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Grammar induction

Last time we looked at ways to parse without ever building a grammar

But what if we want to know what a grammar is for a set of strings?

Today we will look at grammar induction.

...we’ll start with an example
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Grammar induction

CFGs may be inferred using recursive byte-pair encoding

The following is a speech unit of whale song:

b a a c c d c d e c d c d e c d c d e a a b a a c c d e c d c d e

We are going to infer some rules for this string using the following
algorithm:

count the frequency of all adjacent pairs in the string

reduce the most frequent pair to a non-terminal

repeat until there are no pairs left with a frequency > 1

This is used for compression—once we have removed all the repeated
strings we have less to transmit or store (we have to keep the grammar to
decompress)
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Grammar induction

CFGs may be inferred using recursive byte-pair encoding

b a a c c d c d e c d c d e c d c d e a a b a a c c d e c d c d e

F → c d

b a a c F F e F F e F F e a a b a a c F e F F e

G → F e

b a a c F G F G F G a a b a a c G F G

H → F G

b a a c H H H a a b a a c G H

I → a a

b I c H H H I b I c G H

J → b I

J c H H H I J c G H

K → J c

K H H H I K G H

L → H H

K L H I K G H

S → K L H I K G H
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Grammar induction

CFGs may be inferred using recursive byte-pair encoding

S

K

J

b I

a a

c

L

H

F

c d

G

F

c d

e

H

F

c d

G

F

c d

e

H

F

c d

G

F

c d

e

I

a a

K

J

b I

a a

c

G

F

c d

e

H

F

c d

G

F

c d

e

Paula Buttery (Computer Lab) Formal Models of Language 5 / 27



Grammar induction

Byte-pair has shortcomings for grammar induction

Byte-pair encoding has benefits for encryption but shortcomings when it
comes to grammar induction (especially of natural language):

the algorithm is frequency driven and this might not lead to
appropriate constituency

in the circumstance that two pairs have the same frequency we make
an arbitrary choice of which to reduce.

the data is assumed to be non-noisy (all string sequences encountered
are treated as valid)

(for natural language) the algorithm learns from strings alone (a more
appropriate grammar might be derived by including extra-linguistic
information)

We might suggest improvements to the algorithm (such as allowing
ternary branching) but in order to compare the algorithms we need a
learning paradigm in which to study them.
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Grammar induction

Paradigms are defined over grammatical systems

Grammatical system:

- H a hypothesis space of language descriptions (e.g. all possible
grammars)

- Ω a sample space (e.g. all possible strings)

- L a function that maps from a member of H to a subset of Ω

If we have (Hcfg ,Σ∗,L) then for some G ∈ Hcfg we have:
L(G ) = {sa, sb, sc ...} ⊆ Σ∗

Learning function:

The learning function, F , maps from a subset of Ω to a member of H

For G ∈ Hcfg then F ({sd , se , sf ...}) = G for some {sd , se , sf ...} ⊆ Σ∗

Note that the learning function is an algorithm (referred to as the learner)
and that learnability is a property of a language class (when F surjective).
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Grammar induction

Learning paradigms specify the nature of input

Varieties of input given to the learner:

positive evidence: the learner receives only valid examples from the
sample space (i.e. if the underlying grammar is G then the learner
receives samples, si , such that si ∈ L(G )).

negative evidence: the learner receives samples flagged as not being
in the language.

exhaustive evidence: the learner receives every relevant sample from
the sample space.

non-string evidence: the learner receives samples that are not
strings.
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Grammar induction

Learning paradigms also specify...

assumed knowledge: the things known to the learner before learning
commences (for instance, the hypothesis space, H might be assumed
knowledge).

nature of the algorithm: are samples considered sequentially or as a
batch? does the learner generate a hypothesis after every sample
received in a sequence? does the learner generate a hypothesis after
specific samples only?

required computation: e.g. is the learner constrained to act in
polynomial time.

learning success: what are the criteria by which we measure success
of the learner?
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Gold’s paradigm

Gold’s learning paradigms have been influential

Gold’s best known paradigm modelled language learning as an infinite
process in which a learner is presented with an infinite stream of strings of
the target language:

for a grammatical system (G,Σ∗,L)

select one of the languages L in the class defined by L (this is called
the target language, L = L(G ) where G ∈ G)

samples are presented to the learner one at a time s1, s2, ... in an
infinite sequence

the learner receives only positive evidence (i.e. only si such that
si ∈ L)

after each sample the learner produces a hypothesis (i.e. learner
produces Gn after having seen the data s1, ...sn

the evidence is exhaustive, every s ∈ L will be presented in the
sequence.
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Gold’s paradigm

Gold’s learning paradigms have been influential

Gold defined identification in the limit as successful learning:

There is some number N such that for all i > N, Gi = GN and
L(GN) = L

N is finite but there are no constraints placed on computation time of
the learning function.

In this paradigm a class of languages is learnable if:

Every language in the class can be identified in the limit no matter
what order the samples appear in
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Gold’s paradigm

Gold’s learning paradigms have been influential

Well known results from Gold’s paradigm include:

The class of suprafinite languages are not learnable (a suprafinite
class of languages is one that contains all finite languages and at least
one infinite language)

This means that e.g. the class of context-free languages are not
learnable within Gold’s paradigm.

We might care about this if we think that Gold’s paradigm is a good
model for natural language acquisition...(if we don’t think this then it is
just a fun result!).
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Gold’s paradigm

Gold: suprafinite languages are not learnable

Short proof:

Let L∞ be an infinite language L∞ = {s1, s2, ...}
Now construct an infinite sequence of finite languages L1 = {s1},
L2 = {s1, s2}, ...

Consider a particular presentation order s1...s1, s2...s2, s3...

When learning L1 we repeat s1 until the learner predicts L1

When learning L2 repeat s1 until the learner predicts L1 then repeat
s2 until it predicts L2

Continue like this for all Li : either the learner fails to converge on one
of these, or it ultimately fails to converge on L∞ for finite N.

We have found an ordering of the samples that makes the learner fail

Many people have investigated what IS learnable in this paradigm. We will
look at one example, but to do so we introduce one more grammar.
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Categorial grammars

Categorial grammars are lexicalized grammars

In a classic categorial grammar all symbols in the alphabet are
associated with a finite number of types.

Types are formed from primitive types using two operators, \ and /.

If Pr is the set of primitive types then the set of all types, Tp,
satisfies:

- Pr ⊂ Tp

- if A ∈ Tp and B ∈ Tp then A\B ∈ Tp

- if A ∈ Tp and B ∈ Tp then A/B ∈ Tp

Note that it is possible to arrange types in a hierarchy: a type A is a
subtype of B if A occurs in B (that is, A is a subtype of B iff A = B;
or (B = B1\B2 or B = B1/B2) and A is a subtype of B1 or B2).
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Categorial grammars

Categorial grammars are lexicalized grammars

A relation, R, maps symbols in the alphabet Σ to members of Tp.

A grammar that associates at most one type to each symbol in Σ is
called a rigid grammar

A grammar that assigns at most k types to any symbol is a k-valued
grammar.

We can define a classic categorial grammar as Gcg = (Σ,Pr ,S ,R)
where:

- Σ is the alphabet/set of terminals
- Pr is the set of primitive types
- S is a distinguished member of the primitive types S ∈ Pr that will be

the root of complete derivations
- R is a relation Σ× Tp where Tp is the set of all types as generated

from Pr as described above
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Categorial grammars

Categorial grammars are lexicalized grammars

A string has a valid parse if the types assigned to its symbols can be
combined to produce a derivation tree with root S .

Types may be combined using the two rules of function application:

Forward application is indicated by the symbol >:

A/B B
>

A
Backward application is indicated by the symbol <:

B A\B
<

A
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Categorial grammars

Categorial grammars are lexicalized grammars

Derivation tree for the string xyz using the grammar Gcg = (Σ,Pr , S ,R)
where:

Pr = {S ,A,B}
Σ = {x , y , z}
S = S
R = {(x ,A), (y , S\A/B), (z ,B)}

x R
A

y
R

S\A/B
z R
B

>
S\A

<
S

S (<)

A

x

S\A (>)

S\A/B

y

B

z
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Categorial grammars

Categorial grammars are lexicalized grammars

Derivation tree for the string Alice chases rabbits using the grammar
Gcg = (Σ,Pr ,S ,R) where:

Pr = {S ,NP}
Σ = {alice, chases, rabbits}
S = S
R = {(alice,NP), (chases,S\NP/NP),

(rabbits,NP)}

alice R
NP

chases R
S\NP/NP

rabbits R
NP

>
S\NP

<
S

S (<)

NP

alice

S\NP (>)

S\NP/NP

chases

NP

rabbits
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Categorial grammars

We can construct a strongly equivalent CFG

To create a context-free grammar Gcfg = (N ,Σ, S ,P) with strong
equivalence to Gcg = (Σ,Pr ,S ,R) we can define Gcfg as:

N = Pr ∪ range(R)
Σ = Σ
S = S
P = {A→ B A\B | A\B ∈ range(R)}

∪ {A→ A/B B | A/B ∈ range(R)}
∪ {A→ a | R : a→ A}
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categorial grammar learner

FYI: a categorial grammar learner within Gold’s paradigm

Buszkowski developed an algorithm for learning rigid grammars from
functor-argument structures.

The algorithm proceeds by inferring types from the available
information

Eg. for Forward Application:

(>)

. . →

B

B/A A

Variables are unified across all encountered structures.

Kanazawa constructed a proof to show that the algorithm could learn
the class of rigid grammars from an infinite stream of
functor-argument structures — as required to satisfy Gold’s paradigm.
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categorial grammar learner

FYI: a categorial grammar learner within Gold’s paradigm

Let Gi be the current hypothesis of the learner:

Gi : alice → x1

grows → s\x1

Let the next functor-argument structor encountered in the steam be:

(<)

alice (<)

grows quickly
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categorial grammar learner

FYI: a categorial grammar learner within Gold’s paradigm

Infer types to the new functor-argument structure:

(<)

alice (<)

grows quickly →

s (<)

x2

alice

s\x2 (<)

x3

grows

〈s\x2〉\x3

quickly
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categorial grammar learner

FYI: a categorial grammar learner within Gold’s paradigm

Look up words at the leaf nodes of the new structure in Gi

If the word exists in Gi , add types inferred at leaf nodes to the
existing set of types for that word; else create new word entry.

s (<)

x2

alice

s\x2 (<)

x3

grows

〈s\x2〉\x3

quickly

Gi : alice → x1

grows → s\x1

Gi+1 : alice → x1, x2

grows → s\x1, x3
quickly → 〈s\x2〉\x3
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categorial grammar learner

FYI: a categorial grammar learner within Gold’s paradigm

Gi+1 : alice → x1, x2

grows → s\x1, x3
quickly → 〈s\x2〉\x3

Unify the set of types. If unification fails then fail.

x2 7→ x1

x3 7→ s\x1

Output the lexicon.

Gi+1 : alice → x1

grows → s\x1
quickly → 〈s\x2〉\〈s\x1〉
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categorial grammar learner

FYI: a categorial grammar learner within Gold’s paradigm

Using this learner within Gold’s paradigm over various sample spaces it is
possible to prove:

Rigid grammars are learnable from functor-argument structor and
strings

k-valued grammars (for a specific k) are learnable from
functor-argument structor and strings

Note that the above mentioned grammars are subsets of the CFGs
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Problems with Gold’s paradigm

Gold’s paradigm is not much like human acquisition

Gold’s paradigm requires convergence in a finite number of steps
(hypotheses of G ) the amount of data it sees is unbounded.

Gold’s learner can use unbounded amounts of computation.

- A child only sees a limited amount of data, and has limited
computational resources

Success in this paradigm tells you absolutely nothing about the
learner’s state at any finite time.

- Children learn progressively

The learner has to learn for every possible presentation of the samples
(including presentations that have been chosen by an adversary with
knowledge of the internal state of the learner).

- It is arguable that the distributions are in some way helpful:
parentese
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Problems with Gold’s paradigm

Gold’s paradigm is not much like human acquisition

Gold’s learner is required to exactly identify the target language.

- We do not observe this in humans

We observe agreement on grammaticality between adults and children
approaching adult competence but we also observe differences in word
choices and grammaticality judgments between adults speakers.

Gold’s learner requires a hypothesis to be selected after every step.

- In fact there is evidence that children only attend to selective
evidence (Goldilocks effect)
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