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Overview of the course 
 
The focus of this course is "Theory driven approaches to Human Computer Interaction 
(HCI)". It continues and develops themes that have been introduced in Part 1a/1b Interaction 
Design, with a more detailed consideration of specific theoretical areas that have been 
introduced in that course, and also in the Preece, Rogers and Sharp textbook "Interaction 
Design: Beyond human-computer interaction". The academic community within Computer 
Science that studies HCI is associated with the international CHI conference series 
(pronounced kai), together with many specialist groups and regional bodies that are 
dedicated to different aspects of this important field. In this course we cannot give equal 
coverage to the whole field of HCI, but include some "deep dives" into specific topics that are 
of particular interest to Cambridge students, such as the usability of programming 
languages, and interaction with machine learning systems. 
 
Each lecture addresses a specific focus, some with specialist guest lectures. Most of these 
are application-driven, but with the applications chosen to illustrate one of the main bodies of 
theory within HCI. They have also been chosen to provide significant contrasts to each 
other, so that students gain an understanding of the very wide scope of theoretical concerns 
relevant to HCI. We draw connections between these different topics, but it is important to 
understand that the diversity is intentional, and that this course emphasises the need to have 
different ways of understanding human behaviour, in order to reflect human diversity. 
 
There are some areas of HCI that are important, but not covered in this course because they 
have specialist courses dedicated to them elsewhere in the Computer Science tripos. These 
include graphics processing and virtual reality, computer music and audio, computer 
security, and social network analysis. Those topics will not be taught or examined in Further 
HCI, although there are many opportunities to explore them in detail as HCI researchers. It is 
also worth noting that some important topics are not included in the Computer Science tripos 
at all, but are taught elsewhere in Cambridge. These include business Information 
Systems (taught at the Judge Business School), computer game design (taught at Anglia 
Ruskin University), educational technology (taught in the Faculty of Education) and digital 
media studies (taught at graduate level by the Cambridge Digital Humanities network based 
at CRASSH). 
 
The eight topics covered in the rest of this course are: 
 
Application of theory in HCI 
Goal-oriented interaction  
Designing smart systems (guest lecturer)  
Designing efficient systems  
Designing meaningful systems (guest lecturer)  
Evaluating interactive system designs  

 



 

Designing complex systems  
 
 

Lecture 1 - What is a theory in HCI? Why take a theory driven 
approach to HCI? 
 
The goal of HCI is to make interaction with computers somehow ‘better’ - faster, more 
productive, more creative, more social, more fun etc. 
 
This lecture starts with a number of illustrative case studies, asking for each of them: How 
would you have gone about designing this user interface? Is this a good (or bad) user 
interface? How do we *know* that this user interface is good or bad? and How could we 
improve this user interface if we had the chance? 
 
You can continue this enquiry for yourself, by paying attention to the user interfaces that you 
see around you every day. Can you tell what kind of people have designed this interface, 
and why they did it this way? If you have opinions about whether a specific interface is good 
or bad, can you relate your opinions to scientific evidence or established theories of human 
behaviour? A skilled computer scientist should be able to use theory to achieve a critical 
perspective - ways of systematically comparing cases to each other . 
 
Using theory in the design process  
  
We give the example of how a rather simple (and old) empirically-based theory of visual 
perception - the "Gestalt theory of perceptual organisation" can be applied to predict and 
explain why some design choices may be superior to others. We intentionally use a very 
sophisticated product - a visual programming language for parametric computer-aided 
design called Dynamo  - to show that scientifically-grounded principles of human perception 1

can make a contribution to the design of software ranging from trivial apps and web pages to 
extremely complex systems. 
 
Scientific principles of this kind are applied within a design process, which is usually 
iterative, with phases of "divergent" (creative exploration) and "convergent" (selection and 
evaluation). HCI theories can be usefully applied in both kinds of phase. During the divergent 
phase, theories can provide a basis for invention, recognising new alternatives, or gaps in 
the range of options that have been considered. When converging, theory gives us a basis 
for critique - to compare relative benefits of possible designs, predict properties that are 
likely to work well, and those that might cause problems. 
 
Revision suggestion: Take a situation where you have seen a design evolving - perhaps as a 
member of a Group Design Project team. Consider the cycles of divergence and 
convergence that occurred during the project, and review the ways that you thought about 
user interaction. What evidence did you used? Where did ideas come from? What 

1 http://www.dynamobim.com/ 
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arguments were brought to bear when making choices? 
 
Three waves of HCI 
 
As computers have changed from being primarily commercial, scientific and industrial tools 
to a routine part of the everyday structure of life, the theories and research methods of HCI 
have had to change too, to ensure that they are able to contribute to the rather different 
design processes and stakeholder requirements in these different domains. Of course, 
computers are still used in science and industry too, so those earlier theories are still 
relevant, and continue to be actively developed. Within HCI research, the changing 
emphasis of the field is summarised as three "waves" that emerged in different decades. 
 
In the first wave (developed during the 1980s), the main theories were adopted from fields 
such as Human Factors Engineering, Ergonomics and Cognitive Science. At this time, the 
“user interface” was often a separate module, designed independently of the main system. 
The primary design goal is efficiency (speed and accuracy) for a human operator to 
achieve well-defined tasks. Researchers typically used methods from cognitive science to 
model users’ perception, decision and action processes and predict usability. The example 
given in the lecture was a control panel with fixed switches, dials and lamps. Key principles 
for efficiency are grouping related information together, and using the inherent structure of 
operator tasks to ensure that specific sequences of operations can be facilitated (or 
avoided). 
 
In the second wave (developed during the 1990s), the main theories were adopted from 
social science fields such as Anthropology, Sociology and Work Psychology. This 
recognised that computers were only one part of a social system, and that the design of 
complex systems is a socio-technical experiment. The system design needs to take account 
of other sources and channels of information including conversations, paper, and physical 
environment. Research methods focused on studying the context where people work, and 
using Ethnography and Contextual Inquiry to understand other people's ways of seeing 
the world. Diverse stakeholders are often integrated into the design process, where 
prototyping and participatory design workshops aim to empower users and acknowledge 
other value systems. The methods of social science can be used reflexively to observe, 
analyse and understand the design process itself. The example given in the lecture was a 
large open office space, with paper notes fixed to cubicle walls, noticeboards, document 
holders, and many other devices that have been designed to facilitate and coordinate 
collaborative work. 
 
In the third wave (developed  during  the 2000s), the main theories were adopted from fields 
that deal with culture and creativity, including Art, Philosophy and Design. In this period, 
following the development of the Web and smartphones, user interfaces and became 
integral part of culture, and software application design increasingly concerned with "user 
experience". Ubiquitous computing technologies affect every part of our lives, mixing public 
and private. Outside the workplace, efficiency is not a priority, and usage is discretionary. 
Theoretical perspectives include emotional and subjective concerns of aesthetics and affect. 
Design experiments become more like works of art, speculative and interpretive, with critical 
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assessment of how this is meaningful within a particular tradition. The example given in the 
lecture was the "blood bag radio" created by the Dunne and Raby studio. This kind of 
speculative design is created to provoke and question, and design criteria relate not to 
efficiency, but to how interesting or thoughtful the interaction will be. 
 
Alternative perspectives  
 
HCI is not a static field. New design practices and theoretical advances are being made 
constantly, and these inform the invention and deployment of new kinds of interactive 
product and computer system. Further "waves" of thinking will continue emerging, including 
at the "alt.chi" venue that was created for controversial research rejected from the CHI 
conference. Future developments may include positive computing that focuses on wellbeing, 
flow, empathy, mindfulness, altruism (Calvo and Peters), work on inclusion and accessibility 
that addresses physical and sensory capabilities, ageing, low income and human rights, or 
explicitly critical points of view such as Bardzell's feminist utopianism, where design critique 
directly attacks the mechanisms of institutional privilege, using practices that are designed to 
amplify marginalized voices when thinking about the future. 
 
Revision suggestion: Dip into the Interaction Design textbook, or even the online archives of 
the ACM CHI conference series, asking which one of the three waves of HCI a given piece 
of research belongs to. What are the objectives and methods of the research? What kind of 
theoretical terminology is used? Does it refer to research literature from outside computer 
science - perhaps to psychology, to anthropology, or philosophy - and which wave is 
indicated by that orientation? 
  
 

Lecture 2 - Design of visual displays  
 
This lecture is based on an encyclopaedia article  that was prepared by the lecturer for an 2

online encyclopaedia on interaction design. It introduces mainstream theories and principles 
of visual representation and visual design. Some of these will be familiar to you from school 
studies and popular general knowledge, while others may be new. New kinds of visual 
representation are invented very slowly. However, the development of computer 
technologies frequently require new ways of thinking about information we put on screens 
(or other display surfaces, tangible, augmented or virtual reality).  
The fundamental principle of designing a visual display is that it is necessary to work out a 
correspondence between the (invisible) information structure that is being represented, and 
the visible marks that the user can see. An information structure consists of some number 
and variety of individual elements, and relationships between them. Each element or 
relationship may correspond to a visible mark or arrangement of marks on a display surface. 
Display design involves choosing the correspondences, marks and arrangements of marks 

2 
https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/visual-representatio
n 
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in ways such that the overall result makes sense to the user. 
 
Imagine that you were setting out to design a new kind of music notation. Unlike the familiar 
common music notation, you might choose to make letters correspond to different 
instruments (for example f=flute, d=drum), colours correspond to musical notes (you may 
have experienced “Colourstrings” kindergarten teaching), font size correspond to 

loudness, and order of the notes correspond to an animated dive through a 3D 
perspective scene in virtual reality (as in the Guitar Hero game series). All of these are 
design decisions, and there are many possible alternatives. In order to do a good job of 
design, you need to understand the possible ways that values in an invisible information 
structure (here the musical notes and their relations) can have meaningful correspondence 
to a display (here the fonts, colours and perspective). Many of the possible design choices 
are influenced primarily by the historical conventions of how other visual displays have 
been created in the past, especially if these have become familiar to everyday users. The 
bulk of this lecture is therefore focused on understanding the historical precedents that 
inform or govern our design choices when inventing new kinds of display. 
 
Typography and text 
 
For many years, computer displays resembled paper documents. This does not mean that 
they were simplistic or unreasonably constrained. On the contrary, most aspects of modern 
industrial society have been successfully achieved using the representational conventions of 
paper, so those conventions seem to be powerful ones. Information on paper can be 
structured using tabulated columns, alignment, indentation and emphasis, borders and 
shading. All of those were incorporated into computer text displays. Interaction conventions, 
however, were restricted to operations of the typewriter rather than the pencil. Each 
character typed would appear at a specific location. Locations could be constrained, like 
filling boxes on a paper form. And shortcut command keys could be defined using onscreen 
labels or paper overlays. It is not text itself, but keyboard interaction with text that is limited 
and frustrating compared to what we can do with paper. 
 
But despite the constraints on keyboard interaction, most information on computer screens is 
still represented as text. Conventions of typography and graphic design help us to interpret 
that text as if it were on a page, and human readers benefit from many centuries of 
refinement in text document design. Text itself, including many writing systems as well as 
specialised notations such as algebra, is a visual representation that has its own research 
and educational literature. Documents that contain a mix of bordered or coloured regions 
containing pictures, text and diagrammatic elements can be interpreted according to the 
conventions of magazine design, poster advertising, form design, textbooks and 
encyclopedias. Designers of screen representations should take care to properly apply the 
specialist knowledge of those graphic and typographic professions. Position on the page, 
use of typographic grids, and genre-specific illustrative conventions should all be taken into 
account. 
 
Summary: most screen-based information is interpreted according to textual and 
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typographic conventions, in which graphical elements are arranged within a grid system, 
occasionally divided or contained with ruled and coloured borders. 
 
Maps and graphs 
 
The computer has, however, also acquired a specialised visual vocabulary and conventions. 
Before the text-based ‘glass teletype’ became ubiquitous, cathode ray tube displays were 
already used to display oscilloscope waves and radar echoes. Both could be easily 
interpreted because of their correspondence to existing paper conventions. An oscilloscope 
uses a horizontal time axis to trace variation of a quantity over time, as pioneered by 
William Playfair in his 1786 charts of the British economy. A radar screen shows direction 
and distance of objects from a central reference point, just as the Hereford Mappa Mundi of 
1300 organised places according to their approximate direction and distance from 
Jerusalem. Many visual displays on computers continue to use these ancient but powerful 
inventions – the map and the graph. In particular, the first truly large software project, the 
SAGE air defense system, set out to present data in the form of an augmented radar screen 
– an abstract map, on which symbols and text could be overlaid. The first graphics 
computer, the Lincoln Laboratory Whirlwind, was created to show maps, not text. 
 
Summary: basic diagrammatic conventions rely on quantitative correspondence between 
a direction on the surface and a continuous quantity such as time or distance. These should 
follow established conventions of maps and graphs. 
 
Schematic drawings 
 
Ivan Sutherland’s groundbreaking PhD research with Whirlwind’s successor TX-2 introduced 
several more sophisticated alternatives. The use of a light pen allowed users to draw 
arbitrary lines, rather than relying on control keys to select predefined options. An obvious 
application, in the engineering context of MIT, was to make engineering drawings such as 
a girder bridge. Lines on the screen are scaled versions of the actual girders, and text 
information can be overlaid to give details of force calculations. Plans of this kind, as a visual 
representation, are closely related to maps. However, where the plane of a map corresponds 
to a continuous surface, engineering drawings need not be continuous. Each set of 
connected components must share the same scale, but white space indicates an 
interpretive break, so that independent representations can potentially share the same 
divided surface – a convention introduced in Diderot’s encyclopedia of 1772, which showed 
pictures of multiple objects on a page, but cut them loose from any shared pictorial context. 
 
Summary: engineering drawing conventions allow schematic views of connected 
components to be shown in relative scale, and with text annotations labelling the parts. 
White space in the representation plane can be used to help the reader distinguish elements 
from each other rather than directly representing physical space. 
 
Pictures 
 
Sutherland also suggested the potential value that computer screens might offer as artistic 
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tools.  His Sketchpad system was used to create a simple animated cartoon of a winking girl. 
This is the first computer visual representation that might suffer from the ‘resemblance 
fallacy’, i.e. that drawings are able to depict real object or scenes because the visual 
perception of the flat image simulates the visual perception of the real scene. Sutherland’s 
cartoon could only be called an approximate simulation, but many flat images (photographs, 
photorealistic ray-traced renderings, ‘old master’ oil paintings) have been described as 
though perceiving the representation is equivalent to perceiving a real object. 
 
In reality, new perspective rendering conventions are invented and esteemed for their 
accuracy by critical consensus, and only more slowly adopted by untrained readers. The 
consensus on preferred perspective shifts across cultures and historical periods, as is 
obvious from comparison of prehistoric, classical, medieval and renaissance artworks. It 
would be naïve to assume that the conventions of today are the final and perfect product of 
technical evolution. As with text, we become so accustomed to interpreting these 
representations that we are blind to the artifice. When even psychological object-recognition 
experiments employ line drawings as though they were objects, it can be hard to insist on 
the true nature of the representation. But professional artists are fully aware of the 
conventions they use – the way that a photograph is framed changes its meaning, and a 
skilled pencil drawing is completely unlike visual edge-detection thresholds. A good pictorial 
representation need not simulate visual experience any more than a good painting of a 
unicorn need resemble an actual unicorn. 
 
Summary: pictorial representations, including line drawings, paintings, perspective 
renderings and photographs rely on shared interpretive conventions for their meaning. It is 
naïve to treat screen representations as though they were simulations of experience in the 
physical world. 
 
Node-and-link diagrams 
 
The first impulse of a computer scientist, when given a pencil, seems to be to draw boxes 
and connect them with lines. These node and link diagrams can be analysed in terms of the 
connectivity in graph structures that are fundamental to the study of algorithms (but 
unrelated to the visual representations known as graphs or charts - a common cause of 
confusion in discussion with users). A predecessor of these connectivity diagrams can be 
found in electrical circuit schematics, where the exact location of components, and the 
lengths of the wires, can be arranged anywhere, because they are irrelevant to the circuit 
function. Another early program created for the TX-2, this time by Ivan Sutherland’s brother 
Bert, allowed users to create circuit diagrams of this kind. The distinctive feature of a 
node-and-link connectivity diagram is that, since the position of each node is irrelevant to the 
operation of the circuit, it can be used to carry other information, through ‘secondary 
notation’ – use of the plane to assist the reader in ways not related to the technical content 
(see Cognitive Dimensions in Lecture 8 for a further description of secondary notation) 
 
Circuit connectivity diagrams have been most widely popularised through the London 
Underground diagram, an invention of electrical engineer Henry Beck. The diagram has 
been clarified by exploiting the fact that most underground travellers are only interested in 
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order and connectivity, not location, of the stations on the line. However, popular resistance 
to reading ‘diagrams’ means that this one is more often described as the London 
Underground ‘map’, despite Beck’s complaints. 
 
Summary: node and link diagrams are still widely perceived as being too technical for broad 
acceptance. Nevertheless, they can present information about ordering and relationships 
clearly, especially if consideration is given to the value of allowing human users to specify 
positions. 
 
Icons and symbols 
 
Maps frequently use symbols to indicate specific kinds of landmark. Sometimes these are 
recognisably pictorial (e.g. the standard symbols for tree and church), but others are fairly 
arbitrary conventions (e.g. the symbol for a railway station). As the resolution of computer 
displays increased in the 1970s, a greater variety of symbols could be differentiated, by 
making them more detailed, as in the MIT SDMS system that mapped a naval battle 
scenario with symbols for different kinds of ship. However, the dividing line between pictures 
and symbols is ambiguous. Children’s drawings of houses often use conventional symbols 
(door, four windows, triangle roof and chimney) whether or not their own house has two 
storeys, or a fireplace. Letters of the Latin alphabet are shapes with completely arbitrary 
relationship to their phonetic meaning, but the Korean phonetic alphabet is easier to learn 
because the forms mimic the shape of the mouth when pronouncing those sounds. The field 
of semiotics offers sophisticated ways of analysing the basis on which marks correspond to 
meanings. In most cases, the best approach for an interaction designer is simply to adopt 
familiar conventions. When these do not exist, the design task is more challenging. 
 
It is unclear which of the designers working on the Xerox Star coined the term ‘icon’ for the 
small pictures symbolising different kinds of system object. David Canfield Smith winningly 
described them as being like religious icons, which he said were pictures standing for 
(abstract) spiritual concepts. But ‘icon’ is also used as a technical term in semiotics. 
Unfortunately, few of the Xerox team had a sophisticated understanding of semiotics. It was 
fine art PhD Susan Kare’s design work on the Apple Macintosh that established a visual 
vocabulary which has informed the genre ever since. Many software publishers simply opt 
for a memorable brand logo, while others seriously misjudge the kinds of correspondence 
that are appropriate. 
 
It has been suggested that icons, being pictorial, are easier to understand than text, and that 
pre-literate children, or speakers of different languages, might thereby be able to use 
computers without being able to read. In practice, most icons simply add decoration to text 
labels, and those that are intended to be self-explanatory must be supported with textual 
tooltips.  
 
Summary: the design of simple and memorable visual symbols is a sophisticated graphic 
design skill. Following established conventions is the easiest option, but new symbols must 
be designed with an awareness of what sort of correspondence is intended - pictorial, 
symbolic, metonymic (e.g. a key to represent locking), bizarrely mnemonic, but probably 
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not monolingual puns. 
 
Visual metaphor 
 
The ambitious graphic designs of the Xerox Star/Alto and Apple Lisa/Macintosh were the 
first mass-market visual interfaces. They were marketed to office professionals, making the 
‘cover story’ that they resembled an office desktop a convenient explanatory device. Of 
course, as was frequently noted at the time, these interfaces behaved nothing like a real 
desktop. The mnemonic symbol for file deletion (a wastebasket) was ridiculous if interpreted 
as an object placed on a desk. And nobody could explain why the desk had windows in it 
(the name was derived from the ‘clipping window’ of the graphics architecture used to 
implement them – it was at some later point that they began to be explained as resembling 
sheets of paper on a desk). There were immediate complaints from luminaries such as Alan 
Kay and Ted Nelson that strict correspondence by analogy to physical objects would 
become obstructive rather than instructive. Nevertheless, for many years the marketing story 
behind the desktop metaphor was taken seriously, despite the fact that all attempts to 
improve the Macintosh design with more elaborate visual analogies, as in General Magic 
and Microsoft Bob, subsequently failed. 
 
The ‘desktop’ can be far more profitably analysed (and extended) by understanding the 
representational conventions that it uses. The size and position of icons and windows on the 
desktop has no meaning, they are not connected, and there is no visual perspective, so it is 
neither a map, graph nor picture. The real value is the extent to which it allows secondary 
notation, with the user creating her own meaning by arranging items as she wishes. 
Window borders separate areas of the screen into different pictorial, text or symbolic 
contexts as in the typographic page design of a textbook or magazine. Icons use a large 
variety of conventions to indicate symbolic correspondence to software operations and/or 
company brands, but they are only occasionally or incidentally organised into more complex 
semiotic structures. 
 
Summary: theories of visual representation, rather than theories of visual metaphor, are the 
best approach to explaining the conventional Macintosh/Windows ‘desktop’. There is huge 
room for improvement. 
 
Unified theories of visual representation 
 
The analysis in this lecture has addressed the most important principles of visual 
representation for screen design, introduced with examples from the early history of 
graphical user interfaces. In most cases, these principles have been developed and 
elaborated within whole fields of study and professional skill – typography, cartography, 
engineering and architectural drafting, art criticism and semiotics. Improving on the current 
conventions requires serious skill and understanding. Nevertheless, interaction designers 
should be able, when necessary, to invent new visual representations. 
 
One approach is to take a holistic perspective on visual language, information design, 
notations, or diagrams. Specialist research communities in these fields address many 
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relevant factors from low-level visual perception to critique of visual culture. Across all of 
them, it can be necessary to ignore (or not be distracted by) technical and marketing claims, 
and to remember that all visual representations simply comprise marks on a surface that are 
intended to correspond to things understood by the reader. The two dimensions of the 
surface can be made to correspond to physical space (in a map), to dimensions of an object, 
to a pictorial perspective, or to continuous abstract scales (time or quantity). The surface can 
also be partitioned into regions that should be interpreted differently. Within any region, 
elements can be aligned, grouped, connected or contained in order to express their 
relationships. In each case, the correspondence between that arrangement, and the 
intended interpretation, must be understood by convention or explained. Finally, any 
individual element might be assigned meaning according to many different semiotic 
principles of correspondence. All of these are summarised in the table included in lecture 
materials. 
 
For further reading, short video lectures, and an interactive version of the overview table, the 
online encyclopaedia article is a useful source. It includes many of the images seen in the 
lecture, with explanations of how they relate to the theoretical content. It also includes an 
interactive implementation of the illustrative example.  
 
https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-inter
action-2nd-ed/visual-representation 
 
Revision suggestion: review the encyclopaedia article, and follow suggested readings that 
interest you. Choose some examples of unusual or everyday visual representations, and 
practice breaking them down according to the design principles that have been applied. 
Consider what alternatives could have been used - the example at the end of the lecture 
showed how a highly standardised and familiar formal visual representation (music notation) 
still has potential for design improvements that support specific kinds of activity (here, 
sight-reading). 
 

Lecture 3 - Goal-oriented interaction 
 
This lecture addresses the ways that we can use cognitive theories of planning, learning and 
understanding to understand user behaviour, and what they find hard. This approach is 
founded on a meta-theory of first-wave HCI, that "user interaction can be modelled as 
search". General purpose search algorithms are familiar in computer science, where an 
objective function can be combined with a state space and dependency graph to recursively 
search for optimal solutions using a wide variety of breadth-first or depth-first strategies for 
reducing the distance to some goal or target. 
 
If we can provide a clear definition of the user's goal, then we can model their interaction 
with a user interface as a search process - searching for actions that will get them closer to 
that goal. The Cognitive Walkthrough evaluation method (introduced in Interaction Design) 
proceeds in this way: analyse the user interface by identifying the next user goal, 
determining whether the necessary actions are available, ensuring that they are labelled in 
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a way that the user will recognise them, and confirming that the system will give appropriate 
feedback of progression toward the goal. 
 
Models of human decision making 
 
Unfortunately, there are many situations in which users may not be able to achieve an 
optimal goal, and where it may not be possible for designers to correctly anticipate what the 
user's goal is. The above process works well for simple user interfaces, in which there is an 
exact specification of what the user ought to do, and where their understanding of their goals 
is consistent with the designer's view. 
 
In more complex situations, even where an optimal solution exists, the amount of search 
time necessary to find it may be too large to be justified. Models of goal-directed planning 
that take the expense of computation into account are described as bounded rationality. 
Rather than optimising strategies, users often engage in satisficing strategies, where they 
follow a plan that is satisfactory, rather than optimal, within constraints. 
 
Models of economic decision making are based on observations of human decision making 
in satisficing and bounded rationality situations, with a focus on the assessment of costs and 
benefits rather than goal-directed search. Kahneman and Tversky's prospect theory 
describes human behaviour in terms of a utility model that considers the outcome of 
possible actions, with weighting of estimated benefits by likelihood. Where optimising search 
assumes complete knowledge of the state space, prospect theory assumes only that people 
choose actions based on estimated utility. 
 
The basis of decisions in behavioural economics is modified by external considerations such 
as future value discounting, and internal considerations such as bounded rationality. The 
result can be described as a collection of heuristics and biases that account for observed 
patterns in human decision making that do not seem to be explained by optimising search. 
 
Examples of these patterns include the availability heuristic, in which reasoning is based 
on examples easily to hand; the affect heuristic, basing decisions on emotion rather than 
calculating cost and benefit, and the representativeness heuristic, in which probability is 
judged based on resemblance to a class of similar situations. Humans also apply biases to 
ensure that the consequences of estimation error are within tolerable bounds. These include 
loss aversion, that losses hurt more than gains feel good; expectation bias, in which 
people observe results they expected; and the bandwagon effect, that prefers actions taken 
by other people. Research in behavioural economics has identified many more patterns of 
this kind, and popular lists can easily be found. Kahneman's book Thinking Fast and Slow 
provides an accessible introduction to the psychological research, with Thaler and 
Sunstein’s Nudge gives an economic perspective on the principles widely applied in UK 
government under the name "nudge theory". 
 
Revision suggestion: find one or two press reports of nudge theory, and write equations for 
the estimated utility functions, including likelihood-weighted outcomes, and consider how a 
search-based decision strategy could be applied in this situation. 
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Behavioural economics in HCI 
 
The Attention Investment theory of abstraction use is a model of end-user programming, 
which explains why users without prior experience of programming may take decisions that 
favour repeated manual actions rather than automated shortcuts. 
 
This occurs where automation involves forming an abstract specification, such as defining 
a regular expression for search and replace. The benefit of automation is saving time and 
concentration in future, but abstract specification (programming) takes time and 
concentration. There is also the risk of "bugs" that might result in the automated solution 
going wrong, and perhaps resulting more manual effort to fix up the consequences. So the 
utility function compares future saving of attention from programming vs costs of 
concentrating on a risky strategy. Biases such as loss aversion are likely to apply, and 
bounded rationality will apply, since deciding what to do takes even more concentration. 
 
In the extreme case of minimal concentration, it is worth remembering that much routine 
computer usage is carried out simply on the basis of memorised patterns of interaction (for 
example, repeatedly pushing the clear button on a calculator, the ‘walk’ button at a traffic 
light etc), with no clear mental model or goal underlying these. 
 
The limitations of goal based HCI 
 
Rational models of planning assume that the user doesn’t make mistakes, which is 
unrealistic even for experienced users. If we wanted to account and anticipate all user 
actions, including errors, we would need a cognitive model of why the error occurred - that 
is, a decision process that is not consistent with the identified goals, constraints, and search 
space. This might include information loss due to cognitive limitations, incorrect mental 
models, or misleading designs. Anticipating all of these factors would need description of a 
user journey that accounts for problem identification, diagnosis, debugging, testing, iteration, 
and many other procedures that characterise the user's own activity as a kind of design 
process. 
 
Most forms of decision theory assume that the user does have the right goal, but 
persuasive design is a field of HCI that considers how users might choose alternative 
goals, or modify their goals. These methods are useful in applications such as software 
systems to reduce energy consumption, promote exercise, manage diet and nutrition, stop 
smoking and so on. Persuasive design often apply "nudge" methods to modify the biases 
that underlie inappropriate goals. However, strategies of this kind are often recognised by 
users, who may respond negatively to a design that is paternalistic or patronising. 
 
Wicked problems 
 
Rittel and Webber described the class of problems that cannot be addressed with classical 
goal-based problem solving methods. Many day-to-day political and social problems have 
these characteristics, and almost all large ones (such as slowing climate change). The 
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characteristics of a wicked problem are: 
1. There is no definitive formulation of a wicked problem 
2. Wicked problems have no stopping rule 
3. Solutions to wicked problems are not true-or-false, but good-or-bad 
4. There is no immediate and no ultimate test of a solution to a wicked problem 
5. Every solution to a wicked problem is a “one-shot operation”; because there is no 
opportunity to learn by trial-and-error, every attempt counts significantly 
6. Wicked problems do not have an enumerable (or an exhaustively describable) set of 
potential solutions, nor is there a well-described set of permissible operations that may be 
incorporated into the plan 
7. Every wicked problem is essentially unique 
8. Every wicked problem can be considered to be a symptom of another problem 
9. The existence of a discrepancy representing a wicked problem can be explained in 
numerous ways. The choice of explanation determines the nature of the problem's resolution 
10. The planner has no right to be wrong 
 

Lecture 4 - Designing smart systems (Per Ola Kristensson)  
 
This lecture focused on the example of text entry systems, to illustrate how a probabilistic 
model of the user's intentions can be used to create more efficient user interfaces. We are all 
familiar with predictive text entry on mobile phones, and the everyday frustrations we have 
all experienced can be used as a starting point to think about the design of other user 
interfaces that rely on probabilistic models of the user's goals. These include the role of 
practice and familarity, the need to correct errors, and the use of a Bayesian approach to 
combine prior likelihood of alternative user goals with their observed actions. 
 
The technical content of Dr Kristensson's lecture is summarised in this article: 
http://www.cl.cam.ac.uk/teaching/1617/HCI/POK-paper.pdf 
 
Revision suggestion: Take a predictive text entry system that you are familiar with, and use 
Bayes theorem to write a mathematical expression that will order and select the most likely 
word for insertion, taking into account a language model of word frequency, sentence 
context based on your own writing, and the actions (e.g. touch or swipe) that the system 
observes you making. 
 

Lecture 5 - Designing efficient systems 
 
This lecture is concerned with measuring and optimising human performance through 
quantitative experimental methods. Probabilistic models can be used to model human 
action, and also (in  part) to predict human action. Such models can be updated in real time, 
as demonstrated in predictive text entry systems, but they also allow efficiency of a user 
interface to be predicted, and also measured at design time. 
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Information constraints on speed and accuracy 
 
A fundamental trade-off in human performance can be described in information-theoretic 
terms. In many situations, users can choose to work slowly and carefully, or quickly at the 
expense of making more mistakes. This is the speed versus accuracy trade-off, and can 
be characterised as an information channel - fast and inaccurate actions result in more 
channel noise, meaning that the information gain per unit of time does not increase as 
quickly as the number of movements made. 
 
Even single user actions can be described in terms of information channel constraints, as 
characterised by Fitts’ Law. The demonstration in the lecture showed that the time taken to 
point at something is proportional to the Distance to target, while inversely proportional to 
Width of target. The ratio of width to distance is the index of difficulty, and can be 
understood as the potential amount of information gained by the system when the user 
points (selecting a small target from a wide range reflects greater information gain). 
 
Time = k log (2D/W)  
 
It is possible to use Fitts' Law to design more efficient user interfaces, if we have an accurate 
prior expectation for the actions that a user is likely to take. “Semantic pointing” modifies 
the mapping of mouse motion to screen pixels, so that the effective width of more likely 
targets is increased, and the effective distance between them decreased. 
 
Keystroke Level Model (KLM) 
 
The speed with which an expert user can complete a task in a user interface can be 
modeled as a series of unit operations - mouse movements and key strokes - with the KLM. 
(Note that the user must be expert, because the model does not include learning time, 
errors, or reasoning about an unfamiliar task). The time taken to point at a target is 
estimated using Fitts' Law. Other components of the model include time taken to press a key 
or mouse button (about 200 ms), time taken to "home" the hands on mouse or keyboard 
(about 400 ms), mental preparation time between sequences of more automated actions 
(about 1500 ms) and the time that the system takes to respond.  
 
Hypothesis-testing user studies 
 
When companies are able to collect large volumes of behavioural data, for example in 
click-throughs from an online listing, it is possible to make randomised controlled trials by 
giving different users different versions of the interface, and observing which version is more 
likely to result in desired behaviour. This procedure is called an A/B test. 
 
Controlled experiments to evaluate efficiency in a user interface often measure the 
completion times for a task, comparing the distribution of times for two or more versions of 
the user interface. A statistical significance test is then carried out, to see whether the 
difference between the sample means might be due to chance. The null hypothesis is that 
there is no difference in performance between the versions, and that the samples differ only 
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as a result of random variation. A simple significance test such as the t-test compares the 
effect size (the difference between sample means) to the variance in the experimental data. 
Experiments in HCI generally aim to minimise variance, and maximise effect size, to 
demonstrate that an improved user interface has resulted in better performance. 
 
Tests that compare sample distributions rely on the data following a normal or Gaussian 
distribution. If user performance does not vary so consistently, then a non-parametric 
statistical test such as the sign test can be used, to compare sets of matched samples. A 
typical way to collected matched sample data is by carrying out a within-subject 
comparison, asking each experimental participant to complete an experimental task with 
both the original and the improved version of a user interface. For each participant, we note 
whether the sign is positive (improved version faster) or negative (original version faster), 
and then compare the proportion of each sign. 
 
Successful user studies rely on controlled experiments to minimise variation in the data from 
factors unrelated to the effect of the design change. The include individual differences 
between subjects (e.g. IQ), errors or misunderstanding of the task, distractions during the 
trial (e.g. sneezing), motivation of the participant (e.g. time of day), accidental intervention 
by experimenter (e.g. hints), and other random factors. Difference in means should always 
be reported with confidence intervals or error bars. However, a significant result is not 
always interesting - very small effects can be shown to be reliable, if the variance is small or 
the sample size very large. HCI research for design applications usually focuses on large 
effect sizes, rather than statistical significance.  
 
Drawbacks in experimental user studies 
 
Statistical comparison of human performance has not always been viewed favourably in 
commercial applications. The Hawthorne Effect was a famous finding from studies in the 
1920s, measuring the effect of factory lighting levels on productivity. These seemed to show 
that productivity improved if the lighting was increased, but also that productivity improved if 
the lighting decreased! It turned out that worker motivation, and therefore productivity, 
improved any time that an experiment was carried out, just because the workers liked the 
fact that someone was taking an interest in them. The same thing often happens with user 
interface modifications - an interesting design change may result in apparent efficiency 
improvements in the experimental context, but not have any long-term benefits. This is 
especially likely to occur when the experimenter has a personal investment in the new 
design (perhaps because they designed it), and gives this away during the experiment. 
 
Optimisation of human efficiency in an industrial context is called "Taylorism", after F.W. 
Taylor (1856-1915), an engineer who invented scientific management techniques to 
measure worker efficiency within a factory in ways that could be compared to machines, so 
that it was possible to optimise the overall system by measurement (and correction) of the 
human workers. Trade unions have worked to develop complementary perspectives in which 
the human rights of the workers are considered alongside questions of pure efficiency, and 
second wave HCI (the turn from human factors to social science) involved working closely 
with trade unions, especially in Sweden and Denmark. 
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A further area of user interface design in which efficiency is not a sufficient measure of 
system design is the creation of discretionary use systems, where the person using the 
system is not an employee, has their own goals, and can decide for themselves whether or 
not to be efficient (or whether they want to use the system at all). Where products are 
designed for creative expression or personal enjoyment, it is also unclear how (or whether) 
those goals can be quantified in a meaningful way. Third wave HCI therefore draws on 
philosophy of art or experience of meaning (in the philosophical tradition of 
phenomenology) to evaluate and inform design, rather than experimental measures. 
 

Lecture 6 - Designing meaningful systems (Simon Pulman Jones) 
Revision summary by Mariana Mărăs

�
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Design ethnography offers holistic, in-context understanding of how life works so it can be 
supported, enhanced and changed. 
 
An ethnographic study attempts to observe people in their normal environment, over a 
substantial period of time. During the observation the experiences of people are 
documented in a variety of ways (e.g. photography, video, audio, notes), paying attention to 
both peoples’ activities and the artefacts that they interact with. The outputs of an 
ethnographic study are diverse including: task flow diagrams, journey maps, concept 
generation maps, timeline of people’s activities, written reports, thick descriptions. 
 
In industry, ethnography can be integrated in the product design and creation lifecycle to 
drive innovation and inform design decisions. This can be seen as part of traditional 
requirements capture, but ethnography rarely provides a set of requirements to be 
implemented. Instead, it is more likely that ethnography is used by engineering and design 
teams to develop an in depth understanding of the (potential) users of a product or service 
and to inspire the design activity and the creation of prototypes. The design and engineering 
leadership teams will sometimes participate in the ethnographic activities alongside the 
anthropologists. 
 
There are multiple ways in which ethnography can be integrated in the typical process of 
design and implementation. For example, ethnographic studies can be used iteratively and 
in parallel with design workshops, first to understand the experiences that people were 
currently having and how those experiences could be supported or changed by a new 
product, then to understand how people related to the scenarios produced by the design 
team, and then to evaluate early product designs in a real-world context. 
 
Alongside ethnographic research, quantitative research can be conducted as well (e.g. 
online surveys). This approach of mixing qualitative and quantitative work, often known as 
mixed methods, can result in a better understanding than would be achievable with a single 
method alone - for example, ensuring that the people studied ethnographically are 
representative to the market, but also that ethnography can be used to investigate in depth 
interesting questions raised by the quantitative research. 
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In summary, ethnography helps designers, engineering and product teams understand 
- how things happen 
- what the everyday life of the users looks like 
- what kinds of experiences with the technology they have 
- what are people’s strategies for working with products, services and devices 
to get stuff done 
- how things matter 
- how products help people be social, and how they integrate in the social life of people 
- how products help people make meaning and sense of their life - how products help people 
be in control of their life 
 
This understanding is then included in the product development process to build technology 
that better fits people’s needs. 

Lecture 7- Evaluating interactive systems 
 
This lecture compares and contrasts the range of approaches to evaluation in systems 
research and engineering. 
 
A fundamental distinction is between Formative vs Summative evaluation. Formative 
evaluation is used to compare, assess and refine design ideas. Formative evaluation often 
involves open research questions, in which the researcher is interested in learning further 
information that may inform the design. Summative evaluation is more likely to involve 
closed research questions, with the purpose of testing and evaluating systems according to 
predefined criteria. 
 
Two further distinctions are firstly the distinction between evaluation methods that are 
Analytical (based on applying a theory to analysis and discussion of the design) versus 
Empirical (making observations and measurement of users), and secondly the distinction 
between methods that use Quantitative data (numbers) versus Qualitative data (words, 
pictures, audio or video). 
 
Analytical methods are useful for formative evaluation, because if the system design has not 
yet been completed, it may be difficult to observe how it is used (although low fidelity 
prototypes can be helpful here). Qualitative analytic methods include cognitive 
walkthrough (useful for closed research questions), and the cognitive dimensions of 
notations framework (useful for open research question). The Keystroke Level Model is a 
quantitative analytic method, which can be used to create numerical comparisons of closed 
research questions. 
 
Qualitative empirical methods include think-aloud, interviews, and field observation 
(covered in Lecture 6). They are usually associated with open research questions, where the 
objective is to learn new information relevant to system design or use. Quantitative empirical 
methods generally require a working system, so are most often summative. These include 
the use of analytics and metrics in A/B experiments, and also controlled laboratory trials. 
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Randomised Controlled Trials 
 
Randomised Control Trial (RCT) methods were introduced in Lecture 5. The general 
approach of comparing human performance under alternative treatments is commonly used 
in medicine, where the scientific logic of RCTs is generally associated with drugs trials. In 
order to run an RCT, you need 1) a performance measure; 2) a representative sample of 
your target population (who have given informed consent to participate); and 3) an 
experimental task that can be used to collect performance data. 
 
The results of an RCT are measured in terms of effect size, possibly including correlation 
with factors that might affect performance, and reporting significance measures to check 
whether the observed effects might have resulted from random variation or other factors 
rather than the treatment. The problems with RCTs include the fact that overcoming natural 
variation needs large samples, they do not naturally provide understanding of why a change 
occurred, and this means that it is hard to know whether the effect will generalise (for 
example to commercial contexts). If there are many relevant variables that are orthogonal to 
each other, such as different product features or design options, many separate experiments 
might therefore be required to distinguish between their effects and interactions. 
 
As a result of these factors, RCTs are little used for design research in commercial products. 
A far more justifiable performance measure is profit maximisation, although  sales/profit are 
often hard to measure with useful latency. Companies therefore tend to use proxy 
measures such as the number of days that customers continue actively to use the product. 
 
All controlled experiments must be assessed according to their Internal Validity and External 
Validity. Internal Validity asks “Was the study done right?”, including factors such as 
Reproducibility, Scientific integrity, and Refutability. External Validity asks “Does the study 
tell us useful things?”, focusing on whether results can be generalisable to real world 
situations, including factors such as representativeness of the sample population, the 
experimental task, and the application context. 
 
Analysing qualitative data 
 
In contrast to statistical comparison of quantitative measures from controlled experiments, 
interviews and field studies require analysis of qualitative data. This type of material is often 
recorded and transcribed as written text, so that the analysis can proceed using a 
reproducible scientific method. 
 
Categorical coding is a qualitative data analysis method that can be used to answer 
‘closed’ questions, for example comparing different groups of people or users of different 
products. The first step is to create a coding frame of expected categories of interest. The 
text data is then segmented (for example on phrase boundaries), and each segment is 
assigned to one category, so that frequency and correspondence can be compared. 
 
In a scientific context, categorical coding should incorporate some assessment of inter-rater 
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reliability, where two or more people make the coding decisions independently to avoid 
systematic bias or misinterpretation. They then compare how many decisions agree, 
relative to chance, using a statistical measure such as Cohen’s Kappa (for 2 people) or 
Fleiss’ Kappa (for more), comparing to typical levels (0.6-0.8 is considered ‘substantial 
agreement’). Inter-rater reliability may take account how many decisions still disagreed after 
discussion, which may involve refining and iterating the coding frame to resolve decision 
criteria. It is often useful to ‘prototype’ the coding frame by having the independent raters 
discuss a sample before proceeding to code the main corpus. 
 
Grounded theory is a qualitative data analysis method that can be used to answer ‘open’ 
questions, where there is no prior expectation or theoretical assumption of the insights that 
the researcher is looking for. The first step is to read the data closely, looking for interesting 
categories (‘open coding’). The researcher then collects fragments, writing ‘memos’  to 
capture insights as they occur. Emerging themes are organised using ‘axial coding’ across 
different sources of evidence. It is important to constantly compare memos,  themes and 
findings to the original data in order to ensure that these can be objectively justified. The 
process ends when the theoretical description has reached 'saturation' in relation to the 
original data, with the main themes complete and accounted for. 
 
How to evaluate a Part II project 
 
HCI methods will be relevant to the Evaluation section of a Part II project report in the case 
of a) Systems that a user will interact with (e.g. games, programming systems, VR); b) 
Systems with perceptual goals (e.g. graphics, audio, affective computing); c) Systems that 
you plan to deploy (e.g. apps, mobile sensing, software tools); or d) Systems that analyse 
social data. 
 
Ethical review 
 
In all these cases, you will be doing research with human participants - it is necessary to 
study the Cambridge School of Technology guidance for avoiding possible harm, and 
conducting your research in an ethical manner. 
https://www.tech.cam.ac.uk/Ethics_guidance 
 
After researching the necessary ethical concerns, you must inform the ethics committee of 
the Department of Computer Science and Technology about your planned research before 
you collect any data or recruit any participants. Fortunately, most HCI experiments involve 
relatively little risk, so we are able to use a lightweight approval process. You should 
describe the study you plan to carry out - who will participate, what you will ask them to do, 
and what data you will collect. You must also say what precautions you are taking, as 
appropriate to the nature of the research. This will include the approach you are taking to 
informed consent, and whether participants will be anonymous. 
 
Summary of analytic options (analysing your design) 
 
Cognitive Walkthrough 
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Is normally used in formative contexts – if you do have a working system, then why aren’t 
you observing a real user, which is far more informative than simulating or imagining one? 
However, Cognitive Walkthrough can be a valuable time-saving precaution before user 
studies start, to fix blatant usability bugs. 
 
KLM/GOMS 
It is unlikely that you’ll have alternative detailed UI designs in advance, so there is not much 
to be learned from using these methods in the context of a Part II project. If do you have a 
working system, a controlled observation is superior 
 
Cognitive Dimensions (lecture 8)  
Is better suited to less structured tasks than Cognitive Walkthrough and KLM/GOMS, which 
rely on predefined user goal and task structure  
 
Summary of empirical options (collecting data) 
 
Interviews/ethnography 
These could be useful in formative/preparation phase, where an open research method is 
helpful in developing design ideas or capturing user requirements. 
 
Think-aloud / Wizard of Oz 
This is valuable for both paper prototypes and working systems. It is highly effective at 
uncovering usability bugs, so long as the verbal protocol is analysed rigorously using 
qualitative methods. If you have used a rigorous analysis method, it would be wise to make 
this clear in your dissertation, to avoid any suspicion of qualitative methods that might be 
associated with engineer's greater familiarity with quantitative data. 
 
Controlled experiments 
Numerical data is more familiar to computer scientists, and can help to establish the 
engineering aspects of your work. However, it is important to ensure that you can measure 
the important attributes in a meaningful way (with both internal and external validity) and that 
you test significance and report confidence interval of observed means and effect sizes. 
 
Surveys and informal questionnaires 
Be clear what you are measuring – is self-report likely to be accurate? Take careful note of 
the notes below regarding bad evaluation techniques. Use a mix of open questions, which 
capture richer qualitative information, and closed questions that make it easier to aggregate 
and test hypotheses. Open questions require a coding frame to structure and compare data, 
or grounded theory methods (if you have broader research questions). Collecting survey 
data via interviews is likely to give more insight, but questionnaires are faster, so that you 
can collect data from a larger sample. Remember to test questionnaires with a pilot study, as 
it’s easier to get them wrong than with interviews. 
 
Field Testing 
If you have created a working product, it may be possible to make a controlled release and 
collect data on how it is used. However, do be careful to make risk assessment, and to seek 
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ethics approval before proceeding. 
 
Standardised survey instruments 
There are standard psychometric instruments to evaluate mental states such as fatigue, 
stress, confusion and emotional state. There are also standard methods to assess individual 
differences (e.g. personality, intelligence). You should use standardised approaches 
wherever possible, so that your results can be compared to existing scientific literature. 
Making changes to these standardised surveys generally invalidates the results, so don't be 
tempted! 
 
Bad evaluation techniques 
Beware of bad evaluation techniques, and don’t use these! Don't use purely affective 
reports, for example that 20 subjects answered the question “Do you like this nice new user 
interface more than that ugly old one?” These look superficially like empirical or quantitative 
(if you ask participants to rate your system on a scale of 1 to 10), but are probably biased – if 
these are your friends, or trying to please you (this is called experimental demand). Don't 
make claims with no testing or evidence at all, such as: “It was deemed that more colours 
should be used in order to increase usability.” This is phrased as though it results from a 
formative analytic process, but is subjective – since the author is the subject. Finally don't 
use introspective reports made by a single subject (often the programmer, project manager 
or your project supervisor): “I find it far more intuitive to do it this way, and the users will too.” 
These opinions might be apparently analytic or qualitative, for example drawing on folk 
wisdom, but are often both biased and subjective. Unfortunately this practice is relatively 
common in industry, where it is known as the HiPPO evaluation method (Highest-Paid 
Person’s Opinion). 
 
Evaluating non-HCI projects  
 
Principles that have been addressed in this course are also relevant to evaluation of other 
projects that do not include human interactive aspects. It is always useful to approach 
‘testing’ as a scientific exercise, having intellectual outcomes. You can define goals and 
hypotheses, and understand the boundaries and performance limits of your system by 
exploring them. In particular, keep in mind that it is often necessary to test to point of failure, 
so that you can make comparisons or explain limits.  
 
For non-interactive projects, it is still necessary to decide whether your evaluation should be 
analytic (proceeding by reasoning and argument, in which case you should ask how 
consistent and well-structured is your analytic framework) or empirical (proceeding by 
measurement/observation, in which case you should ask what you are measuring and why, 
and ensure that you have achieved scientific validity, where the measurements are 
compatible with your claims).  
 
All projects can potentially include a mix of formative and summative evaluation, although if 
you only evaluate formatively, examiners might wonder why you didn't finish your project. If 
carrying out summative evaluation, you should be clear whether the evaluation criteria are 
internal (derived from some theory) or external (addressing some problem). Many projects in 
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computer science also include a mix of quantitative and qualitative data. Engineering 
performance data is relatively easy to justify, but if your data is qualitative, how will you 
establish objectivity (i.e. that this is not simply your own opinion)?  
 

Lecture 8: Designing complex systems 
 
This lecture discussed case studies of applying theory to hard HCI problems. Complex 
systems can arise for a variety of reasons: because the domain is complex, because users 
of the system may potentially undertake many different tasks, because the outcomes are not 
well defined (e.g. wicked problems), because the combined behaviour of individual parts 
makes the overall system operation too complex to anticipate, or because the system will 
continue operating when the user is not there to observe it (i.e. programming). 
 
Classical HCI methods, based in first wave HCI, such as Cognitive Walkthrough and 
KLM/GOMS assume that the user has a well-defined goal, and that it is possible to define a 
task involving a predictable sequence of actions. This kind of task-based design can be 
contrasted with the design of interaction spaces, in which users select and configure 
components. Many graduates of the Cambridge Computer Science tripos are likely to pursue 
careers in which they build interaction spaces, rather than defined-use systems. Examples of 
interaction spaces include: programming languages, APIs, artificial intelligence systems, 
data analytic services, or computer-aided design tools. 
 
Design of an interactive space requires a broad brush analysis technique, because attempts 
to describe individual tasks and specific actions would result in a ‘death by detail,’ resulting 
from a combinatorial explosion of possible tasks and potentially relevant domain elements. 
Rather than describing specific actions that the user will carry out using an interface, broad 
brush techniques aim to describe interaction at a level of analytical distance from the 
interface. It is necessary to find an analytical frame that structures the description of an 
interaction, so that it can then be compared to some ideal characterisation of the application 
domain in terms of desirable interaction patterns offering a critical perspective.  
 
A canonical example of a broad brush analysis technique, widely used in the design 
programming languages and APIs, is the Cognitive Dimensions of Notations framework. 
A textbook introduction to CDs can be found here: 
http://www.cl.cam.ac.uk/~afb21/publications/BlackwellGreen-CDsChapter.pdf 
 
More recent research approaches inspired by the CDs have been the “Physics of Notations,” 
which tries to establish basic principles of visual perception that might be relevant (though 
note the earlier advice in this course, regarding visual representation), and “Patterns of User 
Experience”, which attempts to focus on the subjective experience of the user rather than 
purely observable behavior. In this course, we will consider only CDs, since they introduce 
the main philosophical principles that have been applied in developing other design 
frameworks. 
 
The CDs are presented as a vocabulary for design discussion. Many of the dimensions 
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reflect common usability factors that experienced designers might have noticed, but did not 
have a name for. Giving them a name allows designers to discuss these factors easily. 
Furthermore, CDs are based on the observation that there is no perfect user interface any 
more than a perfect programming language. Any user interface design reflects a set of 
design trade-offs that the designers have had to make. Giving designers a discussion 
vocabulary means that they can discuss the trade-offs that result from their design decisions. 
The nature of the trade-offs is reflected in the structure of the dimensions. It is not possible 
to create a design that has perfect characteristics in every dimensions - making 
improvements along one dimension often results in degradation along another. 
 
An example dimension is called viscosity, meaning resistance to change. In some 
notations, small conceptual changes can be very expensive to make. Imagine changing a 
variable from int to long in a large Java program. The programmer has to find every function 
to which that variable is passed, check the parameter declarations, check any temporary 
local variables where it is stored, check any calculations using the value, and so on. The 
idea of what the programmer needs to do is simple, but achieving it is hard. This is viscosity. 
There are programming languages that do not suffer from this problem, but they have other 
problems instead – trade-offs. This means that language designers must be able to 
recognise and discuss such problems when planning a new language. Furthermore, 
language semantics alone does not capture all the important usability considerations, 
because it is possible to design tools (such as refactoring functions) that mitigate the 
problems. The word “viscosity” helps that discussion to happen. 
 
CDs are relevant to a wide range of content manipulation systems – audio and video editors, 
social networking tools, calendar and project management systems, and many others. 
These systems all provide a notation of some kind, and an environment for viewing and 
manipulating the notation. Usability is a function of both the notation and the environment. 
 
Representative cognitive dimensions 
 
The following list gives brief definitions of the main dimensions, and examples of the 
questions that can be considered in order to determine the effects that these dimensions will 
have on different user activities. 
 
Premature commitment: constraints on the order of doing things. 
When you are working with the notation, can you go about the job in any order you like, or 
does the system force you to think ahead and make certain decisions first? If so, what 
decisions do you need to make in advance? What sort of problems can this cause in your 
work? 
 
Hidden dependencies: important links between entities are not visible. 
If the structure of the product means some parts are closely related to other parts, and 
changes to one may affect the other, are those dependencies visible? What kind of 
dependencies are hidden? In what ways can it get worse when you are creating a 
particularly large description? Do these dependencies stay the same, or are there some 
actions that cause them to get frozen? If so, what are they? 

22 



 

 
Secondary notation: extra information in means other than formal syntax. 
Is it possible to make notes to yourself, or express information that is not really recognised 
as part of the notation? If it was printed on a piece of paper that you could annotate or 
scribble on, what would you write or draw? Do you ever add extra marks (or colours or 
format choices) to clarify, emphasise or repeat what is there already? If so, this may 
constitute a helper device with its own notation. 
 
Viscosity: resistance to change.  
When you need to make changes to previous work, how easy is it to make the change? 
Why? Are there particular changes that are especially difficult to make? Which ones? 
 
Visibility: ability to view components easily.  
How easy is it to see or find the various parts of the notation while it is being created or 
changed? Why? What kind of things are difficult to see or find? If you need to compare or 
combine different parts, can you see them at the same time? If not, why not? 
 
Closeness of mapping: closeness of representation to domain.  
How closely related is the notation to the result that you are describing? Why? (Note that if 
this is a sub-device, the result may be part of another notation, not the end product). Which 
parts seem to be a particularly strange way of doing or describing something? 
 
Consistency: similar semantics are expressed in similar syntactic forms.  
Where there are different parts of the notation that mean similar things, is the similarity clear 
from the way they appear? Are there places where some things ought to be similar, but the 
notation makes them different? What are they? 
 
Diffuseness: verbosity of language.  
Does the notation a) let you say what you want reasonably briefly, or b) is it long-winded? 
Why? What sorts of things take more space to describe? 
 
Error-proneness: the notation invites mistakes.  
Do some kinds of mistake seem particularly common or easy to make? Which ones? Do you 
often find yourself making small slips that irritate you or make you feel stupid? What are 
some examples? 
 
Hard mental operations: high demand on cognitive resources.  
What kind of things require the most mental effort with this notation? Do some things seem 
especially complex or difficult to work out in your head (e.g. when combining several things)? 
What are they? 
 
Progressive evaluation: work-to-date can be checked at any time.  
How easy is it to stop in the middle of creating some notation, and check your work so far? 
Can you do this any time you like? If not, why not? Can you find out how much progress you 
have made, or check what stage in your work you are up to? If not, why not? Can you try out 
partially-completed versions of the product? If not, why not? 
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Provisionality: degree of commitment to actions or marks.  
Is it possible to sketch things out when you are playing around with ideas, or when you aren't 
sure which way to proceed? What features of the notation help you to do this? What sort of 
things can you do when you don't want to be too precise about the exact result you are trying 
to get? 
 
Role-expressiveness: the purpose of a component is readily inferred.  
When reading the notation, is it easy to tell what each part is for? Why? Are there some 
parts that are particularly difficult to interpret? Which ones? Are there parts that you really 
don't know what they mean, but you put them in just because it's always been that way? 
What are they? 
 
Abstraction: types and availability of abstraction mechanisms.  
Does the system give you any way of defining new facilities or terms within the notation, so 
that you can extend it to describe new things or to express your ideas more clearly or 
succinctly? What are they? Does the system insist that you start by defining new terms 
before you can do anything else? What sort of things? These facilities are provided by an 
abstraction manager - a redefinition device. It will have its own notation and set of 
dimensions. 
 
Notational activities 
 
When users interact with content, there are a limited number of activities that they can 
engage in, when considered with respect to the way the structure of the content might 
change. A CDs evaluation must consider which classes of activity will be the primary type of 
interaction for all representative system users. If the needs of different users have different 
relative priorities, those activities can be emphasised when design trade-offs are selected as 
a CDs profile. The basic list of activities includes: 
 
Search  
Finding information by navigating through the content structure, using the facilities provided 
by the environment (e.g. finding a specific value in a spreadsheet). The notation is not 
changing at all, though the parts of it that the users sees will vary. Visibility and hidden 
dependencies can be important factors in search. 
 
Incrementation  
Adding further content without altering the structure in any way (e.g. adding a new formula to 
a spreadsheet). If the structure will not change, then viscosity is not going to be very 
important. 
 
Modification  
Changing an existing structure, possibly without adding new content (e.g. changing a 
spreadsheet for use with a different problem). 
 
Transcription  
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Copying content from one structure or notation to another notation (e.g. reading an equation 
out of a textbook, and converting it into a spreadsheet formula). 
 
Exploratory design  
Combining incrementation and modification, with the further characteristic that the desired 
end state is not known in advance (e.g. programming a spreadsheet on the fly or “hacking”). 
Viscosity can make this kind of activity far more difficult. This is why good languages for 
hacking may not be strictly typed, or make greater use of type inference, as maintaining type 
declarations causes greater viscosity. Loosely typed languages are more likely to suffer from 
hidden dependencies (a trade-off with viscosity), but this is not such a problem for 
exploratory design, where the programmer can often hold this information in his head during 
the relatively short development timescale. 
 
Collaboration 
If the main purpose of the notation is to be shared or discussed with other people, the design 
considerations can be very different to those necessary for working by yourself. 
 
Beyond cognition and interaction 
 
In complex system design, it is sometimes hard to identify the boundary of the system. HCI 
research often extends into fields such as artificial intelligence, where human issues in 
machine learning include ethics and accountability that result from automating and/or 
justifying bias and prejudice. Digital humanities research focuses on treating text and 
images as meaningful and sophisticated, rather than simple categorical judgments. Ethical 
research questions may extend beyond the system itself - who does the intellectual ‘work’ of 
providing training corpus content or data labelling, how are they paid, and where do the 
profits go? Many global challenges draw attention to the ways that the world is being shaped 
by knowledge infrastructure. Should HCI researchers consider whether such systems are 
built to prioritise low income populations, or to advance the Sustainable Development Goals 
(human rights, education etc)? 
 
Revision suggestion: Consider some recently popular interaction spaces, and explain them 
by analogy to visual representation (Lecture 2) and cognitive dimensions of notations. 
Augmented reality is still a visual representation, so does it escape the problems that result 
from use of metaphor? Many Internet of Things (IoT) devices have physical switches etc, but 
how does the user define configuration, policy, future action? 
 
Now we need a notation - or a programming language. Remember behavioural economics 
and attention investment. Even around your house, bounded rationality happens, for 
example when you decide whether to learn how to set a timer on an appliance like a 
breadmaker or heating control. Do conversational agents build a user model, goal model or 
task model, and if so, how can the user see it, test it, or modify it? 
 
Future courses for those with further interest in HCI ... 
 
Part II and Part III: Many dissertation projects offer opportunities to design and evaluate 
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interactive systems 
 
Part II: Computer Music 
 
Part II: Advanced Graphics and Image Processing 
 
Part III: Interacting with Machine Learning 
 
Part III: Affective Computing 
 
Part III: Advanced topics in mobile and sensor systems and data modelling 
 
Part III: Computer Security: Principles and Foundations 
 
Research Skills: Working with artists and designers 
 
Research Skills: How to interpret experimental results 
 
Research Skills: Working with sensitive data in the wild 
 
Research Skills: How to design surveys 
 
Research Skills: Issues in online research and observation of human participants 
 
Research Skills: Qualitative research methods 
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