foundations of Computer Science 33

Slide 306

Append: List Concatenation

fun append([], ys) = ys

| append(x::xs, ys) = x :: append(xs,ys);

> val append = fn: 'a list * 'a list -> 'a list

append([1, 2, 3], [4]) ⇒ 1 :: append([2, 3], [4])
⇒ 1 :: (2 :: append([3], [4]))
⇒ 1 :: (2 :: (3 :: append([], [4])))
⇒ 1 :: (2 :: (3 :: [4])) ⇒ [1, 2, 3, 4]

Here is how append might be declared, ignoring the details of how @ is made an

infix operator.

This function is also not iterative. It scans its first argument, sets up a string of

‘cons’ operations (::) and finally does them.

It uses O(n) space and time, where n is the length of its first argument. Its costs

are independent of its second argument.

An accumulating argument could make it iterative, but with considerable com-

plication. The iterative version would still require O(n) space and time because

concatenation requires copying all the elements of the first list. Therefore, we can-

not hope for asymptotic gains; at best we can decrease the constant factor involved

in O(n), but complicating the code is likely to increase that factor. Never add an

accumulator merely out of habit.

Note append’s polymorphic type. It tells us that two lists can be joined if their

element types agree.

III Foundations of Computer Science 34

Slide 307

Reversing a List in O(n2)

fun nrev [] = []

| nrev(x::xs) = (nrev xs) @ [x];

> val nrev = fn: 'a list -> 'a list

nrev[a, b, c] ⇒ nrev[b, c] @ [a]
⇒ (nrev[c] @ [b]) @ [a]
⇒ ((nrev[] @ [c]) @ [b]) @ [a]
⇒ (([] @ [c]) @ [b]) @ [a] ⇒ . . . ⇒ [c, b, a]

This reverse function is grossly inefficient due to poor usage of append, which

copies its first argument. If nrev is given a list of length n > 0, then append makes

n − 1 conses to copy the reversed tail. Constructing the list [x] calls cons again,

for a total of n calls. Reversing the tail requires n − 1 more conses, and so forth.

The total number of conses is

0 + 1 + 2 + · · · + n = n(n + 1)/2.

The time complexity is therefore O(n2). Space complexity is only O(n) because

the copies don’t all exist at the same time.

III Foundations of Computer Science 35

Slide 308

Reversing a List in O(n)

fun revApp ([], ys) = ys

| revApp (x::xs, ys) = revApp (xs, x::ys);

> val revApp = fn: 'a list * 'a list -> 'a list

revApp([a, b, c], []) ⇒ revApp([b, c], [a])
⇒ revApp([c], [b, a])
⇒ revApp([], [c, b, a])
⇒ [c, b, a]

Calling revApp (xs,ys) reverses the elements of xs and prepends them to ys.

Now we may declare

fun rev xs = revApp(xs,[]);

> val rev = fn : 'a list -> 'a list

It is easy to see that this reverse function performs just n conses, given an n-element

list. For both reverse functions, we could count the number of conses precisely—

not just up to a constant factor. O notation is still useful to describe the overall

running time: the time taken by a cons varies from one system to another.

The accumulator y makes the function iterative. But the gain in complexity

arises from the removal of append. Replacing an expensive operation (append) by

a series of cheap operations (cons) is called reduction in strength, and is a common

technique in computer science. It originated when many computers did not have a

hardware multiply instruction; the series of products i × r for i = 0, . . . , n could

more efficiently be computed by repeated addition. Reduction in strength can be

done in various ways; we shall see many instances of removing append.

Consing to an accumulator produces the result in reverse. If that forces the use

of an extra list reversal then the iterative function may be much slower than the

recursive one.

III Foundations of Computer Science 36

Slide 309

Lists, Strings and Characters

character constants #"A" #"\"" . . .

string constants "" "B" "Oh, no!" . . .

explode(s) list of the characters in string s

implode(l) string made of the characters in list l

size(s) number of chars in string s

s1^s2 concatenation of strings s1 and s2

Strings are provided in most programming languages to allow text processing.

Strings are essential for communication with users. Even a purely numerical pro-

gram formats its results ultimately as strings.

The functions explode and implode convert between strings and lists of char-

acters. In a few programming languages, strings simply are lists of characters, but

this is poor design. Strings are an abstract concept in themselves. Treating them as

lists leads to clumsy and inefficient code.

Similarly, characters are not strings of size one, but are a primitive concept.

Character constants in ML have the form #"c", where c is any character. For

example, the comma character is #",". Special characters are coded using es-

cape sequences involving the backslash character; among many others, a dou-

ble quote is written #"\"" and the newline character is written #"\n". The

same escape sequences are permitted in string constants. For example, the string

"I\nLIKE\nCHEESE\n" represents three text lines.

In addition to the operators described above, the relations < <= > >= work for

strings and yield alphabetic order (more precisely, lexicographic order with respect

to ASCII character codes).

III Foundations of Computer Science 37

Slide 310

Syntax You Must Know

Declarations

fun Id Pat1 = E1 | ... | Id Patn = En

Expressions

[]

[E1, ..., En]

In this lecture, the syntax of a function declaration has been generalised. A

function declaration can consist of any number of separate clauses, each with its

own pattern describing the argument. These patterns are matched from left to right

when the function is actually called.

A special syntax for list expressions has also been introduced.

III Foundations of Computer Science 38

Learning guide. Related material is in ML for the Working Programmer, pages

69–80.

Exercise 3.1 Code a recursive function to compute the sum of a list’s elements.

Then code an iterative version and comment on the improvement in efficiency.

Exercise 3.2 Code a function to return the last element of a non-empty list. How

efficiently can this be done?

Exercise 3.3 Code a function to return the list consisting of the even-numbered

elements of the list given as its argument. For example, given [a, b, c, d] it should

return [b, d].

Exercise 3.4 Consider the polymorphic types in these two function declarations:

fun id x = x;

> val id = fn: 'a -> 'a

fun loop x = loop x;

> val loop = fn: 'a -> 'b

Explain why these types make logical sense, preventing run time type errors, even

for expressions like id [id [id 0]] or loop true / loop 3.

Exercise 3.5 Code a function tails to return the list of the tails of its argument.

For example, given [1, 2, 3] it should return [[1, 2, 3], [2, 3], [3], []].

IV Foundations of Computer Science 39

Slide 401

List Utilities: take and drop

Removing the first i elements

fun take ([], _) = []

| take (x::xs, i) = if i>0

then x :: take(xs, i-1)

else [];

fun drop ([], _) = []

| drop (x::xs, i) = if i>0 then drop(xs,i-1)

else x::xs;

This lecture examines more list utilities, illustrating more patterns of recursion,

and concludes with a small program for making change.

The functions take and drop divide a list into parts, returning or discarding the

first i elements.

xs = [x0, . . . , xi−1
︸ ︷︷ ︸

take(xs, i)

, xi , . . . , xn−1
︸ ︷︷ ︸

drop(xs, i)

]

Applications of take and drop will appear in future lectures. Typically, they divide

a collection of items into equal parts for recursive processing.

The special pattern variable _ appears in both functions. This wildcard pattern

matches anything. We could have written i in both positions, but the wildcard

reminds us that the relevant clause ignores this argument.

Function take is not iterative, but making it so would not improve its efficiency.

The task requires copying up to i list elements, which must take O(i) space and

time.

Function drop simply skips over i list elements. This requires O(i) time but

only constant space. It is iterative and much faster than take. Both functions use

O(i) time, but skipping elements is faster than copying them: drop’s constant factor

is smaller.

Both functions take a list and an integer, returning a list of the same type. So

their type is ’a list * int -> ’a list.

IV Foundations of Computer Science 40

Slide 402

Linear Search

find x in list [x1, . . . , xn] by comparing with each element

obviously O(n) TIME

simple & general

ordered searching needs only O(log n)

indexed lookup needs only O(1)

Linear search is the obvious way to find a desired item in a collection: simply

look through all the items, one at a time. If x is in the list, then it will be found in

n/2 steps on average, and even the worst case is obviously O(n).

Large collections of data are usually ordered or indexed so that items can be

found in O(log n) time, which is exponentially better than O(n). Even O(1) is

achievable (using a hash table), though subject to the usual proviso that machine

limits are not exceeded.

Efficient indexing methods are of prime importance: consider Web search en-

gines. Nevertheless, linear search is often used to search small collections because

it is so simple and general, and it is the starting point for better algorithms.

IV Foundations of Computer Science 41

Slide 403

Types with Equality

The membership test has a strange polymorphic type.

fun member(x, []) = false

| member(x, y::l) = (x=y) orelse member(x,l);

> val member = fn : ''a * ''a list -> bool

Here, ”a stands for any equality type.

Equality testing is OK for integers but NOT for functions.

All the list functions we have encountered up to now have been polymorphic,

working for lists of any type. Function member uses linear search to report whether

or not x occurs in l. Its polymorphism is restricted to the so-called equality types.

These include integers, strings, booleans, and tuples or lists of other equality types.

Equality testing is not available for every type, however. Functions are values

in ML, and there is no way of comparing two functions that is both practical and

meaningful. Abstract types can be declared in ML, hiding their internal representa-

tion, including its equality test. Equality is not even allowed for type real, making

you write instead Real.==(x,y), though some ML systems ignore this rule.

We shall discuss function values and abstract types later.

If a function’s type contains equality type variables, such as ’’a, ’’b, then it

uses polymorphic equality testing.

IV Foundations of Computer Science 42

Slide 404

Equality Polymorphism

fun inter([], ys) = []

| inter(x::xs, ys) =

if member(x,ys) then x::inter(xs, ys)

else inter(xs, ys);

> val inter = fn: ''alist * ''alist -> ''alist

ML notices that inter uses equality indirectly, by member.

ML will OBJECT if we apply these functions to non-equality types.

Function inter computes the ‘intersection’ of two lists, returning the list of

elements common to both. It calls member. The equality type variables propagate:

the intersection function also has them even though its use of equality is indirect.

Trying to apply member or inter to a list of functions causes ML to complain of a

type error. It does so at compile time: it detects the errors by types alone, without

executing the offending code.

Equality polymorphism is a contentious feature. Some researchers complain

that it makes ML too complicated and leads programmers to use linear search ex-

cessively. The functional programming language Haskell generalizes the concept,

allowing programmers to introduce new classes of types supporting any desired

collection of operations.

IV Foundations of Computer Science 43

Slide 405

Building a List of Pairs

fun zip (x::xs,y::ys) = (x,y) :: zip(xs,ys)

| zip _ = [];

[x1, . . . , xn]
[y1, . . . , yn]

}

7−→ [(x1, y1), . . . , (xn, yn)]

The wildcard pattern (_) matches anything.

THE PATTERNS ARE TESTED IN ORDER.

A list of pairs of the form [(x1, y1), . . . , (xn, yn)] associates each xi with yi .

Conceptually, a telephone directory could be regarded as such a list, where xi ranges

over names and yi over the corresponding telephone number. Linear search in such

a list can find the yi associated with a given xi , or vice versa—very slowly.

In other cases, the (xi , yi) pairs might have been generated by applying a func-

tion to the elements of another list [z1, . . . , zn].
The functions zip and unzip build and take apart lists of pairs: zip pairs up

corresponding list elements and unzip inverts this operation. Their types reflect

what they do:

zip : ('a list * 'b list) -> ('a * 'b) list

unzip : ('a * 'b) list -> ('a list * 'b list)

If the lists are of unequal length, zip discards surplus items at the end of the longer

list. Its first pattern only matches a pair of non-empty lists. The second pattern is

just a wildcard and could match anything. ML tries the clauses in the order given,

so the first pattern is tried first. The second only gets arguments where at least one

of the lists is empty.

IV Foundations of Computer Science 44

Slide 406

Building a Pair of Results

fun unzip [] = ([],[])

| unzip ((x,y)::pairs) =

let val (xs,ys) = unzip pairs

in (x::xs, y::ys)

end;

fun revUnzip ([], xs, ys) = (xs,ys)

| revUnzip ((x,y)::pairs, xs, ys) =

revUnzip(pairs, x::xs, y::ys);

Given a list of pairs, unzip has to build two lists of results, which is awkward

using recursion. The version shown about uses the local declaration let D in E

end, where D consists of declarations and E is the expression that can use them.

The let-construct counts as an expression and can be used (perhaps wrapped within

parentheses) wherever an expression is expected.

Note especially the declaration

val (xs,ys) = unzip pairs

which binds xs and ys to the results of the recursive call. In general, the declaration

val P = E matches the pattern P against the value of expression E . It binds all

the variables in P to the corresponding values.

Here is a version of unzip that replaces the local declaration by a function

(conspair) for taking apart the pair of lists in the recursive call. It defines the same

computation as the previous version of unzip and is possibly clearer, but not every

local declaration can be eliminated as easily.

fun conspair ((x,y), (xs,ys)) = (x::xs, y::ys);

fun unzip [] = ([],[])

| unzip(xy::pairs) = conspair(xy, unzip pairs);

Making the function iterative yields revUnzip above, which is very simple. It-

eration can construct many results at once in different argument positions. Both

output lists are built in reverse order, which can be corrected by reversing the in-

put to revUnzip. The total costs will probably exceed those of unzip despite the

advantages of iteration.

IV Foundations of Computer Science 45

Slide 407

An Application: Making Change

fun change (till, 0) = []

| change (c::till, amt) =

if amt<c then change(till, amt)

else c :: change(c::till, amt-c)

> Warning: pattern matching is not exhaustive

> val change = fn : int list * int -> int list

• The recursion terminates when amt = 0.

• Tries the largest coin first to use large coins.

• The algorithm is greedy, and it CAN FAIL!

The till has unlimited supplies of coins. The largest coins should be tried first,

to avoid giving change all in pennies. The list of legal coin values, called till, is

given in descending order, such as 50, 20, 10, 5, 2 and 1. (Recall that the head of

a list is the element most easily reached.) The code for change is based on simple

observations.

• Change for zero consists of no coins at all. (Note the pattern of 0 in the first

clause.)

• For a nonzero amount, try the largest available coin. If it is small enough, use

it and decrease the amount accordingly.

• Exclude from consideration any coins that are too large.

Although nobody considers making change for zero, this is the simplest way to

make the algorithm terminate. Most iterative procedures become simplest if, in

their base case, they do nothing. A base case of one instead of zero is often a sign

of a novice programmer.

The function can terminate either with success or failure. It fails by raising ex-

ception Match, signifying that no pattern matches, namely if till becomes empty

while amt is still nonzero. (Exceptions will be discussed later.)

Unfortunately, failure can occur even when change can be made. The greedy

‘largest coin first’ approach is to blame. Suppose we have coins of values 5 and 2,

and must make change for 6; the only way is 6 = 2 + 2 + 2, ignoring the 5. Greedy

algorithms are often effective, but not here.

IV Foundations of Computer Science 46

Slide 408

ALL Ways of Making Change

fun change (till, 0) = [[]]

| change ([], amt) = []

| change (c::till, amt) =

if amt<c then change(till, amt)

else

let fun allc [] = []

| allc(cs::css) = (c::cs)::allc css

in allc (change(c::till, amt-c)) @

change(till, amt)

end;

Now generalize the problem to return the list of all possible ways of making

change. Look at the type: the result is now a list of lists.

> change : int list * int -> int list list

The code will never raise exceptions. It expresses failure by returning an empty

list of solutions: it returns [] if the till is empty and the amount is nonzero.

If the amount is zero, then there is only one way of making change; the result

should be [[]]. This is success in the base case.

In nontrivial cases, there are two sources of solutions: to use a coin (if possible)

and decrease the amount accordingly, or to remove the current coin value from

consideration.

The function allc is declared locally in order to make use of c, the current coin.

It adds an extra c to all the solutions returned by the recursive call to make change

for amt - c.

Observe the naming convention: cs is a list of coins, while css is a list of such

lists. The trailing ‘s’ is suggestive of a plural.

This complicated program, and the even trickier one on the next slide, are in-

cluded as challenges. Are you enthusiastic enough to work them out? We shall

revisit the ‘making change’ task later to illustrate exception-handling.

IV Foundations of Computer Science 47

Slide 409

ALL Ways of Making Change — Faster!

fun change(till, 0, chg, chgs) = chg::chgs

| change([], amt, chg, chgs) = chgs

| change(c::till, amt, chg, chgs) =

if amt<0 then chgs

else change(c::till, amt-c, c::chg,

change(till, amt, chg, chgs))

We’ve added another accumulating parameter!

Repeatedly improving simple code is called stepwise refinement.

Two extra arguments eliminate many :: and append operations from the pre-

vious slide’s change function. The first, chg, accumulates the coins chosen so far;

one evaluation of c::chg replaces many evaluations of allc. The second, chgs,

accumulates the list of solutions so far; it avoids the need for append. This version

runs several times faster than the previous one.

Making change is still extremely slow for an obvious reason: the number of

solutions grows rapidly in the amount being changed. Using 50, 20, 10, 5, 2 and 1,

there are 4366 ways of expressing 99.

Our three change functions illustrate a basic technique: program development

by stepwise refinement. Begin by writing a very simple program and add require-

ments individually. Add efficiency refinements last of all. Even if the simpler

program cannot be included in the next version and has to be discarded, one has

learned about the task by writing it.

IV Foundations of Computer Science 48

Slide 410

Syntax You Must Know

Declarations

val Pat = E

Expressions

let D in E end

Value declarations have been generalised in this lecture: a pattern can be given

on the left-hand side rather than just an identifier. Then the expression E , once eval-

uated, is matched against this pattern (in case of failure, an exception will occur).

This version takes apart in a structured value.

The local declaration let D in E end embeds the declaration D within the

expression E . It is useful within a function, to perform intermediate computations

using the arguments. D can be a single value or function declaration, or a long

series of declarations.1

1A series of declarations, each optionally terminated using a semicolon, is actually regarded as a

single declaration in ML.

IV Foundations of Computer Science 49

Learning guide. Related material is in ML for the Working Programmer, pages

82-107, though you may want to skip some of the harder examples.

Exercise 4.1 Code a function to implement set union, by analogy with inter

above. It should avoid introducing repetitions, for example the union of the lists

[4,7,1] and [6,4,7] should be [1,6,4,7] (though the order does not matter).

Exercise 4.2 Code a function that takes a list of integers and returns two lists, the

first consisting of all nonnegative numbers found in the input and the second con-

sisting of all the negative numbers.

Exercise 4.3 How does this version of zip differ from the one above?

fun zip (x::xs,y::ys) = (x,y) :: zip(xs,ys)

| zip ([], []) = [];

Exercise 4.4 What assumptions do the ‘making change’ functions make about the

variables till and amt? Describe what could happen if these assumptions were

violated.

Exercise 4.5 Show that the number of ways of making change for n (ignoring or-

der) is O(n) if there are two legal coin values. What if there are three, four, . . . coin

values?

Exercise 4.6 We know nothing about the functions f and g other than their poly-

morphic types:

> val f = fn: 'a * 'b -> 'b * 'a

> val g = fn: 'a -> 'a list

Suppose that f(1, true) and g 0 are evaluated and return their results. State, with

reasons, what you think the resulting values will be.

V Foundations of Computer Science 50

Slide 501

Sorting: Arranging Items into Order

a few applications:

• fast search

• fast merging

• finding duplicates

• inverting tables

• graphics algorithms

Sorting is perhaps the most deeply studied aspect of algorithm design. Knuth’s

series The Art of Computer Programming devotes an entire volume to sorting and

searching [5]! Sedgewick [10] also covers sorting. Sorting has countless applica-

tions.

Sorting a collection allows items to be found quickly. Recall that linear search

requires O(n) steps to search among n items. A sorted collection admits binary

search, which requires only O(log n) time. The idea of binary search is to compare

the item being sought with the middle item (in position n/2) and then to discard

either the left half or the right, depending on the result of the comparison. Binary

search needs arrays or trees, not lists; we shall come to binary search trees later.

Two sorted files can quickly be merged to form a larger sorted file. Other appli-

cations include finding duplicates: after sorting, they are adjacent.

A telephone directory is sorted alphabetically by name. The same information

can instead be sorted by telephone number (useful to the police) or by street address

(useful to junk-mail firms). Sorting information in different ways gives it different

applications.

Common sorting algorithms include insertion sort, quicksort, mergesort and

heapsort. We shall consider the first three of these. Each algorithm has its advan-

tages.

As a concrete basis for comparison, runtimes are quoted for DECstation com-

puters. (These were based on the MIPS chip, an early RISC design.)

V Foundations of Computer Science 51

Slide 502

How Fast Can We Sort?

typically count comparisons C(n)

there are n! permutations of n elements

each comparison eliminates half of the permutations

2C(n) ≥ n!,
therefore C(n) ≥ log(n!) ≈ n log n − 1.44n

The usual measure of efficiency for sorting algorithms is the number of com-

parison operations required. Mergesort requires only O(n log n) comparisons to

sort an input of n items. It is straightforward to prove that this complexity is the

best possible [2, pages 86–7]. There are n! permutations of n elements and each

comparison distinguishes two permutations. The lower bound on the number of

comparisons, C(n), is obtained by solving 2C(n) ≥ n!; therefore C(n) ≥ log(n!) ≈
n log n − 1.44n.

In order to compare the sorting algorithms, we use the following source of

pseudo-random numbers [8]. Never mind how this works: generating statistically

good random numbers is hard. Much effort has gone into those few lines of code.

local val a = 16807.0 and m = 2147483647.0

in fun nextrandom seed =

let val t = a*seed

in t - m * real(floor(t/m)) end

and truncto k r = 1 + floor((r / m) * (real k))

end;

We bind the identifier rs to a list of 10,000 random numbers.

fun randlist (n,seed,seeds) =

if n=0 then (seed,seeds)

else randlist(n-1, nextrandom seed, seed::seeds);

val (seed,rs) = randlist(10000, 1.0, []);

V Foundations of Computer Science 52

Slide 503

Insertion Sort

Insert does n/2 comparisons on average

fun ins (x:real, []) = [x]

| ins (x:real, y::ys) =

if x<=y then x::y::ys

else y::ins(x,ys);

Insertion sort takes O(n2) comparisons on average

fun insort [] = []

| insort (x::xs) = ins(x, insort xs);

174 seconds to sort 10,000 random numbers

Items from the input are copied one at a time to the output. Each new item is

inserted into the right place so that the output is always in order.

We could easily write iterative versions of these functions, but to no purpose.

Insertion sort is slow because it does O(n2) comparisons (and a lot of list copying),

not because it is recursive. Its quadratic runtime makes it nearly useless: it takes

174 seconds for our example while the next-worst figure is 1.4 seconds.

Insertion sort is worth considering because it is easy to code and illustrates the

concepts. Two efficient sorting algorithms, mergesort and heapsort, can be regarded

as refinements of insertion sort.

The type constraint :real resolves the overloading of the <= operator; recall

Lect. 2. All our sorting functions will need a type constraint somewhere. The no-

tion of sorting depends upon the form of comparison being done, which in turn

determines the type of the sorting function.

V Foundations of Computer Science 53

Slide 504

Quicksort: The Idea

• choose a pivot element, a

• Divide: partition the input into two sublists:

– those at most a in value

– those exceeding a

• Conquer using recursive calls to sort the sublists

• Combine the sorted lists by appending one to the other

Quicksort was invented by C. A. R. Hoare, who now works at Microsoft Re-

search, Cambridge. Quicksort works by divide and conquer, a basic algorithm

design principle. Quicksort chooses from the input some value a, called the pivot.

It partitions the remaining items into two parts: those ≤ a, and those > a. It sorts

each part recursively, then puts the smaller part before the greater.

The cleverest feature of Hoare’s algorithm was that the partition could be done

in place by exchanging array elements. Quicksort was invented before recursion

was well known, and people found it extremely hard to understand. As usual, we

shall consider a list version based on functional programming.

V Foundations of Computer Science 54

Slide 505

Quicksort: The Code

fun quick [] = []

| quick [x] = [x]

| quick (a::bs) =

let fun part (l,r,[]) : real list =

(quick l) @ (a :: quick r)

| part (l, r, x::xs) =

if x<=a then part(x::l, r, xs)

else part(l, x::r, xs)

in part([],[],bs) end;

0.74 seconds to sort 10,000 random numbers

Our ML quicksort copies the items. It is still pretty fast, and it is much easier to

understand. It takes roughly 0.74 seconds to sort rs, our list of random numbers.

The function declaration consists of three clauses. The first handles the empty

list; the second handles singleton lists (those of the form [x]); the third handles

lists of two or more elements. Often, lists of length up to five or so are treated as

special cases to boost speed.

The locally declared function part partitions the input using a as the pivot. The

arguments l and r accumulate items for the left (≤ a) and right (> a) parts of the

input, respectively.

It is not hard to prove that quicksort does n log n comparisons, in the average

case [2, page 94]. With random data, the pivot usually has an average value that

divides the input in two approximately equal parts. We have the recurrence T (1) =
1 and T (n) = 2T (n/2) + n, which is O(n log n). In our example, it is about 235

times faster than insertion sort.

In the worst case, quicksort’s running time is quadratic! An example is when

its input is almost sorted or reverse sorted. Nearly all of the items end up in one

partition; work is not divided evenly. We have the recurrence T (1) = 1 and T (n +
1) = T (n)+n, which is O(n2). Randomizing the input makes the worst case highly

unlikely.

V Foundations of Computer Science 55

Slide 506

Append-Free Quicksort

fun quik([], sorted) = sorted

| quik([x], sorted) = x::sorted

| quik(a::bs, sorted) =

let fun part (l, r, []) : real list =

quik(l, a :: quik(r,sorted))

| part (l, r, x::xs) =

if x<=a then part(x::l, r, xs)

else part(l, x::r, xs)

in part([],[],bs) end;

0.53 seconds to sort 10,000 random numbers

The list sorted accumulates the result in the combine stage of the quicksort al-

gorithm. We have again used the standard technique for eliminating append. Call-

ing quik(xs,sorted) reverses the elements of xs and prepends them to the list

sorted.

Looking closely at part, observe that quik(r,sorted) is performed first. Then

a is consed to this sorted list. Finally, quik is called again to sort the elements of l.

The speedup is significant. An imperative quicksort coded in Pascal (taken from

Sedgewick [10]) is just slightly faster than function quik. The near-agreement is

surprising because the computational overheads of lists exceed those of arrays. In

realistic applications, comparisons are the dominant cost and the overheads matter

even less.

V Foundations of Computer Science 56

Slide 507

Merging Two Lists

Merge joins two sorted lists

fun merge([],ys) = ys : real list

| merge(xs,[]) = xs

| merge(x::xs, y::ys) =

if x<=y then x::merge(xs, y::ys)

else y::merge(x::xs, ys);

Generalises Insert to two lists

Does at most m + n − 1 comparisons

Merging means combining two sorted lists to form a larger sorted list. It does at

most m + n comparisons, where m and n are the lengths of the input lists. If m and

n are roughly equal then we have a fast way of constructing sorted lists; if n = 1

then merging degenerates to insertion, doing much work for little gain.

Merging is the basis of several sorting algorithms; we look at a divide-and-

conquer one. Mergesort is seldom found in conventional programming because it is

hard to code for arrays; it works nicely with lists. It divides the input (if non-trivial)

into two roughly equal parts, sorts them recursively, then merges them.

Function merge is not iterative; the recursion is deep. An iterative version is of

little benefit for the same reasons that apply to append (Lect. 3).

V Foundations of Computer Science 57

Slide 508

Top-down Merge sort

fun tmergesort [] = []

| tmergesort [x] = [x]

| tmergesort xs =

let val k = length xs div 2

in merge(tmergesort (take(xs, k)),

tmergesort (drop(xs, k)))

end;

O(n log n) comparisons in worst case

1.4 seconds to sort 10,000 random numbers

Mergesort’s divide stage divides the input not by choosing a pivot (as in

quicksort) but by simply counting out half of the elements. The conquer stage

again involves recursive calls, and the combine stage involves merging. Function

tmergesort takes roughly 1.4 seconds to sort the list rs.

In the worst case, mergesort does O(n log n) comparisons, with the same re-

currence equation as in quicksort’s average case. Because take and drop divide

the input in two equal parts (they differ at most by one element), we always have

T (n) = 2T (n/2) + n.

Quicksort is nearly 3 times as fast in the example. But it risks a quadratic worst

case! Merge sort is safe but slow. So which algorithm is best?

We have seen a top-down mergesort. Bottom-up algorithms also exist. They

start with a list of one-element lists and repeatedly merge adjacent lists until only

one is left. A refinement, which exploits any initial order among the input, is to

start with a list of increasing or decreasing runs of input items.

V Foundations of Computer Science 58

Slide 509

Summary of Sorting Algorithms

Optimal is O(n log n) comparisons

Insertion sort : simple to code; too slow (quadratic) [174 secs]

Quicksort : fast on average; quadratic in worst case [0.53 secs]

Mergesort : optimal in theory; often slower than quicksort [1.4 secs]

MATCH THE ALGORITHM TO THE APPLICATION

Quicksort’s worst case cannot be ignored. For large n, a complexity of O(n2)

is catastrophic. Mergesort has an O(n log n) worst case running time, which is

optimal, but it is typically slower than quicksort for random data.

Non-comparison sorting deserves mentioning. We can sort a large number of

small integers using their radix representation in O(n) time. This result does not

contradict the comparison-counting argument because comparisons are not used at

all. Linear time is achievable only if the greatest integer is fixed in advance; as n

goes to infinity, increasingly many of the items are the same. It is a simple special

case.

Many other sorting algorithms exist. A few are outlined in the exercises below.

V Foundations of Computer Science 59

Slide 510

Syntax You DON’T Need to Know

Declarations

local D1 in D2 end

The local declaration local D1 in D2 end embeds the declaration D1 within

another declaration, D2. The effect is the same as writing the two declarations, D1

and D2, one after another, except that D1 has no effect outside the local . . . end

brackets. In the example above, the declarations of a and m were kept local to the

declaration of the function nextrandom.

While occasionally useful, this declaration form is never actually necessary.

V Foundations of Computer Science 60

Learning guide. Related material is in ML for the Working Programmer, pages

108–113. The ultimate source is Sorting and Searching, volume 3 of The Art of

Computer Programming by Donald E. Knuth. Look here for the beautiful Fibonacci

sort, designed in the days when truly large amounts of data could only be stored on

magnetic tape.

Exercise 5.1 Another sorting algorithm (selection sort) consists of looking at the

elements to be sorted, identifying and removing a minimal element, which is placed

at the head of the result. The tail is obtained by recursively sorting the remaining

elements. State, with justification, the time complexity of this approach.

Exercise 5.2 Implement selection sort (see previous exercise) using ML.

Exercise 5.3 Another sorting algorithm (bubble sort) consists of looking at adja-

cent pairs of elements, exchanging them if they are out of order and repeating this

process until no more exchanges are possible. State, with justification, the time

complexity of this approach.

Exercise 5.4 Implement bubble sort (see previous exercise) using ML.

VI Foundations of Computer Science 61

Slide 601

An Enumeration Type

datatype vehicle = Bike

| Motorbike

| Car

| Lorry;

• We have declared a new type, namely vehicle,

• . . . along with four new constants.

• They are the constructors of the datatype.

The datatype declaration adds a new type to our ML session. Type vehicle

is as good as any built-in type and even admits pattern-matching. The four new

identifiers of type vehicle are called constructors.

We could represent the various vehicles by the numbers 0–3. However, the code

would be hard to read and even harder to maintain. Consider adding Tricycle as

a new vehicle.If we wanted to add it before Bike, then all the numbers would have

to be changed. Using datatype, such additions are trivial and the compiler can (at

least sometimes) warn us when it encounters a function declaration that doesn’t yet

have a case for Tricycle.

Representing vehicles by strings like "Bike", "Car", etc., is also bad. Com-

paring string values is slow and the compiler can’t warn us of misspellings like

"MOtorbike": they will make our code fail.

Most programming languages allow the declaration of types like vehicle. Be-

cause they consist of a series of identifiers, they are called enumeration types. Other

common examples are days of the week or colours. The compiler chooses the inte-

gers for us; type-checking prevents us from confusing Bike with Red or Sunday.

VI Foundations of Computer Science 62

Slide 602

Declaring a Function on Vehicles

fun wheels Bike = 2

| wheels Motorbike = 2

| wheels Car = 4

| wheels Lorry = 18;

> val wheels = fn : vehicle -> int

• Datatype constructors can be used in patterns.

• Pattern-matching is fast, even complicated nested patterns.

The beauty of datatype declarations is that the new types behave as if they were

built into ML. Type-checking catches common errors, such as mixing up different

datatypes in a function like wheels, as well as missing and redundant patterns.

Note: ML does not always catch misspelt constructors. If one appears as the

last pattern, it might be taken as a variable name. My book gives an example [9,

page 131].

VI Foundations of Computer Science 63

Slide 603

A Datatype with Constructor Functions

datatype vehicle = Bike

| Motorbike of int

| Car of bool

| Lorry of int;

• Constructor functions (like Lorry) make distinct values.

• Different kinds of vehicle can belong to one list:

[Bike, Car true, Motorbike 450];

ML generalizes the notion of enumeration type to allow data to be associated

with each constructor. The constructor Bike is a vehicle all by itself, but the other

three constructors are functions for creating vehicles.

Since we might find it hard to remember what the various int and bool com-

ponents are for, it is wise to include comments in complex declarations. In ML,

comments are enclosed in the brackets (* and *). Programmers should comment

their code to explain design decisions and key features of the algorithms (sometimes

by citing a reference work).

datatype vehicle = Bike

| Motorbike of int (*engine size in CCs*)

| Car of bool (*true if a Reliant Robin*)

| Lorry of int; (*number of wheels*)

The list shown on the slide represents a bicycle, a Reliant Robin and a large motor-

bike. It can be almost seen as a mixed-type list containing integers and booleans.

It is actually a list of vehicles; datatypes lessen the impact of the restriction that all

list elements must have the same type.

VI Foundations of Computer Science 64

Slide 604

A Finer Wheel Computation

fun wheels Bike = 2

| wheels (Motorbike _) = 2

| wheels (Car robin) =

if robin then 3 else 4

| wheels (Lorry w) = w;

> val wheels = fn : vehicle -> int

This function consists of four clauses:

• A Bike has two wheels.

• A Motorbike has two wheels.

• A Reliant Robin has three wheels; all other cars have four.

• A Lorry has the number of wheels stored with its constructor.

There is no overlap between the Motorbike and Lorry cases. Although

Motorbike and Lorry both hold an integer, ML takes the constructor into account.

A Motorbike is distinct from any Lorry.

Vehicles are one example of a concept consisting of several varieties with dis-

tinct features. Most programming languages can represent such concepts using

something analogous to datatypes. (They are sometimes called union types or vari-

ant records, whose tag fields play the role of the constructors.)

A pattern may be built from the constructors of several datatypes, including

lists. A pattern may also contain integer and string constants. There is no limit to

the size of patterns or the number of clauses in a function declaration. Most ML

systems perform pattern-matching efficiently.

VI Foundations of Computer Science 65

Slide 605

Error Handling: Exceptions

During a computation, what happens if something goes WRONG?

• (Arithmetic overflow or division by zero are hard to predict.)

Exception-handling lets us recover gracefully.

• Raising an exception abandons the current computation.

• Handling the exception attempts an alternative computation.

• The raising and handling can be far apart in the code.

• Errors of different sorts can be handled separately.

Exceptions are necessary because it is not always possible to tell in advance

whether or not a search will lead to a dead end or whether a numerical calculation

will encounter errors such as overflow or divide by zero. Rather than just crashing,

programs should check whether things have gone wrong, and perhaps attempt an

alternative computation (perhaps using a different algorithm or higher precision).

A number of modern languages provide exception handling.

VI Foundations of Computer Science 66

Slide 606

Exceptions in ML

exception Failure; Declaring

exception NoChange of int;

raise Failure Raising

raise (NoChange n)

E handle Failure => E1 Handling

E handle Pat1 => E1 |...| Patn => En

Each exception declaration introduces a distinct sort of exception, which can be

handled separately from others. If E raises an exception, then its evaluation has

failed; handling an exception means evaluating another expression and returning its

value instead. One exception handler can specify separate expressions for different

sorts of exceptions.

Exception names are constructors of the special datatype exn. This is a pecu-

liarity of ML that lets exception-handlers use pattern-matching. Note that exception

Failure is just an error indication, while NoChange n carries further information:

the integer n.

The effect of raise E is to jump to the most recently-encountered handler

that matches E . The matching handler can only be found dynamically (during

execution); contrast with how ML associates occurrences of identifiers with their

matching declarations, which does not require running the program.

One criticism of ML’s exceptions is that—unlike the Java language —nothing

in a function declaration indicates which exceptions it might raise. One alternative

to exceptions is to instead return a value of datatype option.

datatype 'a option = NONE | SOME of 'a;

NONE signifies error, while SOME x returns the solution x . This approach looks clean,

but the drawback is that many places in the code would have to check for NONE.

VI Foundations of Computer Science 67

Slide 607

Making Change with Exceptions

exception Change;

fun change (till, 0) = []

| change ([], amt) = raise Change

| change (c::till, amt) =

if amt<0 then raise Change

else (c :: change(c::till, amt-c))

handle Change => change(till, amt);

> val change = fn : int list * int -> int list

In Lect. 4 we considered the problem of making change. The greedy algorithm

presented there could not express 6 using 5 and 2 because it always took the largest

coin. Returning the list of all possible solutions avoids that problem rather expen-

sively: we only need one solution.

Using exceptions, we can code a backtracking algorithm: one that can undo past

decisions if it comes to a dead end. The exception Change is raised if we run out of

coins (with a non-zero amount) or if the amount goes negative. We always try the

largest coin, but enclose the recursive call in an exception handler, which undoes

the choice if it goes wrong.

Carefully observe how exceptions interact with recursion. The exception han-

dler always undoes the most recent choice, leaving others possibly to be undone

later. If making change really is impossible, then eventually exception Change will

be raised with no handler to catch it, and it will be reported at top level.

VI Foundations of Computer Science 68

Slide 608

Making Change: A Trace

change([5,2],6)

5::change([5,2],1) handle C=>change([2],6)

5::(5::change([5,2],~4) handle C=>change([2],1))

handle C=>change([2],6)

5::change([2],1) handle C=>change([2],6)

5::(2::change([2],~1) handle C=>change([],1))

handle C=>change([2],6)

5::(change([],1)) handle C=>change([2],6)

change([2],6)

Here is the full execution. Observe how the exception handlers nest and how

they drop away once the given expression has returned a value.

change([5,2],6)

5::change([5,2],1) handle C => change([2],6)

5::(5::change([5,2],~4) handle C => change([2],1))

handle C => change([2],6)

5::change([2],1) handle C => change([2],6)

5::(2::change([2],~1) handle C => change([],1))

handle C => change([2],6)

5::(change([],1)) handle C => change([2],6)

change([2],6)

2::change([2],4) handle C => change([],6)

2::(2::change([2],2) handle C => change([],4)) handle ...

2::(2::(2::change([2],0) handle C => change([],2)) handle C => ...)

2::(2::[2] handle C => change([],4)) handle C => change([],6)

2::[2,2] handle C => change([],6)

[2,2,2]

VI Foundations of Computer Science 69

Slide 609

Binary Trees, a Recursive Datatype

datatype 'a tree = Lf

| Br of 'a * 'a tree * 'a tree

1

2
 3

4
 5

Br(1, Br(2, Br(4, Lf, Lf),

Br(5, Lf, Lf)),

Br(3, Lf, Lf))

A data structure with multiple branching is called a tree. Trees can represent

mathematical expressions, logical formulae, computer programs, the phrase struc-

ture of English sentences, etc.

Binary trees are nearly as fundamental as lists. They can provide efficient stor-

age and retrieval of information. In a binary tree, each node is empty (L f), or is a

branch (Br) with a label and two subtrees.

ML lists are a datatype and could be declared as follows:

datatype 'a list = nil

| cons of 'a * 'a list

We could even declare :: as an infix constructor. The only thing we could not

define is the [. . .] notation, which is part of the ML grammar.

A recursive type does not have to be polymorphic. For example, here is a simple

datatype of tree shapes with no attached data:

datatype shape = Null

| Join of shape * shape

The datatype ’a option (mentioned above) is polymorphic, but not recursive.

VI Foundations of Computer Science 70

Slide 610

Basic Properties of Binary Trees

fun count Lf = 0 # of branch nodes

| count(Br(v,t1,t2)) = 1 + count t1 + count t2

fun depth Lf = 0 length of longest path

| depth(Br(v,t1,t2)) = 1 +

Int.max(depth t1, depth t2)

count(t) ≤ 2depth(t) − 1

Functions on trees are expressed recursively using pattern-matching. Both func-

tions above are analogous to length on lists. Here is a third measure of a tree’s size:

fun leaves Lf = 1

| leaves (Br(v,t1,t2)) = leaves t1 + leaves t2;

This function is redundant because of a basic fact about trees, which can be proved

by induction: for every tree t , we have leaves(t) = count(t) + 1. The inequality

shown on the slide also has an elementary proof by induction.

A tree of depth 20 can store 220 − 1 or approximately one million elements.

The access paths to these elements are short, particularly when compared with a

million-element list!

VI Foundations of Computer Science 71

Slide 611

Syntax You Must Know

Declarations

datatype T ypeSpec = Con1 | ... | Conn

exception Con

Matches

Pat1 => E1 |...| Patn => En

Expressions

raise E

E handle M

A datatype declaration introduces a type, which may be a name like vehicle

or a type operator like ’a option. In the latter case, more than one type operand is

possible, as in (’a,’b) vtree. Here Con is a constructor specification, either just

Id or Id of T . It is also used when declaring an exception.

A Match associates patterns with expressions.1 A Match forms part of an excep-

tion handler, but we shall see other uses below. It behaves like a function declared

with multiple cases: the patterns are matched one by one against a given value. The

first matching pattern Pati selects the corresponding expression Ei for evaluation.

The general way to raise an exception is raise E because ML exceptions are

simply values. In practice, E is usually just the name of an exception.

An expression of the form E handle M includes an exception handler. If E

raises an exception, then this exception (which is an ML value, remember) is given

to M , which will select another expression to evaluate.

1Match is also the name of a built-in exception. Please do not confuse the two.

VI Foundations of Computer Science 72

Learning guide. Related material is in ML for the Working Programmer, pages

123–147.

Exercise 6.1 Give the declaration of an ML datatype for The days of the week.

Comment on the practicality of such a datatype in a calendar application.

Exercise 6.2 Write an ML function taking a binary tree labelled with integers and

returning their sum.

Exercise 6.3 Examine the following function declaration. What does ftree (1,n)

accomplish?

fun ftree (k,n) =

if n=0 then Lf else Br(k, ftree(2*k, n-1), ftree(2*k+1, n-1));

Exercise 6.4 Give the declaration of an ML datatype for arithmetic expressions that

have the following possibilities: real numbers, variables (represented by strings), or

expressions of the form −E , E + E , E × E .

Exercise 6.5 Continuing the previous exercise, write a function that evaluates an

expression. If the expression contains any variables, your function should raise an

exception indicating the variable name.

VII Foundations of Computer Science 73

Slide 701

Dictionaries

• lookup: find an item in the dictionary

• update (insert): replace (store) an item in the dictionary

• delete: remove an item from the dictionary

• empty: the null dictionary

• Missing: exception for errors in lookup and delete

Ideally, an abstract type should provide these operations

. . . but hide the internal data structures!

A dictionary attaches values to identifiers, called keys. Before choosing the

internal representation for a data structure, you need to specify the full set of oper-

ations. In fact, here we only consider update (associating a value with an identifier)

and lookup (retrieving such a value). Deletion is more difficult and would limit

our choices. Some applications may need additional operations, such as merge

(combining two dictionaries). We shall see that update can be done efficiently in a

functional style, without excessive copying.

An abstract type provides specified operations while hiding low-level details,

such as the data structure used to represent dictionaries. Abstract types can be

declared in any modern programming language. Java’s objects serve this role, as

do ML’s modules. This course does not cover modules, and we simply declare the

dictionary operations individually.

An association list—a list of pairs—is the simplest dictionary representation.

Lookup is by linear search, and therefore slow: O(n). Association lists are only

usable if there are few keys in use. However, they are general in that the keys do

not need a concept of ordering, only equality.

fun lookup ([], a) = raise Missing

| lookup ((x,y)::pairs, a) =

if a=x then y else lookup(pairs, a);

fun update(l, b, y) = (b,y)::l

To enter a new (key, value) pair, simply “cons” it to the list. This takes constant

time, which is the best we could hope for. But the space requirement is huge: linear

in the number of updates, not in the number of distinct keys. Obsolete entries are

VII Foundations of Computer Science 74

never deleted: that would require first finding them, increasing the update time from

O(1) to O(n).

Slide 702

Binary Search Trees

A dictionary associates values (here, numbers) with keys

James, 5

Gordon, 4

Edward, 2

Thomas, 1

Percy, 6Henry, 3

Binary search trees are an important application of binary trees. They work for

keys that have a total ordering, such as strings. Each branch of the tree carries a

(key, value) pair; its left subtree holds smaller keys; the right subtree holds greater

keys. If the tree remains reasonably balanced, then update and lookup both take

O(log n) for a tree of size n. These times hold in the average case; given random

data, the tree is likely to remain balanced.

At a given node, all keys in the left subtree are smaller (or equal) while all trees

in the right subtree are greater.

An unbalanced tree has a linear access time in the worst case. Examples in-

clude building a tree by repeated insertions of elements in increasing or decreasing

order; there is a close resemblance to quicksort. Building a binary search tree, then

converting it to inorder, yields a sorting algorithm called treesort.

Self-balancing trees, such as Red-Black trees, attain O(log n) in the worst case.

They are complicated to implement.

VII Foundations of Computer Science 75

Slide 703

Lookup: Seeks Left or Right

exception Missing of string;

fun lookup (Br ((a,x),t1,t2), b) =

if b < a then lookup(t1, b)

else if a < b then lookup(t2, b)

else x

| lookup (Lf, b) = raise Missing b;

> val lookup = fn : (string * 'a) tree * string

> -> 'a

Guaranteed O(log n) access time if the tree is balanced!

Lookup in the binary search tree goes to the left subtree if the desired key is

smaller than the current one and to the right if it is greater. It raises exception

Missing if it encounters an empty tree.

Since an ordering is involved, we have to declare the functions for a specific

type, here string. Now exception Missing mentions that type: if lookup fails, the

exception returns the missing key. The exception could be eliminated using type

option of Lect. 6, using the constructor NONE for failure.

VII Foundations of Computer Science 76

Slide 704

Update

fun update (Lf, b:string, y) = Br((b,y), Lf, Lf)

| update (Br((a,x),t1,t2), b, y) =

if b<a

then Br ((a,x), update(t1,b,y), t2)

else

if a<b

then Br ((a,x), t1, update(t2,b,y))

else (*a=b*) Br ((a,y),t1,t2);

Also O(log n): it copies the path only, not whole subtrees!

If you are familiar with the usual update operation for this sort of tree, you

may wonder whether it can be implemented in ML, where there is no direct way to

replace part of a data structure by something else.1

The update operation is a nice piece of functional programming. It searches in

the same manner as lookup, but the recursive calls reconstruct a new tree around the

result of the update. One subtree is updated and the other left unchanged. The inter-

nal representation of trees ensures that unchanged parts of the tree are not copied,

but shared. Therefore, update copies only the path from the root to the new node.

Its time and space requirements, for a reasonably balanced tree, are both O(log n).

The comparison between b and a allows three cases:

• smaller: update the left subtree; share the right

• greater: update the right subtree; share the left

• equal: update the label and share both subtrees

Note: in the function definition, (*a=b*) is a comment. Comments in ML are

enclosed in the brackets (* and *).

1Standard ML includes reference types that can be used to define linked data structures, but these

techniques are no longer covered in this course.

VII Foundations of Computer Science 77

Slide 705

Aside: Traversing Trees (3 Methods)

fun preorder Lf = []

| preorder(Br(v,t1,t2)) =

[v] @ preorder t1 @ preorder t2;

fun inorder Lf = []

| inorder(Br(v,t1,t2)) =

inorder t1 @ [v] @ inorder t2;

fun postorder Lf = []

| postorder(Br(v,t1,t2)) =

postorder t1 @ postorder t2 @ [v];

Tree traversal means examining each node of a tree in some order. D. E. Knuth

has identified three forms of tree traversal: preorder, inorder and postorder [6]. We

can code these ‘visiting orders’ as functions that convert trees into lists of labels.

Algorithms based on these notions typically perform some action at each node; the

functions above simply copy the nodes into lists. Consider the tree

A

B C

D E F G

• preorder visits the label first (‘Polish notation’), yielding ABDECFG

• inorder visits the label midway, yielding DBEAFCG

• postorder visits the label last (‘Reverse Polish’), yielding DEBFGCA. You

will be familiar with this concept if you own an RPN calculator.

What is the use of inorder? Consider applying it to a binary search tree: the

result is a sorted list of pairs. We could use this, for example, to merge two binary

search trees. It is not difficult to transform a sorted list of pairs into a binary search

tree.

VII Foundations of Computer Science 78

Slide 706

Efficiently Traversing Trees

fun preord (Lf, vs) = vs

| preord (Br(v,t1,t2), vs) =

v :: preord (t1, preord (t2, vs));

fun inord (Lf, vs) = vs

| inord (Br(v,t1,t2), vs) =

inord (t1, v::inord (t2, vs));

fun postord (Lf, vs) = vs

| postord (Br(v,t1,t2), vs) =

postord (t1, postord (t2, v::vs));

Unfortunately, the functions shown on the previous slide are quadratic in the

worst case: the appends in the recursive calls are inefficient. To correct that prob-

lem, we (as usual) add an accumulating argument. Observe how each function con-

structs its result list and compare with how appends were eliminated from quicksort

in Lect. 5.

One can prove equations relating each of these functions to its counterpart on

the previous slide. For example,

inord(t, vs) = inorder(t)@vs

These three types of tree traversal are related in that all are depth-first. They

each traverse the left subtree in full before traversing the right subtree. Breadth-first

search (Lect. 10) is another possibility. That involves going through the levels of a

tree one at a time.

VII Foundations of Computer Science 79

Slide 707

Arrays

A conventional array is an indexed storage area.

• It is updated in place by the command A[k] := x

• The concept is inherently imperative.

A functional Array is a finite map from integers to data.

• Updating implies copying to return update(A,k,x)

• The new array equals A except that A[k] = x.

Can we do updates efficiently?

The elements of a list can only be reached by counting from the front. Elements

of a tree are reached by following a path from the root. An array hides such struc-

tural matters; its elements are uniformly designated by number. Immediate access

to arbitrary parts of a data structure is called random access.

Arrays are the dominant data structure in conventional programming languages.

The ingenious use of arrays is the key to many of the great classical algorithms, such

as Hoare’s original quicksort (the partition step) and Warshall’s transitive-closure

algorithm.

The drawback is that subscripting is a chief cause of programmer error. That is

why arrays play little role in this introductory course.

Functional arrays are described below in order to illustrate another way of using

trees to organize data. Here is a summary of basic dictionary data structures in order

of decreasing generality and increasing efficiency:

• Linear search: Most general, needing only equality on keys, but inefficient:

linear time.

• Binary search: Needs an ordering on keys. Logarithmic access time in the

average case, but our binary search trees are linear in the worst case.

• Array subscripting: Least general, requiring keys to be integers, but even

worst-case time is logarithmic.

VII Foundations of Computer Science 80

Slide 708

Functional Arrays as Binary Trees

The path to element i follows the binary code for i (its subscript).

2

4
 6

8
 12
 10
 14

3

5
 7

9
 13
 11
 15

1

This simple representation (credited to W. Braun) ensures that the tree is bal-

anced. Complexity of access is always O(log n), which is optimal. For actual

running time, access to conventional arrays is much faster: it requires only a few

hardware instructions. Array access is often taken to be O(1), which (as always)

presumes that hardware limits are never exceeded.

The lower bound for array indices is one. The upper bound starts at zero (which

signifies the empty array) and can grow without limit. Inspection of the diagram

above should make it clear that these trees are always balanced: the left subtree can

have at most one node more than the right subtree, recursively all the way down.

(This assumes that the array is defined for subscripts 1 . . . n with no gaps; an array

defined only for odd numbers, for example, would obviously be unbalanced.)

Important note: the numbers in the diagram above are not the labels of branch

nodes, but indicate the positions of array elements. For example, the label cor-

responding to A[2] is at the position shown. The nodes of a functional array are

labelled with the data we want to store, not with these integers.

VII Foundations of Computer Science 81

Slide 709

The Lookup Function

exception Subscript;

fun sub (Lf, _) = raise Subscript (*Not found!*)

| sub (Br(v,t1,t2), k) =

if k=1 then v

else if k mod 2 = 0

then sub (t1, k div 2)

else sub (t2, k div 2);

The lookup function, sub, divides the subscript by 2 until 1 is reached. If the

remainder is 0 then the function follows the left subtree, otherwise the right. If it

reaches a leaf, it signals error by raising exception Subscript.

Array access can also be understood in terms of the subscript’s binary code.

Because the subscript must be a positive integer, in binary it has a leading one.

Discard this one and reverse the remaining bits. Interpreting zero as left and one as

right yields the path from the root to the subscript.

Popular literature often explains the importance of binary as being led by hard-

ware: because a circuit is either on or off. The truth is almost the opposite. Design-

ers of digital electronics go to a lot of trouble to suppress the continuous behaviour

that would naturally arise. The real reason why binary is important is its role in

algorithms: an if-then-else decision leads to binary branching.

Data structures, such as trees, and algorithms, such as mergesort, use binary

branching in order to reduce a cost from O(n) to O(log n). Two is the smallest

integer divisor that achieves this reduction. (Larger divisors are only occasion-

ally helpful, as in the case of B-trees, where they reduce the constant factor.) The

simplicity of binary arithmetic compared with decimal arithmetic is just another

instance of the simplicity of algorithms based on binary choices.

VII Foundations of Computer Science 82

Slide 710

The Update Function

fun update (Lf, k, w) =

if k = 1 then Br (w, Lf, Lf)

else raise Subscript (*Gap in tree!*)

| update (Br(v,t1,t2), k, w) =

if k = 1 then Br (w, t1, t2)

else if k mod 2 = 0

then Br (v, update(t1, k div 2, w), t2)

else Br (v, t1, update(t2, k div 2, w))

The update function, update, also divides the subscript repeatedly by two.

When it reaches a value of one, it has identified the element position. Then it

replaces the branch node by another branch with the new label.

A leaf may be replaced by a branch, extending the array, provided no inter-

vening nodes have to be generated. This suffices for arrays without gaps in their

subscripting. (The data structure can be modified to allow sparse arrays, where

most subscript positions are undefined.) Exception Subscript indicates that the

subscript position does not exist and cannot be created. This use of exceptions is

not easily replaced by NONE and SOME.

Note that there are two tests involving k = 1. If we have reached a leaf, it

returns a branch, extending the array by one. If we are still at a branch node, then

the effect is to update an existing array element.

A similar function can shrink an array by one.

VII Foundations of Computer Science 83

Learning guide. Related material is in ML for the Working Programmer, pages

148–159.

Exercise 7.1 Draw the binary search tree that arises from successively inserting the

following pairs into the empty tree: (Alice, 6), (Tobias, 2), (Gerald, 8), (Lucy, 9).

Then repeat this task using the order (Gerald, 8), (Alice, 6), (Lucy, 9), (Tobias, 2).

Why are results different?

Exercise 7.2 Code an insertion function for binary search trees. It should resemble

the existing update function except that it should raise the exception Collision if

the item to be inserted is already present.

Exercise 7.3 Continuing the previous exercise, it would be natural for exceptional

Collision to return the value previously stored in the dictionary. Why is that goal

difficult to achieve?

Exercise 7.4 Describe an algorithm for deleting an entry from a binary search tree.

Comment on the suitability of your approach.

Exercise 7.5 Code the delete function outlined in the previous exercise.

Exercise 7.6 Show that the functions preorder, inorder and postorder all re-

quire O(n2) time in the worst case, where n is the size of the tree.

Exercise 7.7 Show that the functions preord, inord and postord all take linear

time in the size of the tree.

Exercise 7.8 Write a function to remove the first element from a functional array.

All the other elements are to have their subscripts reduced by one. The cost of this

operation should be linear in the size of the array.

VIII Foundations of Computer Science 84

Slide 801

Functions as Values

In ML, functions can be

• passed as arguments to other functions,

• returned as results,

• put into lists, trees, etc.,

[fn n => n*2, fn n => n*3, fn k => k+1];

> val it = [fn, fn, fn]: (int -> int) list

• but not tested for equality.

Progress in programming languages can be measured by what abstractions they

admit. Conditional expressions (descended from conditional jumps based on the

sign of some numeric variable) and parametric types such as α list are examples.

The idea that functions could be used as values in a computation arose early, but it

took some time before the idea was fully realized. Many programming languages

let functions be passed as arguments to other functions, but few take the trouble

needed to allow functions to be returned as results.

In mathematics, a functional or higher-order function is a function that operates

on other functions. Many functionals are familiar from mathematics: for example,

the differential operator maps functions to their derivatives, which are also func-

tions. To a mathematician, a function is typically an infinite, uncomputable object.

We use ML functions to represent algorithms. Sometimes they represent infinite

collections of data given by computation rules.

Functions cannot be compared for equality. We could compare the machine

addresses of the compiled code, but that would merely be a test of identity: it

would regard any two separate functions as unequal even if they were compiled

from identical pieces of source code. Such a low-level feature has no place in a

principled language.

If functions are to be regarded as computational values, then we need a notation

for them. The fn-notation expresses a non-recursive function value without giving

the function a name.

VIII Foundations of Computer Science 85

Slide 802

Functions Without Names

fn x => E is the function f such that f (x) = E

The function (fn n => n*2) is a doubling function.

(fn n => n*2);

> val it = fn : int -> int

(fn n => n*2) 17;

> val it = 34 : int

The main purpose of fn-notation is to package up small expressions that are to

be applied repeatedly using some other function. The expression (fn n => n*2)

has the same value as the identifier double, declared as follows:

fun double n = n*2

The fn-notation allows pattern-matching, just as in exception handlers, to ex-

press functions with multiple clauses:

fn P1 => E1 | . . . | Pn => En

This rarely-used expression abbreviates the local declaration

let fun f (P1) = E1 | . . . | f (Pn) = En

in f end

For example, the following declarations are equivalent:

val not = (fn false => true | true => false)

fun not false = true

| not true = false

VIII Foundations of Computer Science 86

Slide 803

Curried Functions

A curried function returns another function as its result.

val prefix = (fn a => (fn b => a^b));

> val prefix = fn: string -> (string -> string)

prefix yields functions of type string -> string.

val promote = prefix "Professor ";

> val promote = fn: string -> string

promote "Mopp";

> "Professor Mopp" : string

Currying is the technique of expressing a function taking multiple arguments as

nested functions, each taking a single argument. The fn-notation lets us package

n*2 as the function (fn n => n*2), but what if there are several variables, as in

(n*2+k)? A function of two arguments could be coded using pattern-matching on

pairs, writing

fn (n,k) => n*2+k

Currying is an alternative, where we nest the fn-notation:

fn k => (fn n => n*2+k)

Applying this curried function to the argument 1 yields another function, in which

k has been replaced by 1:

fn n => n*2+1

And this function, when applied to 3, yields the result 7. The two arguments are

supplied one after another.

The example on the slide is similar but refers to the expression a^b, where ^ is

the infix operator for string concatenation. Function promote binds the first argu-

ment of prefix to "Professor "; the resulting function prefixes that title to any

string to which it is applied.

Note: The parentheses may be omitted in (fn a => (fn b => E)). They may

also be omitted in (prefix "Doctor ") "Who".

VIII Foundations of Computer Science 87

Slide 804

Shorthand for Curried Functions

A function-returning function is just a function of two arguments.

This curried function syntax is nicer than nested fn binders:

fun prefix a b = a^b;

> val prefix = ... as before

val dub = prefix "Sir ";

> val dub = fn: string -> string

Curried functions allows partial application (to the first argument).

In ML, an n-argument curried function f can be declared using the syntax

fun f x1 . . . xn = E

and applied using the syntax f E1 . . . En . If f is not recursive, then it is equiva-

lent to the function expressed via nesting as follows:

fn x1 => · · · (fn xn => E)

We now have two ways of expressing functions of multiple arguments: either

by passing a pair of arguments or by currying. Currying allows partial application,

which is useful when fixing the first argument yields a function that is interesting in

its own right. An example from mathematics is the function x y , where fixing y = 2

yields a function in x alone, namely squaring. Similarly, y = 3 yields cubing, while

y = 1 yields the identity function.

Though the function hd (which returns the head of a list) is not curried, it may

be used with the curried application syntax in some expressions:

hd [dub, promote] "Hamilton";

> val "Sir Hamilton" : string

Here hd is applied to a list of functions, and the resulting function (dub) is then ap-

plied to the string "Hamilton". The idea of executing code stored in data structures

reaches its full development in object-oriented programming, like in Java.

VIII Foundations of Computer Science 88

Slide 805

Partial Application: A Curried Insertion Sort

fun insort lessequal =

let fun ins (x, []) = [x]

| ins (x, y::ys) =

if lessequal(x,y) then x::y::ys

else y :: ins (x,ys)

fun sort [] = []

| sort (x::xs) = ins (x, sort xs)

in sort end;

> val insort = fn : ('a * 'a -> bool)

> -> ('a list -> 'a list)

The sorting functions of Lect. 5 are coded to sort real numbers. They can be

generalized to an arbitrary ordered type by passing the ordering predicate (≤) as an

argument.

Functions ins and sort are declared locally, referring to lessequal. Though

it may not be obvious, insort is a curried function. Given its first argument, a

predicate for comparing some particular type of items, it returns the function sort

for sorting lists of that type of items.

Some examples of its use:

insort (op<=) [5,3,9,8];

> val it = [3, 5, 8, 9] : int list

insort (op<=) ["bitten","on","a","bee"];

> val it = ["a", "bee", "bitten", "on"]

> : string list

insort (op>=) [5,3,9,8];

> val it = [9, 8, 5, 3] : int list

An obscure point: the syntax op<= denotes the comparison operator as a func-

tion, which is then given to insort. Passing the relation ≥ for lessequal gives a

decreasing sort. This is no coding trick; it is justified in mathematics, since if ≤ is

a partial ordering then so is ≥.

VIII Foundations of Computer Science 89

Slide 806

map: the ‘Apply to All’ Functional

fun map f [] = []

| map f (x::xs) = (f x) :: map f xs

> val map = fn: ('a -> 'b) -> 'a list -> 'b list

map (fn s => s ^ "ppy") ["Hi", "Ho"];

> val it = ["Hippy", "Hoppy"] : string list

map (map double) [[1], [2,3]];

> val it = [[2], [4, 6]] : int list list

The functional map applies a function to every element of a list, returning a list

of the function’s results. “Apply to all” is a fundamental operation and we shall

see several applications of it below. We again see the advantages of fn-notation,

currying and map. If we did not have them, the first example on the slide would

require a preliminary function declaration:

fun sillylist [] = []

| sillylist (s::ss) = (s ^ "ppy") :: sillylist ss;

An expression containing several applications of functionals—such as our second

example—can abbreviate a long series of declarations. Sometimes this coding style

is cryptic, but it can be clear as crystal. Treating functions as values lets us capture

common program structures once and for all.

In the second example, double is the obvious integer doubling function:

fun double n = n*2;

Note that map is a built-in ML function. Standard ML’s library includes, among

much else, many list functions.

VIII Foundations of Computer Science 90

Slide 807

Example: Matrix Transpose




a b c

d e f





T

=







a d

b e

c f







fun hd (x::_) = x;

fun tl (_::xs) = xs;

fun transp ([]::_) = []

| transp rows = (map hd rows) ::

(transp (map tl rows))

A matrix can be viewed as a list of rows, each row a list of matrix elements. This

representation is not especially efficient compared with the conventional one (using

arrays). Lists of lists turn up often, though, and we can see how to deal with them

by taking familiar matrix operations as examples. ML for the Working Programmer

goes as far as Gaussian elimination, which presents surprisingly few difficulties.

The transpose of the matrix
(

a b c
d e f

)

is

(
a d
b e
c f

)

, which in ML corresponds to the

following transformation on lists of lists:

[[a,b,c], [d,e,f]] 7→ [[a,d], [b,e], [c,f]]

The workings of function transp are simple. If rows is the matrix to be trans-

posed, then map hd extracts its first column and map tl extracts its second column:

map hd rows 7→ [a,d]

map tl rows 7→ [[b,c], [e,f]]

A recursive call transposes the latter matrix, which is then given the column [a,d]

as its first row.

The two functions expressed using map would otherwise have to be declared

separately.

VIII Foundations of Computer Science 91

Slide 808

Review of Matrix Multiplication

(

A1 · · · Ak

)

·








B1

...

Bk








=
(

A1 B1 + · · · + Ak Bk

)

The right side is the vector dot product EA · EB
Repeat for each row of A and column of B

The dot product of two vectors is

(a1, . . . , ak) · (b1, . . . , bk) = a1b1 + · · · + akbk .

A simple case of matrix multiplication is when A consists of a single row and

B consists of a single column. Provided A and B contain the same number k of

elements, multiplying them yields a 1 × 1 matrix whose single element is the dot

product shown above.

If A is an m × k matrix and B is a k × n matrix then A × B is an m × n matrix.

For each i and j , the (i, j) element of A × B is the dot product of row i of A with

column j of B.







2 0

3 −1

0 1

1 1







(

1 0 2

4 −1 0

)

=







2 0 4

−1 1 6

4 −1 0

5 −1 2







The (1,1) element above is computed by

(2, 0) · (1, 4) = 2 × 1 + 0 × 4 = 2.

Coding matrix multiplication in a conventional programming language usually

involves three nested loops. It is hard to avoid mistakes in the subscripting, which

often runs slowly due to redundant internal calculations.

VIII Foundations of Computer Science 92

Slide 809

Matrix Multiplication in ML

Dot product of two vectors—a curried function

fun dotprod [] [] = 0.0

| dotprod(x::xs)(y::ys) = x*y + dotprod xs ys

Matrix product

fun matprod(Arows,Brows) =

let val cols = transp Brows

in map (fn row => map (dotprod row) cols)

Arows

end

The transp Brows converts B into a list of columns. It yields a list, whose

elements are the columns of B. Each row of A × B is obtained by multiplying a

row of A by the columns of B.

Because dotprod is curried, it can be applied to a row of A. The resulting

function is applied to all the columns of B. We have another example of currying

and partial application.

The outer map applies dotprod to each row of A. The inner map, using fn-

notation, applies dotprod row to each column of B. Compare with the version in

ML for the Working Programmer, page 89, which does not use map and requires

two additional function declarations.

In the dot product function, the two vectors must have the same length. Other-

wise, exception Match is raised.

VIII Foundations of Computer Science 93

Slide 810

List Functionals for Predicates

fun exists p [] = false

| exists p (x::xs) = (p x) orelse exists p xs;

> exists: ('a -> bool) -> ('a list -> bool)

fun filter p [] = []

| filter p (x::xs) =

if p x then x :: filter p xs

else filter p xs;

> filter: ('a -> bool) -> ('a list -> 'a list)

(A predicate is a boolean-valued function.)

The functional exists transforms a predicate into a predicate over lists. Given

a list, exists p tests whether or not some list element satisfies p (making it return

true). If it finds one, it stops searching immediately, thanks to the behaviour of

orelse.

Dually, we have a functional to test whether all list elements satisfy the predi-

cate. If it finds a counterexample then it, too, stops searching.

fun all p [] = true

| all p (x::xs) = (p x) andalso all p xs;

> all: ('a -> bool) -> ('a list -> bool)

The filter functional is related to map. It applies a predicate to all the list

elements, but instead of returning the resulting values (which could only be true

or false), it returns the list of elements satisfying the predicate.

VIII Foundations of Computer Science 94

Slide 811

Applications of the Predicate Functionals

fun member(y,xs) =

exists (fn x => x=y) xs;

fun inter(xs,ys) =

filter (fn x => member(x,ys)) xs;

Testing whether two lists have no common elements

fun disjoint(xs,ys) =

all (fn x => all (fn y => x<>y) ys) xs;

> val disjoint = fn: ''a list * ''a list -> bool

Lecture 4 presented the function member, which tests whether a specified value

can be found as a list element, and inter, which returns the “intersection” of two

lists: the list of elements they have in common.

But remember: the purpose of list functionals is not to replace the declarations

of popular functions, which probably are available already. It is to eliminate the

need for separate declarations of ad-hoc functions. When they are nested, like the

calls to all in disjoint above, the inner functions are almost certainly one-offs,

not worth declaring separately.

Our primitives themselves can be seen as a programming language. Part of the

task of programming is to extend our programming language with notation for solv-

ing the problem at hand. The levels of notation that we define should correspond to

natural levels of abstraction in the problem domain.

Historical Note: Alonzo Church’s λ-calculus gave a simple syntax, λ-notation,

for expressing functions. It is the direct precursor of ML’s fn-notation. It was soon

shown that his system was equivalent in computational power to Turing machines,

and Church’s thesis states that this defines precisely the set of functions that can be

computed effectively.

The λ-calculus had a tremendous influence on the design of functional pro-

gramming languages. McCarthy’s Lisp was something of a false start; it interpreted

variable binding incorrectly, an error that stood for some 20 years. But in 1966, Pe-

ter Landin (of Queen Mary College, University of London) sketched out the main

features of functional languages.

VIII Foundations of Computer Science 95

Slide 812

Syntax You Must Know

Declarations

fun Id Pat1 ... Patn = E

Expressions

fn M

Function declarations are now generalised so that curried functions can be ex-

pressed easily.

A λ-expression usually has the form fn x => E . But in general, a match M

may follow the fn keyword, which allows non-recursive pattern matching in the

function. This generality is seldom used, and you only really need to remember the

simple version.

Recall that matches were introduced at the end of Lect. 6.

VIII Foundations of Computer Science 96

Learning guide. Related material is in ML for the Working Programmer, pages

171–190. Chapter 9 contains an introduction to the λ-calculus.

Exercise 8.1 What does the following function do, and what are its uses?

fun sw f x y = f y x;

Exercise 8.2 There are many ways of combining orderings. The lexicographic or-

dering uses two keys for comparisons. It is specified by

(x ′, y′) < (x, y) ⇐⇒ x ′ < x ∨ (x ′ = x ∧ y′ < y).

Write an ML function to lexicographically combine two orderings, supplied as

functions. Explain how it allows function insort to sort a list of pairs.

Exercise 8.3 Without using map, write a function map2 such that map2 f is equiv-

alent to map (map f). The obvious solution requires declaring two recursive func-

tions. Try to get away with only one by exploiting nested pattern-matching.

Exercise 8.4 The type option, declared below, can be viewed as a type of lists

having at most one element. (It is typically used as an alternative to exceptions.)

Declare an analogue of the function map for type option.

datatype 'a option = NONE | SOME of 'a;

Exercise 8.5 Recall the making change function of Lect. 4:

fun change . . .

| change (c::till, amt) =

if . . .

else

let fun allc [] = []

| allc(cs::css) = (c::cs)::allc css

in allc (change(c::till, amt-c)) @

change(till, amt)

end;

Function allc applies the function ‘cons a c’ to every element of a list. Eliminate

it by declaring a curried cons function and applying map.

IX Foundations of Computer Science 97

Slide 901

A Pipeline

Producer → Filter → · · · → Filter → Consumer

Produce sequence of items

Filter sequence in stages

Consume results as needed

Lazy lists join the stages together

Two types of program can be distinguished. A sequential program accepts a

problem to solve, processes for a while, and finally terminates with its result. A

typical example is the huge numerical simulations that are run on supercomputers.

Most of our ML functions also fit this model.

At the other extreme are reactive programs, whose job is to interact with the

environment. They communicate constantly during their operation and run for as

long as is necessary. A typical example is the software that controls many modern

aircraft. Reactive programs often consist of concurrent processes running at the

same time and communicating with one another.

Concurrency is too difficult to consider in this course, but we can model simple

pipelines such as that shown above. The Producer represents one or more sources

of data, which it outputs as a stream. The Filter stages convert the input stream to

an output stream, perhaps consuming several input items to yield a single output

item. The Consumer takes as many elements as necessary.

The Consumer drives the pipeline: nothing is computed except in response to

its demand for an additional datum. Execution of the Filter stages is interleaved

as required for the computation to go through. The programmer sets up the data

dependencies but has no clear idea of what happens when. We have the illusion of

concurrent computation.

The Unix operating system provides similar ideas through its pipes that link

processes together. In ML, we can model pipelines using lazy lists.

IX Foundations of Computer Science 98

Slide 902

Lazy Lists — or Streams

Lists of possibly INFINITE length

• elements computed upon demand

• avoids waste if there are many solutions

• infinite objects are a useful abstraction

In ML: implement laziness by delaying evaluation of the tail

Lazy lists have practical uses. Some algorithms, like making change, can yield

many solutions when only a few are required. Sometimes the original problem

concerns infinite series: with lazy lists, we can pretend they really exist!

We are now dealing with infinite, or at least unbounded, computations. A po-

tentially infinite source of data is processed one element at a time, upon demand.

Such programs are harder to understand than terminating ones and have more ways

of going wrong.

Some purely functional languages, such as Haskell, use lazy evaluation every-

where. Even the if-then-else construct can be a function, and all lists are lazy. In

ML, we can declare a type of lists such that evaluation of the tail does not occur

until demanded. Delayed evaluation is weaker than lazy evaluation, but it is good

enough for our purposes.

The traditional word stream is reserved in ML parlance for input/output chan-

nels. Let us call lazy lists sequences.

IX Foundations of Computer Science 99

Slide 903

Lazy Lists in ML

The empty tuple () and its type unit

Delayed version of E is fn()=>E

datatype 'a seq = Nil sequences

| Cons of 'a * (unit -> 'a seq);

fun head (Cons(x,_)) = x;

fun tail (Cons(_,xf)) = xf();

Cons(x,x f) has head x and tail function x f

The primitive ML type unit has one element, which is written (). This element

may be regarded as a 0-tuple, and unit as the nullary Cartesian product. (Think of

the connection between multiplication and the number 1.)

The empty tuple serves as a placeholder in situations where no information is

required. It has several uses:

• It may appear in a data structure. For example, a unit-valued dictionary

represents a set of keys.

• It may be the argument of a function, where its effect is to delay evaluation.

• It may be the argument or result of a procedure. (See Lect. 12.)

The empty tuple, like all tuples, is a constructor and is allowed in patterns:

fun f () = . . .

In particular, fn() => E is the function that takes an argument of type unit and

returns the value of E as its result. Expression E is not evaluated until the function

is called, even though the only possible argument is (). The function simply delays

the evaluation of E .

IX Foundations of Computer Science 100

Slide 904

The Infinite Sequence k, k + 1, k + 2,. . .

fun from k = Cons(k, fn()=> from(k+1));

> val from = fn : int -> int seq

from 1;

> val it = Cons(1, fn) : int seq

tail it;

> val it = Cons(2, fn) : int seq

tail it;

> val it = Cons(3, fn) : int seq

Function from constructs the infinite sequence of integers starting from k. Ex-

ecution terminates because of the fn enclosing the recursive call. ML displays the

tail of a sequence as fn, which stands for some function value. Each call to tail

generates the next sequence element. We could do this forever.

This example is of little practical value because the cost of computing a se-

quence element will be dominated by that of creating the dummy function. Lazy

lists tend to have high overheads.

IX Foundations of Computer Science 101

Slide 905

Consuming a Sequence

fun get(0,xq) = []

| get(n,Nil) = []

| get(n,Cons(x,xf)) = x :: get(n-1,xf());

> val get = fn : int * 'a seq -> 'a list

Get the first n elements as a list

xf() forces evaluation

The function get converts a sequence to a list. It takes the first n elements; it

takes all of them if n < 0, which can terminate only if the sequence is finite.

In the third line of get, the expression xf() calls the tail function, demanding

evaluation of the next element. This operation is called forcing the list.

IX Foundations of Computer Science 102

Slide 906

Sample Evaluation

get(2, from 6)

⇒ get(2, Cons(6, fn()=>from(6+1)))

⇒ 6 :: get(1, from(6+1))

⇒ 6 :: get(1, Cons(7, fn()=>from(7+1)))

⇒ 6 :: 7 :: get(0, Cons(8, fn()=>from(8+1)))

⇒ 6 :: 7 :: []

⇒ [6,7]

Here we ask for two elements of the infinite sequence. In fact, three elements

are computed: 6, 7 and 8. Our implementation is slightly too eager. A more com-

plicated datatype declaration could avoid this problem. Another problem is that if

one repeatedly examines some particular list element using forcing, that element is

repeatedly evaluated. In a lazy programming language, the result of the first eval-

uation would be stored for later reference. To get the same effect in ML requires

references [9, page 327].

We should be grateful that the potentially infinite computation is kept finite. The

tail of the original sequence even contains the unevaluated expression 6+1.

IX Foundations of Computer Science 103

Slide 907

Joining Two Sequences

fun appendq (Nil, yq) = yq

| appendq (Cons(x,xf), yq) =

Cons(x, fn()=> appendq(xf(), yq));

A fair alternative. . .

fun interleave (Nil, yq) = yq

| interleave (Cons(x,xf), yq) =

Cons(x, fn()=> interleave(yq, xf()));

Most list functions and functionals have analogues on sequences, but strange

things can happen. Can an infinite list be reversed?

Function appendq is precisely the same idea as append (Lect. 3): it concate-

nates two sequences. If the first argument is infinite, then appendq never gets to its

second argument, which is lost. Concatenation of infinite sequences is not terribly

interesting.

The function interleave avoids this problem by exchanging the two arguments

in each recursive call. It combines the two lazy lists, losing no elements. Interleav-

ing is the right way to combine two potentially infinite information sources into

one.

In both function declarations, observe that each xf() is enclosed within a

fn()=>. . . . Each force is enclosed within a delay. This practice makes the

functions lazy. A force not enclosed in a delay, as in get above, runs the risk

of evaluating the sequence in full.

IX Foundations of Computer Science 104

Slide 908

Functionals for Lazy Lists

filtering

fun filterq p Nil = Nil

| filterq p (Cons(x,xf)) =

if p x

then Cons(x, fn()=>filterq p (xf()))

else filterq p (xf());

The infinite sequence x , f (x), f (f (x)),. . .

fun iterates f x =

Cons(x, fn()=> iterates f (f x));

The functional filterq demands elements of xq until it finds one satisfying p.

(Recall filter, the analogous operation for ordinary lists.) It contains a force not

protected by a delay. If xq is infinite and contains no satisfactory element, then

filterq runs forever.

The functional iterates generalizes from. It creates the next element not by

adding one but by calling the function f.

IX Foundations of Computer Science 105

Slide 909

Numerical Computations on Infinite Sequences

fun next a x = (a/x + x) / 2.0;

Close enough?

fun within (eps:real) (Cons(x,xf)) =

let val Cons(y,yf) = xf()

in if abs(x-y) <= eps then y

else within eps (Cons(y,yf))

end;

Square Roots!

fun root a = within 1E~6 (iterates (next a) 1.0)

The Newton-Raphson method is widely used for computing square roots. The

infinite series x0, (a/x0 + x0)/2, . . . converges rapidly to
√

a. The initial ap-

proximation, x0, is typically retrieved from a table, and is accurate enough that

only a few iterations of the method are necessary. Calling iterates (next a)

x0 generates the infinite series of approximations to the square root of a using

the Newton-Raphson method. To compute
√

2, the resulting series begins 1, 1.5,

1.41667, 1.4142157, 1.414213562 . . . , and this last figure is already accurate to 10

significant digits!

Function within searches down the lazy list for two points whose difference

is less than eps. It tests their absolute difference. Relative difference and other

‘close enough’ tests can be coded. Such components can be used to implement

other numerical functions directly as functions over sequences. The point is to

build programs from small, interchangeable parts.

Function root uses within, iterates and next to apply Newton-Raphson

with a tolerance of 10−6 and a (poor) initial approximation of 1.0.

This treatment of numerical computation has received some attention in the

research literature; a recurring example is Richardson extrapolation [3, 4].

IX Foundations of Computer Science 106

Learning guide. Related material is in ML for the Working Programmer, pages

191–212.

Exercise 9.1 Code an analogue of map for sequences.

Exercise 9.2 Consider the list function concat, which concatenates a list of lists

to form a single list. Can it be generalized to concatenate a sequence of sequences?

What can go wrong?

fun concat [] = []

| concat (l::ls) = l @ concat ls;

Exercise 9.3 Code a function to make change using lazy lists, delivering the se-

quence of all possible ways of making change. Using sequences allows us to com-

pute solutions one at a time when there exists an astronomical number. Represent

lists of coins using ordinary lists. (Hint: to benefit from laziness you may need

to pass around the sequence of alternative solutions as a function of type unit ->

(int list) seq.)

Exercise 9.4 A lazy binary tree is either empty or is a branch containing a label

and two lazy binary trees, possibly to infinite depth. Present an ML datatype to

represent lazy binary trees, along with a function that accepts a lazy binary tree

and produces a lazy list that contains all of the tree’s labels. (Taken from the exam

question 2008 Paper 1 Question 5.)

Exercise 9.5 Code the lazy list whose elements are all ordinary lists of zeroes and

ones, namely [], [0], [1], [0, 0], [0, 1], [1, 0], [1, 1], [0, 0, 0], (Taken from the

exam question 2003 Paper 1 Question 5.)

Exercise 9.6 (Continuing the previous exercise.) A palindrome is a list that equals

its own reverse. Code the lazy list whose elements are all palindromes of 0s and 1s,

namely [], [0], [1], [0, 0], [0, 0, 0], [0, 1, 0], [1, 1], [1, 0, 1], [1, 1, 1], [0, 0, 0, 0],

. . . . You may take the reversal function rev as given.

X Foundations of Computer Science 107

Slide 1001

Breadth-First v Depth-First Tree Traversal

binary trees as decision trees

Look for solution nodes

• Depth-first : search one subtree in full before moving on

• Breadth-first: search all nodes at level k before moving to k + 1

Finds all solutions — nearest first!

Preorder, inorder and postorder tree traversals all have something in common:

they are depth-first. At each node, the left subtree is entirely traversed before the

right subtree. Depth-first traversals are easy to code and can be efficient, but they

are ill-suited for some problems.

Suppose the tree represents the possible moves in a puzzle, and the purpose

of the traversal is to search for a node containing a solution. Then a depth-first

traversal may find one solution node deep in the left subtree, when another solution

is at the very top of the right subtree. Often we want the shortest path to a solution.

Suppose the tree is infinite, or simply extremely large. Depth-first search is

almost useless with such trees, for if the left subtree is infinite then the search will

never reach the right subtree. ML can represent infinite trees by the means discussed

in Lect. 9. Another tree representation (suitable for solving solitaire, for example)

is by a function next : pos -> pos list, which maps a board position to a list of

the positions possible after the next move. For simplicity, the examples below use

the ML datatype tree, which has only finite trees.

A breadth-first traversal explores the nodes horizontally rather than vertically.

When visiting a node, it does not traverse the subtrees until it has visited all other

nodes at the current depth. This is easily implemented by keeping a list of trees

to visit. Initially, this list consists of one element: the entire tree. Each iteration

removes a tree from the head of the list and adds its subtrees after the end of the list.

X Foundations of Computer Science 108

Slide 1002

Breadth-First Tree Traversal — Using Append

fun nbreadth [] = []

| nbreadth (Lf :: ts) = nbreadth ts

| nbreadth (Br(v,t,u) :: ts) =

v :: nbreadth(ts @ [t,u])

Keeps an enormous queue of nodes of search

Wasteful use of append

25 SECS to search depth 12 binary tree (4095 labels)

Breadth-first search can be inefficient, this naive implementation especially so.

When the search is at depth d of the tree, the list contains all the remaining trees at

depth d, followed by the subtrees (all at depth d + 1) of the trees that have already

been visited. At depth 10, the list could already contain 1024 elements. It re-

quires a lot of space, and aggravates this with a gross misuse of append. Evaluating

ts@[t,u] copies the long list ts just to insert two elements.

X Foundations of Computer Science 109

Slide 1003

An Abstract Data Type: Queues

• qempty is the empty queue

• qnull tests whether a queue is empty

• qhd returns the element at the head of a queue

• deq discards the element at the head of a queue

• enq adds an element at the end of a queue

Breadth-first search becomes much faster if we replace the lists by queues. A

queue represents a sequence, allowing elements to be taken from the head and

added to the tail. This is a First-In-First-Out (FIFO) discipline: the item next to

be removed is the one that has been in the queue for the longest time. Lists can

implement queues, but append is a poor means of adding elements to the tail.

Our functional arrays (Lect. 7) are suitable, provided we augment them with a

function to delete the first array element. (See ML for the Working Programmer,

page 156.) Each operation would take O(log n) time for a queue of length n.

We shall describe a representation of queues that is purely functional, based

upon lists, and efficient. Operations take O(1) time when amortized: averaged over

the lifetime of a queue.

A conventional programming technique is to represent a queue by an array. Two

indices point to the front and back of the queue, which may wrap around the end of

the array. The coding is somewhat tricky. Worse, the length of the queue must be

given a fixed upper bound.

X Foundations of Computer Science 110

Slide 1004

Efficient Functional Queues: Idea

Represent the queue x1 x2 . . . xm yn . . . y1

by any pair of lists

([x1, x2, . . . , xm], [y1, y2, . . . , yn])

Add new items to rear list

Remove items from front list ; if empty move rear to front

Amortized time per operation is O(1)

Queues require efficient access at both ends: at the front, for removal, and at

the back, for insertion. Ideally, access should take constant time, O(1). It may

appear that lists cannot provide such access. If enq(q,x) performs q@[x], then this

operation will be O(n). We could represent queues by reversed lists, implementing

enq(q,x) by x::q, but then the deq and qhd operations would be O(n). Linear

time is intolerable: a series of n queue operations could then require O(n2) time.

The solution is to represent a queue by a pair of lists, where

([x1, x2, . . . , xm], [y1, y2, . . . , yn])

represents the queue x1x2 . . . xm yn . . . y1.

The front part of the queue is stored in order, and the rear part is stored in reverse

order. The enq operation adds elements to the rear part using cons, since this list

is reversed; thus, enq takes constant time. The deq and qhd operations look at the

front part, which normally takes constant time, since this list is stored in order. But

sometimes deq removes the last element from the front part; when this happens, it

reverses the rear part, which becomes the new front part.

Amortized time refers to the cost per operation averaged over the lifetime of

any complete execution. Even for the worst possible execution, the average cost

per operation turns out to be constant; see the analysis below.

X Foundations of Computer Science 111

Slide 1005

Efficient Functional Queues: Code

datatype 'a queue = Q of 'a list * 'a list

fun norm(Q([],tls)) = Q(rev tls, [])

| norm q = q

fun qnull(Q([],[])) = true | qnull _ = false

fun enq(Q(hds,tls), x) = norm(Q(hds, x::tls))

fun deq(Q(x::hds, tls)) = norm(Q(hds, tls))

The datatype of queues prevents confusion with other pairs of lists.

The empty queue, omitted to save space on the slide, has both parts empty.

val qempty = Q([],[]);

The function norm puts a queue into normal form, ensuring that the front part is

never empty unless the entire queue is empty. Functions deq and enq call norm to

normalize their result.

Because queues are in normal form, their head is certain to be in their front part,

so qhd (also omitted from the slide) looks there.

fun qhd(Q(x::_,_)) = x

Let us analyse the cost of an execution comprising (in any possible order) n enq

operations and n deq operations, starting with an empty queue. Each enq operation

will perform one cons, adding an element to the rear part. Since the final queue

must be empty, each element of the rear part gets transferred to the front part. The

corresponding reversals perform one cons per element. Thus, the total cost of the

series of queue operations is 2n cons operations, an average of 2 per operation. The

amortized time is O(1).

There is a catch. The conses need not be distributed evenly; reversing a long list

could take up to n − 1 of them. Unpredictable delays make the approach unsuitable

for real-time programming, where deadlines must be met.

X Foundations of Computer Science 112

Slide 1006

Aside: The case Expression

fun wheels v =

case v of Bike => 2

| Motorbike _ => 2

| Car robin =>

if robin then 3 else 4

| Lorry w => w;

The case expression has the form

case E of Pat1 => E1 | · · · | Patn => En

It tries the patterns one after the other. When one matches, it evaluates the corre-

sponding expression. It behaves precisely like the body of a function declaration.

We could have defined function wheels (from Lect. 6) as shown above.

Recall that a program phrase of the form Pat1 => E1 | · · · | Patn => En

is called a Match (Lect. 6). A match may also appear after an exception handler

(Lect. 6) and with fn-notation to express functions (Lect. 8).

X Foundations of Computer Science 113

Slide 1007

Breadth-First Tree Traversal — Using Queues

fun breadth q =

if qnull q then []

else

case qhd q of

Lf => breadth (deq q)

| Br(v,t,u) =>

v :: breadth(enq(enq(deq q, t), u))

0.14 secs to search depth 12 binary tree (4095 labels)

200 times faster!

This function implements the same algorithm as nbreadth but uses a different

data structure. It represents queues using type queue instead of type list.

To compare their efficiency, I applied both functions to the full binary tree of

depth 12, which contains 4095 labels. The function nbreadth took 30 seconds

while breadth took only 0.15 seconds: faster by a factor of 200.

For larger trees, the speedup would be greater. Choosing the right data structure

pays handsomely.

X Foundations of Computer Science 114

Slide 1008

Iterative deepening: Another Exhaustive Search

Breadth-first search examines O(bd) nodes:

1 + b + · · · + bd = bd+1 − 1

b − 1

b = branching factor

d = depth

Recompute nodes at depth d instead of storing them

Time factor is b/(b − 1) if b > 1; complexity is still O(bd)

Space required at depth d drops from bd to d

Breadth-first search is not practical for infinite trees: it uses too much space.

Large parts of the tree have to be stored. Consider the slightly more general problem

of searching trees whose branching factor is b (for binary trees, b = 2). Then

breadth-first search to depth d examines (bd+1 −1)/(b −1) nodes, which is O(bd),

ignoring the constant factor of b/(b −1). Since all nodes that are examined are also

stored, the space and time requirements are both O(bd).

Depth-first iterative deepening combines the space efficiency of depth-first with

the ‘nearest-first’ property of breadth-first search. It performs repeated depth-first

searches with increasing depth bounds, each time discarding the result of the pre-

vious search. Thus it searches to depth 1, then to depth 2, and so on until it finds

a solution. We can afford to discard previous results because the number of nodes

is growing exponentially. There are bd+1 nodes at level d + 1; if b ≥ 2, this num-

ber actually exceeds the total number of nodes of all previous levels put together,

namely (bd+1 − 1)/(b − 1).

Korf [7] shows that the time needed for iterative deepening to reach depth d is

only b/(b −1) times that for breadth-first search, if b > 1. This is a constant factor;

both algorithms have the same time complexity, O(bd). In typical applications

where b ≥ 2 the extra factor of b/(b − 1) is quite tolerable. The reduction in the

space requirement is exponential, from O(bd) for breadth-first to O(d) for iterative

deepening. Of course, this assumes that the tree itself is not stored in memory.

X Foundations of Computer Science 115

Slide 1009

Another Abstract Data Type: Stacks

• empty is the empty stack

• null tests whether a stack is empty

• top returns the element at the top of a stack

• pop discards the element at the top of a stack

• push adds an element at the top of a stack

A stack is a sequence such that items can be added or removed from the head

only. A stack obeys a Last-In-First-Out (LIFO) discipline: the item next to be

removed is the one that has been in the queue for the shortest time. Lists can easily

implement stacks because both cons and hd affect the head. But unlike lists, stacks

are often regarded as an imperative data structure: the effect of push or pop is to

change an existing stack, not return a new one.

In conventional programming languages, a stack is often implemented by stor-

ing the elements in an array, using a variable (the stack pointer) to count them. Most

language processors keep track of recursive function calls using an internal stack.

X Foundations of Computer Science 116

Slide 1010

A Survey of Search Methods

1. Depth-first: use a stack (efficient but incomplete)

2. Breadth-first: use a queue (uses too much space!)

3. Iterative deepening: use (1) to get benefits of (2)

(trades time for space)

4. Best-first: use a priority queue (heuristic search)

The data structure determines the search!

Search procedures can be classified by the data structure used to store pending

subtrees. Depth-first search stores them on a stack, which is implicit in functions

like inorder, but can be made explicit. Breadth-first search stores such nodes in a

queue.

An important variation is to store the nodes in a priority queue, which is an

ordered sequence. The priority queue applies some sort of ranking function to the

nodes, placing higher-ranked nodes before lower-ranked ones. The ranking function

typically estimates the distance from the node to a solution. If the estimate is good,

the solution is located swiftly. This method is called best-first search.

The priority queue can be kept as a sorted list, although this is slow. Binary

search trees would be much better on average, and fancier data structures improve

matters further.

X Foundations of Computer Science 117

Slide 1011

Syntax You Must Know

Expressions

case E of M

Although introduced relatively late in this course, case expressions are conve-

nient and useful. Note that the body is simply a match.

These expressions are a generalisation of a programming construct invented by

C. A. R. Hoare in 1964. (The C programming language has a corrupt variant of this

construct, called switch, which allows execution to fall from one place to the next.

This behaviour is almost never wanted and is the cause of many bugs.)

X Foundations of Computer Science 118

Learning guide. Related material is in ML for the Working Programmer, pages

258–263. For priority queues, see 159–164.

Exercise 10.1 Suppose that we have an implementation of queues, based on binary

trees, such that each operation takes logarithmic time in the worst case. Outline the

advantages and drawbacks of such an implementation compared with one presented

above.

Exercise 10.2 The traditional way to implement queues uses a fixed-length array.

Two indices into the array indicate the start and end of the queue, which wraps

around from the end of the array to the start. How appropriate is such a data struc-

ture for implementing breadth-first search?

Exercise 10.3 Write a version of the function shown on slide 1007 using a nested

let construction rather than case.

Exercise 10.4 Iterative deepening is inappropriate if b ≈ 1, where b is the branch-

ing factor. What search strategy is appropriate in this case?

Exercise 10.5 Consider the following ML function.

fun next n = [2*n, 2*n+1];

If we regard it as representing a tree, where the subtrees are computed from the

current label, what tree does next 1 represent?

XI Foundations of Computer Science 119

Slide 1101

Computer Algebra

symbolic arithmetic on polynomials, trig functions, . . .

closed-form or power-series solutions, not NUMERICAL ones

rational arithmetic instead of FLOATING-POINT

For scientific and engineering calculations

Univariate polynomials an xn + · · · + a0x0

Example of data representation and algorithms in practice

This lecture illustrates the treatment of a hard problem: polynomial arithmetic.

Many operations could be performed on polynomials, so we shall have to simplify

the problem drastically. We shall only consider functions to add and multiply poly-

nomials in one variable. These functions are neither efficient nor accurate, but at

least they make a start. Beware: efficient, general algorithms for polynomials are

complicated enough to boggle the mind.

Although computers were originally invented for performing numerical arith-

metic, scientists and engineers often prefer closed-form solutions to problems. A

formula is more compact than a table of numbers, and its properties—the number

of crossings through zero, for example—can be determined exactly.

Polynomials are a particularly simple kind of formula. A polynomial is a linear

combination of products of certain variables. For example, a polynomial in the

variables x , y and z has the form
∑

i jk ai jk x i y j zk , where only finitely many of

the coefficients ai jk are non-zero. Polynomials in one variable, say x , are called

univariate. Even restricting ourselves to univariate polynomials does not make our

task easy.

This example demonstrates how to represent a non-trivial form of data and how

to exploit basic algorithmic ideas to gain efficiency.

XI Foundations of Computer Science 120

Slide 1102

Data Representation Example: Finite Sets

represent by repetition-free lists

representations not unique:

{3, 4}
ւ ց

[3, 4] [4, 3]

INVALID representations? [3, 3] represents no set

ML operations must preserve the representation

Representation must promote efficiency : try ordered lists?

ML does not provide finite sets as a data structure. We could represent them by

lists without repetitions. Finite sets are a simple example of data representation.

A collection of abstract objects (finite sets) is represented using a set of concrete

objects (repetition-free lists). Every abstract object is represented by at least one

concrete object, maybe more than one, for {3, 4} can be represented by [3, 4] or

[4, 3]. Some concrete objects, such as [3, 3], represent no abstract object at all.

Operations on the abstract data are defined in terms of the representations. For

example, the ML function inter (Lect. 4) implements the abstract intersection op-

eration ∩ provided inter(l, l ′) represents A ∩ A′ for all lists l and l ′ that represent

the sets A and A′. It is easy to check that inter preserves the representation: its

result is repetition-free provided its arguments are.

Making the lists repetition-free makes the best possible use of space. Time

complexity could be improved. Forming the intersection of an m-element set and

an n-element set requires finding all the elements they have in common. It can only

be done by trying all possibilities, taking O(mn) time. Sets of numbers, strings or

other items possessing a total ordering should be represented by ordered lists. The

intersection computation then resembles merging and can be performed in O(m+n)

time.

Some deeper issues can only be mentioned here. For example, floating-point

arithmetic implements real arithmetic only approximately.

XI Foundations of Computer Science 121

Slide 1103

A Data Structure for Polynomials

polynomial an xn + · · · + a0x0 as list [(n, an), . . . , (0, a0)]
REAL coefficients (should be rational)

Sparse representation (no zero coefficients)

Decreasing exponents

x500 − 2 as [(500, 1), (0, −2)]

The univariate polynomial an xn + · · · + a0x0 might be represented by the list

of coefficients [an, . . . , a0]. This dense representation is inefficient if many coeffi-

cients are zero, as in x500 − 2. Instead we use a list of (exponent, coefficient) pairs

with only nonzero coefficients: a sparse representation.

Coefficients should be rational numbers: pairs of integers with no common

factor. Exact rational arithmetic is easily done, but it requires arbitrary-precision

integer arithmetic, which is too complicated for our purposes. We shall represent

coefficients by the ML type real, which is far from ideal. The code serves the

purpose of illustrating some algorithms for polynomial arithmetic.

Polynomials will have the ML type (int*real)list, representing the sum of

terms, each term given by an integer exponent and real coefficient. To promote

efficiency, we not only omit zero coefficients but store the pairs in decreasing order

of exponents. The ordering allows algorithms resembling mergesort and allows at

most one term to have a given exponent.

The degree of a non-zero univariate polynomial is its largest exponent. If an 6= 0

then an xn +· · ·+a0x0 has degree n. Our representation makes it trivial to compute

a polynomial’s degree.

For example, [(500,1.0), (0,~2.0)] represents x500 − 2. Not every list of

type (int*real)list is a polynomial. Our operations may assume their arguments

to be valid polynomials and are required to deliver valid polynomials.

XI Foundations of Computer Science 122

Slide 1104

Specifying the Polynomial Operations

• poly is the type of univariate polynomials

• makepoly makes a polynomial from a list

• destpoly returns a polynomial as a list

• polysum adds two polynomials

• polyprod multiplies two polynomials

• polyquorem computes quotient and remainder

An implementation of univariate polynomials might support the operations

above, which could be summarized as follows:

type poly

val makepoly : (int*real)list -> poly

val destpoly : poly -> (int*real)list

val polysum : poly -> poly -> poly

val polyprod : poly -> poly -> poly

val polyquorem : poly -> poly -> poly * poly

This tidy specification can be captured as an ML signature. A bundle of declara-

tions meeting the signature can be packaged as an ML structure. These concepts

promote modularity, letting us keep the higher abstraction levels tidy. In particular,

the structure might have the name Poly and its components could have the short

names sum, prod, etc.; from outside the structure, they would be called Poly.sum,

Poly.prod, etc. This course does not discuss ML modules, but a modular treatment

of polynomials can be found in my book [9]. Modules are essential for building

large systems.

Function makepoly could convert a list to a valid polynomial, while destpoly

could return the underlying list. For many abstract types, the underlying represen-

tation ought to be hidden. For dictionaries (Lect. 7), we certainly do not want an

operation to return a dictionary as a binary search tree. Our list-of-pairs represen-

tation, however, is suitable for communicating polynomials to the outside world. It

might be retained for that purpose even if some other representation were chosen to

facilitate fast arithmetic.

XI Foundations of Computer Science 123

Slide 1105

Polynomial addition

fun polysum [] us = us : (int*real)list

| polysum ts [] = ts

| polysum ((m,a)::ts) ((n,b)::us) =

if m>n then

(m,a) :: polysum ts ((n,b)::us)

else if n>m then

(n,b) :: polysum us ((m,a)::ts)

else (*m=n*) if a+b=0.0 then

polysum ts us

else (m, a+b) :: polysum ts us;

Our representation allows addition, multiplication and division to be performed

using the classical algorithms taught in schools. Their efficiency can sometimes be

improved upon. For no particular reason, the arithmetic functions are all curried.

Addition involves adding corresponding coefficients from the two polynomi-

als. Preserving the polynomial representation requires preserving the ordering and

omitting zero coefficients.1

The addition algorithm resembles merging. If both polynomials are non-empty

lists, compare their leading terms. Take the term with the larger exponent first. If

the exponents are equal, then create a single term, adding their coefficients; if the

sum is zero, then discard the new term.

1Some ML compilers insist upon Real.==(a+b,0.0) instead of a+b=0.0 above.

XI Foundations of Computer Science 124

Slide 1106

Polynomial multiplication (1st try)

fun termprod (m,a) (n,b) term × term

= (m+n, a*b) : (int*real);

fun polyprod [] us = [] poly × poly

| polyprod ((m,a)::ts) us =

polysum (map (termprod(m,a)) us)

(polyprod ts us);

BAD MERGING; 16 seconds to square (x + 1)400

Multiplication of polynomials is also straightforward provided we do not care

about efficiency; the schoolbook algorithm suffices. To cross-multiply the terms,

function polyprod forms products term by term and adds the intermediate polyno-

mials.

We see another application of the functional map: the product of the term (m,a)

with the polynomial ts is simply

map (termprod(m,a)) ts

The function polyprod is too slow to handle large polynomials. In tests, it re-

quired about 16 seconds and numerous garbage collections to compute the square

of (x + 1)400. (Such large computations are typical of symbolic algebra.) The inef-

ficiency is due to the merging (in polysum) of lists that differ greatly in length. For

instance, if ts and us consist of 100 terms each, then (map (termprod(m,a)) us)

has only 100 terms, while (polyprod ts us) could have as many as 10,000. Their

sum will have at most 10,100 terms; a growth of only 1%. Merging copies both lists;

if one list is much shorter than the other, then it effectively degenerates to insertion.

XI Foundations of Computer Science 125

Slide 1107

Polynomial multiplication (2nd try)

fun polyprod [] us = []

| polyprod [(m,a)] us = map (termprod(m,a)) us

| polyprod ts us =

let val k = length ts div 2

in polysum (polyprod (take(ts,k)) us)

(polyprod (drop(ts,k)) us)

end;

4 seconds to square (x + 1)400

A faster algorithm is inspired by mergesort (Lect. 5). Divide one of the poly-

nomials into equal parts, using take and drop. Compute two products of roughly

equal size and merge those. If one polynomial consists of a single term, multiply it

by the other polynomial using map as above. This algorithm performs many fewer

merges, and each merge roughly doubles the size of the result.

Other algorithms can multiply polynomials faster still.

XI Foundations of Computer Science 126

Slide 1108

Polynomial division

fun polyquorem ts ((n,b)::us) =

let fun quo [] qs = (rev qs, [])

| quo ((m,a)::ts) qs =

if m<n then (rev qs, (m,a)::ts)

else

quo (polysum ts

(map (termprod(m-n, ~a/b)) us))

((m-n, a/b) :: qs)

in quo ts [] end;

Let us turn to functions for computing polynomial quotients and remainders.

The function polyquorem implements the schoolbook algorithm for polynomial

division, which is actually simpler than long division. It returns the pair (quotient,

remainder), where the remainder is either zero or of lesser degree than the divisor.

The functions polyquo and polyrem return the desired component of the result,

using the ML selectors #1 and #2:

fun polyquo ts us = #1(polyquorem ts us)

and polyrem ts us = #2(polyquorem ts us);

Aside: if k is any positive integer constant, then #k is the ML function to return

the kth component of a tuple. Tuples are a special case of ML records, and the #

notation works for arbitrary record fields.

For example, let us divide x2 + 1 by x + 1:

polyquorem [(2,1.0),(0,1.0)] [(1,1.0),(0,1.0)];

> val it = ([(1, 1.0), (0, ~1.0)], [(0, 2.0)])

This pair tells us that the quotient is x − 1 and the remainder is 2. We can easily

verify that (x + 1)(x − 1) + 2 = x2 − 1 + 2 = x2 + 1.

XI Foundations of Computer Science 127

Slide 1109

The Greatest Common Divisor

fun polygcd [] us = us

| polygcd ts us = polygcd (polyrem us ts) ts;

needed to simplify rational functions such as

x2 − 1

x2 − 2x + 1

(

= x + 1

x − 1

)

strange answers

TOO SLOW

Rational functions are polynomial fractions like (x + 1)/(x − 1). Efficiency de-

mands that a fraction’s numerator and denominator should have no common factor.

We should divide both polynomials by their greatest common divisor (GCD).

We can compute GCDs using Euclid’s Algorithm, as shown above. Unfor-

tunately, its behaviour for polynomials is rather perverse. It gives the GCD of

x2 + 2x + 1 and x2 − 1 as −2x − 2, and that of x2 + 2x + 1 and x5 + 1 as

5x + 5; both GCDs should be x + 1. This particular difficulty can be solved by

dividing through by the leading coefficient, but Euclid’s Algorithm turns out to be

too slow. An innocuous-looking pair of arguments leads to computations on gigan-

tic integers, even when the final GCD is just one! (That is the usual outcome: most

pairs of polynomials have no common factor.)

The problem of computing the GCD of polynomials is central to the field of

computer algebra. Extremely complex algorithms are employed. A successful

implementation makes use of deep mathematics as well as skilled programming.

Many projects in advanced technology require this same combination of abilities.

XI Foundations of Computer Science 128

Learning guide. Related material is in ML for the Working Programmer, pages

114–121.

Exercise 11.1 Code the set operations of membership test, subset test, union and

intersection using the ordered-list representation.

Exercise 11.2 Give a convincing argument that polysum and polyprod preserve

the key restrictions on polynomials: all coefficients are nonzero and the exponents

are decreasing.

Exercise 11.3 Show that the complexity of polysum is O(m + n) when applied to

arguments consisting of m and n terms, respectively.

Exercise 11.4 Give a more rigorous analysis of the asymptotic complexity of the

two versions of polynomial multiplication. (Difficult!)

Exercise 11.5 Experiment with a real computer algebra system. Student dis-

counts are frequently available for the leading systems, Maple and Mathemat-

ica. Several open source computer algebra systems exist too, such as sage (http:

//www.sagemath.org/ and REDUCE (http://www.reduce-algebra.com/).

XII Foundations of Computer Science 129

Slide 1201

Procedural Programming

Procedural programs can change the machine state.

They can interact with its environment.

They use control structures like branching, iteration and procedures.

They use data abstractions of the computer’s memory:

• references to memory cells

• arrays: blocks of memory cells

• linked structures, especially linked lists

Procedural programming is programming in the traditional sense of the word.

A program state is repeatedly transformed by the execution of commands or state-

ments. A state change might be local to the machine and consist of updating a

variable or array. A state change might consist of sending data to the outside world.

Even reading data counts as a state change, since this act normally removes the data

from the environment.

Procedural programming languages provide primitive commands and control

structures for combining them. The primitive commands include assignment, for

updating variables, and various input/output commands for communication. Con-

trol structures include if and case constructs for conditional execution, and repet-

itive constructs such as while. Programmers can package up their own commands

as procedures taking arguments. The need for such ‘subroutines’ was evident from

the earliest days; they represent one of the first examples of abstraction in program-

ming languages.

ML makes no distinction between commands and expressions. ML provides

built-in ‘functions’ to perform assignment and communication, and these can be

used in the traditional (procedural) style. ML programmers normally follow a func-

tional style for most internal computations and use imperative features mainly for

communication with the outside world.

XII Foundations of Computer Science 130

Slide 1202

ML Primitives for References

τ ref type of references to type τ

ref E create a reference

initial contents = the value of E

!P return the current contents of reference P

P := E update the contents of P to the value of E

The slide presents the ML primitives, but most languages have analogues of

them, often heavily disguised. We need a means of creating references (or allocating

storage), getting at the current contents of a reference cell, and updating that cell.

The function ref creates references (also called locations). Calling ref allo-

cates a new location in memory. Initially, this location holds the value given by

expression E . Although ref is an ML function, it is not a function in the mathe-

matical sense. For example, ref(0)=ref(0) evaluates to false.

The function !, when applied to a reference, returns its contents. This operation

is called dereferencing. Clearly ! is not a mathematical function; its result depends

upon the store.

The assignment P:=E evaluates expression P , which must return a reference p,

and E . It stores at address p the value of E . Syntactically, := is a function and

P:=E is an expression, even though it updates the store. Like many functions that

change the state, it returns the value () of type uni t .

If τ is some ML type, then τ ref is the type of references to cells that can hold

values of τ . Please do not confuse the type ref with the function ref. This table of

the primitive functions and their types might be useful:

ref ’a -> ’a ref

! ’a ref -> ’a

op := ’a ref * ’a -> unit

XII Foundations of Computer Science 131

Slide 1203

Trying Out References

val p = ref 5; create a reference

> val p = ref 5 : int ref

p := !p + 1; now p holds 6

val ps = [ref 77, p];

> val ps = [ref 77, ref 6] : int ref list

hd ps := 3; updating an integer ref

ps; contents of the refs?

> val it = [ref 3, ref 6] : int ref list

The first line declares p to hold a reference to an integer, initially 5. Its type

is int ref, not just int, so it admits assignment. Assignment never changes val

bindings: they are immutable. The identifier p will always denote the reference

mentioned in its declaration unless superseded by a new usage of p. Only the con-

tents of the reference is mutable.

ML displays a reference value as ref v, where value v is the contents. This

notation is readable but gives us no way of telling whether two references holding

the same value are actually the same reference. To display a reference as a machine

address has obvious drawbacks!

In the first assignment, the expression !p yields the reference’s current contents,

namely 5. The assignment changes the contents of p to 6. Most languages do not

have an explicit dereferencing operator (like !) because of its inconvenience. In-

stead, by convention, occurrences of the reference on the left-hand side of the :=

denote locations and those on the right-hand side denote the contents. A special

‘address of’ operator may be available to override the convention and make a ref-

erence on the right-hand side to denote a location. Logically this is a mess, but it

makes programs shorter.

The list ps is declared to hold a new reference (initially containing 77) as well

as p. Then the new reference is updated to hold 3. The assignment to hd ps does

NOT update ps, only the contents of a reference in that list.

XII Foundations of Computer Science 132

Slide 1204

Commands: Expressions with Effects

• Basic commands update references, write to files, etc.

• C1;. . . ;Cn causes a series of expressions to be evaluated and

returns the value of Cn .

• A typical command returns the empty tuple: ()

• if B then C1 else C2 behaves like the traditional

control structure if C1 and C2 have effects.

• Other ML constructs behave naturally with commands, including

case expressions and recursive functions.

We use the term command informally to refer to an expression that has an effect

on the state. All expressions denote some value, but they can return (), which

conveys no actual information.

We need a way to execute one command after another. The construct

C1;. . . ;Cn evaluates the expressions C1 to Cn in the order given and returns the

value of Cn . The values of the other expressions are discarded; their only purpose

is to change the state.

Commands may be used with if and case much as in conventional languages.

ML functions play the role of procedures.

Other languages that combine the functional and imperative programming

paradigms include Lisp (and its dialect Scheme), Objective Caml, and even a sys-

tems programming language, BLISS (now long extinct).

XII Foundations of Computer Science 133

Slide 1205

Iteration: the while Command

while B do C

fun length xs =

let val lp = ref xs list of uncounted elements

val np = ref 0 accumulated count

in

while not (null (!lp)) do

(lp := tl (!lp); np := 1 + !np);

!np the count is returned!

end;

Once we can change the state, we need to do so repeatedly. Recursion can

serve this purpose, but having to declare a procedure for every loop is clumsy, and

compilers for conventional languages seldom exploit tail-recursion.

Early programming languages provided little support for repetition. The pro-

grammer had to set up loops using goto commands, exiting the loop using another

goto controlled by an if. Modern languages provide a confusing jumble of looping

constructs, the most fundamental of which is while B do C . The boolean expres-

sion B is evaluated, and if true, command C is executed and the command repeats.

If B evaluates to false then the while command terminates, perhaps without exe-

cuting C even once.

ML’s only looping construct is while, which returns the value (). The function

length declares references to hold the list under examination (lp) and number of

elements counted so far (np). While the list is non-empty, we skip over one more

element (by setting it to its tail) and count that element.

The body of the while loop above consists of two assignment commands, exe-

cuted one after the other. The while command is followed by the expression !np

to return computed length as the function’s result. This semicolon need not be

enclosed in parentheses because it is bracketed by in and end.

XII Foundations of Computer Science 134

Slide 1206

Private, Persistent References

exception TooMuch of int;

fun makeAccount (initBalance: int) =

let val balance = ref initBalance

fun withdraw amt =

if amt > !balance

then raise TooMuch (amt - !balance)

else (balance := !balance - amt;

!balance)

in withdraw end;

> val makeAccount = fn : int -> (int -> int)

As you may have noticed, ML’s programming style looks clumsy compared

with that of languages like C. ML omits the defaults and abbreviations they provide

to shorten programs. However, ML’s explicitness makes it ideal for teaching the

fine points of references and arrays. ML’s references are more flexible than those

found in other languages.

The function makeAccount models a bank. Calling the function with a specified

initial balance creates a new reference (balance) to maintain the account balance

and returns a function (withdraw) having sole access to that reference. Calling

withdraw reduces the balance by the specified amount and returns the new bal-

ance. You can pay money in by withdrawing a negative amount. The if-construct

prevents the account from going overdrawn, raising an exception.

Look at the (E1; E2) construct in the else part above. The first expression

updates the account balance and returns the trivial value (). The second expression,

!balance, returns the current balance but does not return the reference itself: that

would allow unauthorized updates.

This example is based on one by Dr A C Norman.

XII Foundations of Computer Science 135

Slide 1207

Two Bank Accounts

val student = makeAccount 500;

> val student = fn : int -> int

val director = makeAccount 4000000;

> val director = fn : int -> int

student 5; (*coach fare*)

> val it = 495 : int

director 150000; (*Ferarri*)

> val it = 3850000 : int

Each call to makeAccount returns a copy of withdraw holding a fresh instance

of the reference balance. As with a real bank pass-book, there is no access to the

account balance except via the corresponding withdraw function. If that function

is discarded, the reference cell becomes unreachable; the computer will eventually

reclaim it, just as banks close down dormant accounts.

Here we see two people managing their accounts. For better or worse, neither

can take money from the other.

We could generalize makeAccount to return several functions that jointly man-

age information held in shared references. The functions might be packaged using

ML records, which are discussed elsewhere [9, pages 32–36]. Most procedural lan-

guages do not properly support the concept of private references, although object-

oriented languages take them as a basic theme.

XII Foundations of Computer Science 136

Slide 1208

ML Primitives for Arrays

τ Array.array type of arrays of type τ

Array.tabulate(n, f) create a n-element array

A[i] initially holds f (i)

Array.sub(A,i) return the contents of A[i]

Array.update(A,i,E) update A[i] to the value of E

And countless others!

Array.array int * ’a -> ’a Array.array

Array.tabulate int * (int -> ’a) -> ’a Array.array

Array.sub ’a Array.array * int -> ’a

Array.update ’a Array.array * int * ’a -> unit

ML arrays are like references that hold several elements instead of one. The

elements of an n-element array are designated by the integers from 0 to n − 1. The

i th array element is usually written A[i]. If τ is a type then τ Array.array is the

type of arrays (of any size) with elements from τ .

Calling Array.tabulate(n, f) creates an array of the size specified by expres-

sion n. Initially, element A[i] holds the value of f (i) for i = 0, . . . , n − 1. Like

ref, it allocates mutable storage to hold the specified values.

Calling Array.sub(A,i) returns the contents of A[i].
Calling Array.update(A,i,E) modifies the array A by storing the value of E

as the new contents of A[i]; it returns () as its value.

ML provides immutable arrays, which are called vectors. The operation

Vector.tabulate can be used to build a read-only table of function values: worth-

while if the function is computationally expensive.

ML’s arrays are much safer than C’s. In C, an array is nothing more than an

address indicating the start of a storage area. Nothing indicates the size of the area.

Therefore C programs are vulnerable to buffer overrun attacks: a hacker sends more

data than the receiving program expects, overrunning the area of storage set aside

to hold it. He eventually overwrites the program itself, replacing it with virus code.

XII Foundations of Computer Science 137

Slide 1209

Array Examples

val ar = Array.tabulate(20, fn i => i*i);

> val ar = [|0,1,4,9,16,25,...|] : int array

Array.sub(ar,2);

> val it = 4 : int

Array.sub(ar,20);

> uncaught exception Subscript

Array.update(ar,2,~33);

ar;

> val it = [|0,1,~33,9,16,25,...|] : int array

In this session, the identifier ar is bound to an array of 20 elements, which are

initially set to the squares of their subscripts. (Different ML systems have different

ways of displaying an array’s value.) The array’s third element (which actually

has subscript 2) is inspected and found to be four. The second call to Array.sub

supplies a subscript that is out of range, so ML rejects it.

By calling Array.update, we then modify the element with subscript 2. Note

however that we cannot modify the array’s length. If we outgrow the array, we have

to create a new one, copy the data into it, and then forget the old array. Typically

the new array would be double the size of the old one, so that the cost of copying is

insignificant.

ML provides numerous operators for modifying, computing over and searching

in arrays. Many are analogous to functions on lists. For example, Array.exists

takes a boolean-valued function and returns true if an array element satisfies it.

XII Foundations of Computer Science 138

Slide 1210

References: ML Versus Conventional Languages

• We must write !p to get the contents of p

• We write just p for the address of p

• We can store private reference cells (like balance) in

functions—simulating object-oriented programming

• ML’s assignment syntax is V := E instead of V = E

• ML has few control structures: only while and case

• ML has no nice syntax for arrays (especially for updating an array)

Conventional syntax for variables and assignments has hardly changed since

Fortran, the first high-level language. In conventional languages, virtually all vari-

ables can be updated. We declare something like p: int, mentioning no reference

type even if the language provides them. If we do not specify an initial value, we

may get whatever bits were previously at that address. Illegal values arising from

uninitialized variables can cause errors that are almost impossible to diagnose.

Dereferencing operators (like ML’s !) are especially unpopular, because they

clutter the program text. Virtually all programming languages make dereferencing

implicit (that is, automatic).

It is generally accepted these days that a two-dimensional array A is nothing

but an array of arrays. An assignment to such an array is typically written some-

thing like A[i, j]:=x ; in C, the syntax is A[i][j] = x. Higher dimensions are

treated analogously. The corresponding ML code is a horrible combination of

Array.update and Array.sub.

XII Foundations of Computer Science 139

Slide 1211

What More is There to ML?

You can easily create linked (mutable) lists.

3
 5
 9
9
9
9
 Nil

7

datatype 'a mlist = Nil

| Cons of 'a * 'a mlist ref;

• Libraries interfacing to various operating systems and services

• Modules: structures, signatures and functors

• Threads and “futures” packages for multi-core programming

It is worth mentioning that ML’s references fully suffice for coding the sort of

linked data structures taught in algorithms courses, and is illustrated in the figure

above. The programming style is a little different from the usual, but the princi-

ples are the same. There are many examples in ML for the Working Programmer,

pages 326–340. ML also provides comprehensive input/output primitives for vari-

ous types of file and operating system.

ML’s system of modules include structures, which can be seen as encapsulated

groups of declarations, and signatures, which are specifications of structures list-

ing the name and type of each component. Finally, there are functors, which are

analogous to functions that combine a number of argument structures, and which

can be used to plug program components together. These primitives are useful for

managing large programming projects.

This lecture course has used Standard ML as a basis for teaching the basic prin-

ciples of programming. However, ML was designed primarily for writing research

software, especially for automated theorem proving. Substantial software can be

coded in ML. The Isabelle proof checker includes over 150,000 lines of Standard

ML, structured as purely functional modules connected by Poly/ML’s threads pack-

age (a nonstandard language extension) to provide effective parallelism. For exam-

ple, on an eight-core machine, a speed-up of six is not unusual. And Standard ML’s

sister language, OCaml, is also heavily used both in research and even in the finance

sector. While C and Java dominate the scene, there is some room for languages that

not only achieve reasonable performance but avoid the worst programming hazards

and have a hope of producing the right answers.

XII Foundations of Computer Science 140

Slide 1212

Syntax You Must Know

Expressions

E1; ...; En

while E1 do E2

Although this chapter introduces the new paradigm of procedural programming,

it introduces little new syntax. We informally talk about commands, but as far as

ML is concerned, there are only expressions. References and the operations on

them are simply types and functions. The only new syntax is that shown above.

• Semicolons can be used to combine expressions sequentially. In practice, all

of the expressions apart from the last had better have side-effects, since their

values are discarded.

• The iteration of a command can be expressed using while. Arguably, ML

would benefit from the addition of further iteration structures, such as some

sort of indexed loop (a for statement).

XII Foundations of Computer Science 141

Learning guide. Related material is in ML for the Working Programmer, pages

313–326. A brief discussion of ML’s comprehensive input/output facilities, which

are not covered in this course, is on pages 340–356.

Exercise 12.1 Comment, with examples, on the differences between an int ref

list and an int list ref.

Exercise 12.2 Write a version of function power (Lect. 2) using while instead of

recursion.

Exercise 12.3 What is the effect of while (C1; B) do C2?

Exercise 12.4 Write a function to exchange the values of two references, xr and

yr.

Exercise 12.5 Arrays of multiple dimensions are represented in ML by arrays of

arrays. Write functions to (a) create an n × n identity matrix, given n, and (b) to

transpose an m × n matrix. Identity matrices have the following form:








1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1








XII Foundations of Computer Science 142

References

[1] Harold Abelson and Gerald J. Sussman. Structure and Interpretation of Computer

Programs. MIT Press, 1985.

[2] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of

Computer Algorithms. Addison-Wesley, 1974.

[3] Matthew Halfant and Gerald Jay Sussman. Abstraction in numerical methods. In LISP

and Functional Programming, pages 1–7. ACM Press, 1988.

[4] John Hughes. Why functional programming matters. Computer Journal,

32(2):98–107, 1989.

[5] Donald E. Knuth. The Art of Computer Programming, volume 3: Sorting and

Searching. Addison-Wesley, 1973.

[6] Donald E. Knuth. The Art of Computer Programming, volume 1: Fundamental

Algorithms. Addison-Wesley, 2nd edition, 1973.

[7] R. E. Korf. Depth-first iterative-deepening: an optimal admissible tree search.

Artificial Intelligence, 27:97–109, 1985.

[8] Stephen K. Park and Keith W. Miller. Random number generators: Good ones are

hard to find. Communications of the ACM, 31(10):1192–1201, October 1988.

Follow-up discussion in Comm. ACM 36 (7), July 1993, pp. 105-110.

[9] Lawrence C. Paulson. ML for the Working Programmer. Cambridge University Press,

2nd edition, 1996.

[10] Robert Sedgewick. Algorithms. Addison-Wesley, 2nd edition, 1988.

