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Languages are mutually understandable communication systems, in which information is transmitted
from speaker to hearer. Information Theory provides a mathematical basis on which to discuss transmis-
sion of information across (noisy) channels. A question then is whether information theory can inform
theories of human communication and language.

You cover Information Theory fundamentals in the Information Theory course. I will not repeat all
those details here but rather summarise the concepts we need to know to explore some natural language
theories.

1. Information Theory Basics and Natural Language

Information sources produce information as events or messages.
These may be represented by a random variable X over a discrete
set of symbols (or alphabet) X .1

1 For example, for a dice roll
X = {1, 2, 3, 4, 5, 6}; for a source
that produces characters of written
English X = {a...z, }. Note that, when
discussing natural languages, a mes-
sage might be a letter of the language’s
alphabet or a word (depending on the
level of linguistic enquiry).Entropy (or self-information) may be thought of as:

• the average amount of information produced by a source;

• the average amount of uncertainty of a random variable;

• the average amount of information we gain when receiving a
message from a source;2

2 Thinking of entropy as information
received is useful when we consider
a language to be a communication
system, in which information is
transmitted from speaker to hearer.

• the average amount of information we lack before receiving the
message;

• the average amount of uncertainty we have in a message we are
about to receive.

Entropy is measured in bits. If a source produces M messages with
equal frequency then the entropy (the information produced by the
source per message) is H = log2M.3 Entropy provides a lower limit

3 Notice that log21 = 0: i.e. when there
is only one possible message that we
can receive, it conveys no information
and no uncertainty.

on the number of bits we need to represent an event space.4

4 You will cover this in detail in Infor-
mation Theory, but entropy also gives
us a lower limit on the average number
of bits you need per message code. If a
source can produce M messages then
we need M codes to represent all the
possible messages. For example, for a
source that can produce 5 messages:
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≈ H(5) = log25 = 2.32

Entropy as described so far assumes that all messages are equally
likely to occur. This will not work well for describing the infor-
mation gained when receiving successive words of natural lan-
guage: intuitively, it seems like the information gained on receiving
the highly frequent word the should be less than the information
gained on receiving the infrequent word yak.5 Similarly, if we con-

5 Remember that we know that words
in a text exhibit a power-law probabil-
ity distribution (Zipf’s law).

sidered the information transmitted by successive letters in a word:
it seems like the vowels are providing less information than the
consonants.6

6 Indeed, Hebrew is often written
without vowels (called unpointed).

When the probability of events isn’t uniform, then more likely
events convey less information. Surprisal is a measure that allows
us to calculate the information of non-uniform events in bits.
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If the probability of a message, x, is p(x) then the surprisal of x is: entropy and surprisal

s(x) = log2

(
1

p(x)

)
= − log2 p(x)

Surprisal is also measured in bits and gives us a measure of infor-
mation that is inversely proportional to the probability of a message
occurring (i.e probable events convey a small amount of informa-
tion and improbable events a large amount of information). From
an encoding point of view, surprisal provides an indication of the
number of bits we would want to assign a message’s code. It is ef-
ficient to give probable items (with low surprisal) a small bit code
because we have to transmit them often. The average information
(entropy) produced per message by a non-uniform message source7

7 or, if you like, the average bit code
length per messageis the weighted sum of the surprisal (the average surprise): 8

8 Note, that when all M items in X are
equally likely (i.e. p(x) = 1

M ) then
H(X) = − log2 p(x) = log2 M as on
previous page.

H(X) = ∑
x∈X

p(x)log2

(
1

p(x)

)
= − ∑

x∈X
p(x) log2 p(x)

When all messages are assumed to be equally likely we call that a
0th order model of the source. The weighted sum surprisal (which
takes account of the probability of the messages) is a 1st order
model. The 1st order model assumes independence of the mes-
sages. A 2nd-order model takes account of context. That is, it mod-
els the probability of receiving message y given that we have just
received message x (i.e. p(y|x)).9

9 In natural language, we often talk
about n-gram language models. A
bi-gram model takes account of the
previous item when predicting the
next item. In general an n-gram model
takes account of the previous n − 1
items.

Conditional entropy, H(Y|X), is the average amount of information
needed to transmit random variable Y, given that random variable
X has been transmitted:

H(Y|X) = ∑
x∈X

p(x)H(Y|X = x) = − ∑
x∈X

∑
y∈Y

p(x, y) log2 p(y|x)

Joint entropy, H(X, Y), is the amount of information needed on conditional entropy, joint entropy,
mutual informationaverage to specify two discrete random variables:

H(X, Y) = − ∑
x∈X

∑
y∈Y

p(x, y) log2 p(x, y)

The Chain rule connects joint and conditional entropy:

H(X, Y) = H(X) + H(Y|X)

H(X1...Xn) = H(X1) + H(X2|X1) + ... + H(Xn|X1...Xn−1)
H(X|Y) H(Y|X)

H(X) H(Y)

I(X; Y)

Figure 1: The interaction between
conditional entropy, joint entropy and
mutual information.

Mutual information, I(X; Y), indicates the information Y contains
about X. It is a measure of the reduction in uncertainty of one ran-
dom variable due to knowing about another. You can also think of
I(X; Y) as being the amount of information one random variable
contains about another.

I(X; Y) = H(X)− H(X|Y)
= H(Y)− H(Y|X)
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Relative entropy,10 D(p ‖ q), can be calculated for two probability
10 also called Kullback-Leibler diver-
gence.mass functions over the same event space. It is a measure of how

different the two probability distributions are11 (and can be thought
11 Mutual information turns out to
be a measure of how far the joint
distribution is from independence

I(X; Y) = D(p(x, y) ‖ p(x)p(y))

of as the average number of bits wasted by encoding events with
distribution p using a code based on distribution q). For p(x) and
q(x) the relative entropy is given by:

D(p ‖ q) = ∑
x∈X

p(x) log2
( p(x)

q(x)

)
=

relative entropy, cross entropy

If a random variable X has a true probability distribution p(x) but
is modelled by q(x) then the cross entropy,12 is given by:

12 Cross-Entropy is useful for measur-
ing the performance of a classification
model which outputs a probability
distribution over the classes. Cross-
entropy increases as the predicted
probabilities diverge from the actual
labels.

H(X, q) = H(X) + D(p ‖ q)

= − ∑
x∈X

p(x) log2 p(x) + ∑
x∈X

p(x) log2
( p(x)

q(x)
)

= − ∑
x∈X

p(x) log2 q(x)

For a stochastic process we can calculate entropy rate, Hrate. The entropy rate

entropy of a language is the limit of the entropy rate of a sample of
the language, as the sample gets longer and longer:

Hrate(L) = lim
n→∞

1
n H(X1...Xn)

A quick reminder about maximum
likelihood estimation: often we do not
know the real probability distribution
associated with a random variable but
we can estimate it using frequency
counts. For instance the probability
of a word sequence w1...wn might be
estimated as follows:

pmle(w1...wn) =
count(w1 ...wn)

count(w1 ...wn−1)

2. Noisy Channel Theorem

A communication channel is any means by which a message can
be conveyed; any noise in the channel establishes the relationship
between input and output.

encoder
channel
p(y|x) decoderW

message f rom
f inite alphabet

X

input to
channel

Y

output f rom
channel

W ′

reconstructed
message

noisy channel

The input to the channel has an entropy H(X) and the output
has an entropy of H(Y). An input-output pair has a probability
p(x, y) = p(x)p(y|x) and the joint entropy of all pairs is H(X, Y)
(which can be no larger than the sum of the individual entropies).
When X and Y are totally independent they share no mutual infor-
mation and then H(X, Y) = H(X) + H(Y).

The capacity of a channel is the maximum of the mutual informa- channel capacity

tion of X and Y over all input distributions of the input p(X):

C = max
p(X)

I(X; Y)
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Channel capacity, C, is the rate we can transmit information through
a channel with an arbitrarily low probability of not being able to re-
cover the input from the output. As long as transmission rate is less
than C we don’t need to worry about errors (the optimal transmis-
sion rate being C).13

13 Ideally a message will be transmitted
across a channel as efficiently as
possible while retaining enough
redundancy for errors to be detected
and corrected. In practical applications
we reach the channel capacity by
designing an encoding for the input
that maximises mutual information.

The noisy channel has inspired a Natural Language Processing
(NLP) problem-solving framework. In this framework we assume
there is no control over the language encoding and start at the point
where the already encoded input enters the channel:

encoder
channel
p(o|i) decoderI O I′

Many problems can be thought of as trying to find the most likely
input given an output from the channel:14

14 Examples include speech recogni-
tion, machine translation, spelling
correction, character recognition, ...I′ = argmax

i
p(i|o) = argmax

i
p(i)p(o|i)

where p(i) is the probability of the input (usually an n-gram lan-
guage model); and p(o|i) is the channel probability (i.e. a model
of the probability of getting an output from the channel given the
input).15

15 We can use Bayes’ theorem to esti-
mate p(i|o) (which is often difficult to
estimate directly and reliably):

p(i|o) = p(o|i)p(i)
p(o)

Note that p(o) will have no effect on
argmax function.

Information theory and natural language theories

Information theoretic approaches are being used to help us con-
sider the following questions about natural language:

• Is natural language a good code from an information-theoretic
perspective? Highly efficient codes make use of regularities
in the messages from the source using shorter codes for more
probable messages. Does this turn out to be true for natural
language? [Piantadosi et al., 2011]

• Where speakers have a choice between several variants to encode
their message, which variant will they prefer? Are constant rates
of transmission preferred for lexical unit? Within the bounds de-
fined by grammar, do speakers prefer utterances that distribute
information uniformly across the signal? [Genzel and Charniak,
2002, Aylett and Turk, 2004, Jaeger, 2010]

• Can the noisy channel account for typological variations in the
world’s languages? If word order provides context that is infor-
mative about meaning does this account for observed word order
in the world’s languages? [Gibson et al., 2013]

• Why has natural language evolved to be so ambiguous? Does
ambiguity have any communicative benefit? Is it the case that
efficient communication systems will necessarily be globally
ambiguous when context is informative? [Piantadosi et al., 2012]
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