
Lecture Notes for Part 1b / Part 2 Further HCI
Alan Blackwell and Luke Church

Overview of the course

The focus of this course is "Theory driven approaches to Human Computer Interaction
(HCI)". It continues and develops themes that have been introduced in Part 1a/1b Interaction
Design, with a more detailed consideration of specific theoretical areas that have been
introduced in that course, and also in the Preece, Rogers and Sharp textbook "Interaction
Design: Beyond human-computer interaction". The academic community within Computer
Science that studies HCI is associated with the international CHI conference series
(pronounced kai), together with many specialist groups and regional bodies that are
dedicated to different aspects of this important field. In this course we cannot give equal
coverage to the whole field of HCI, but include some "deep dives" into specific topics that are
of particular interest to Cambridge students, such as the usability of programming
languages, and interaction with machine learning systems.

Each lecture addresses a specific focus, some with specialist guest lectures. Most of these
are application-driven, but with the applications chosen to illustrate one of the main bodies of
theory within HCI. They have also been chosen to provide significant contrasts to each
other, so that students gain an understanding of the very wide scope of theoretical concerns
relevant to HCI. We draw connections between these different topics, but it is important to
understand that the diversity is intentional, and that this course emphasises the need to have
different ways of understanding human behaviour, in order to reflect human diversity.

There are some areas of HCI that are important, but not covered in this course because they
have specialist courses dedicated to them elsewhere in the Computer Science tripos. These
include graphics processing and virtual reality, computer music and audio, computer
security, and social network analysis. Those topics will not be taught or examined in Further
HCI, although there are many opportunities to explore them in detail as HCI researchers. It is
also worth noting that some important topics are not included in the Computer Science tripos
at all, but are taught elsewhere in Cambridge. These include business Information
Systems (taught at the Judge Business School), computer game design (taught at Anglia
Ruskin University), educational technology (taught in the Faculty of Education) and digital
media studies (taught at graduate level by the Cambridge Digital Humanities network based
at CRASSH).

The eight topics covered in the rest of this course are:

Application of theory in HCI
Goal-oriented interaction
Designing smart systems (guest lecturer)
Designing efficient systems
Designing meaningful systems (guest lecturer)
Evaluating interactive system designs

Designing complex systems

Lecture 1 - What is a theory in HCI? Why take a theory driven
approach to HCI?

The goal of HCI is to make interaction with computers somehow ‘better’ - faster, more
productive, more creative, more social, more fun etc.

This lecture starts with a number of illustrative case studies, asking for each of them: How
would you have gone about designing this user interface? Is this a good (or bad) user
interface? How do we *know* that this user interface is good or bad? and How could we
improve this user interface if we had the chance?

You can continue this enquiry for yourself, by paying attention to the user interfaces that you
see around you every day. Can you tell what kind of people have designed this interface,
and why they did it this way? If you have opinions about whether a specific interface is good
or bad, can you relate your opinions to scientific evidence or established theories of human
behaviour? A skilled computer scientist should be able to use theory to achieve a critical
perspective - ways of systematically comparing cases to each other .

Using theory in the design process

We give the example of how a rather simple (and old) empirically-based theory of visual
perception - the "Gestalt theory of perceptual organisation" can be applied to predict and
explain why some design choices may be superior to others. We intentionally use a very
sophisticated product - a visual programming language for parametric computer-aided
design called Dynamo - to show that scientifically-grounded principles of human perception 1

can make a contribution to the design of software ranging from trivial apps and web pages to
extremely complex systems.

Scientific principles of this kind are applied within a design process, which is usually
iterative, with phases of "divergent" (creative exploration) and "convergent" (selection and
evaluation). HCI theories can be usefully applied in both kinds of phase. During the divergent
phase, theories can provide a basis for invention, recognising new alternatives, or gaps in
the range of options that have been considered. When converging, theory gives us a basis
for critique - to compare relative benefits of possible designs, predict properties that are
likely to work well, and those that might cause problems.

Revision suggestion: Take a situation where you have seen a design evolving - perhaps as a
member of a Group Design Project team. Consider the cycles of divergence and
convergence that occurred during the project, and review the ways that you thought about
user interaction. What evidence did you used? Where did ideas come from? What

1 http://www.dynamobim.com/

1

arguments were brought to bear when making choices?

Three waves of HCI

As computers have changed from being primarily commercial, scientific and industrial tools
to a routine part of the everyday structure of life, the theories and research methods of HCI
have had to change too, to ensure that they are able to contribute to the rather different
design processes and stakeholder requirements in these different domains. Of course,
computers are still used in science and industry too, so those earlier theories are still
relevant, and continue to be actively developed. Within HCI research, the changing
emphasis of the field is summarised as three "waves" that emerged in different decades.

In the first wave (developed during the 1980s), the main theories were adopted from fields
such as Human Factors Engineering, Ergonomics and Cognitive Science. At this time, the
“user interface” was often a separate module, designed independently of the main system.
The primary design goal is efficiency (speed and accuracy) for a human operator to
achieve well-defined tasks. Researchers typically used methods from cognitive science to
model users’ perception, decision and action processes and predict usability. The example
given in the lecture was a control panel with fixed switches, dials and lamps. Key principles
for efficiency are grouping related information together, and using the inherent structure of
operator tasks to ensure that specific sequences of operations can be facilitated (or
avoided).

In the second wave (developed during the 1990s), the main theories were adopted from
social science fields such as Anthropology, Sociology and Work Psychology. This
recognised that computers were only one part of a social system, and that the design of
complex systems is a socio-technical experiment. The system design needs to take account
of other sources and channels of information including conversations, paper, and physical
environment. Research methods focused on studying the context where people work, and
using Ethnography and Contextual Inquiry to understand other people's ways of seeing
the world. Diverse stakeholders are often integrated into the design process, where
prototyping and participatory design workshops aim to empower users and acknowledge
other value systems. The methods of social science can be used reflexively to observe,
analyse and understand the design process itself. The example given in the lecture was a
large open office space, with paper notes fixed to cubicle walls, noticeboards, document
holders, and many other devices that have been designed to facilitate and coordinate
collaborative work.

In the third wave (developed during the 2000s), the main theories were adopted from fields
that deal with culture and creativity, including Art, Philosophy and Design. In this period,
following the development of the Web and smartphones, user interfaces and became
integral part of culture, and software application design increasingly concerned with "user
experience". Ubiquitous computing technologies affect every part of our lives, mixing public
and private. Outside the workplace, efficiency is not a priority, and usage is discretionary.
Theoretical perspectives include emotional and subjective concerns of aesthetics and affect.
Design experiments become more like works of art, speculative and interpretive, with critical

2

assessment of how this is meaningful within a particular tradition. The example given in the
lecture was the "blood bag radio" created by the Dunne and Raby studio. This kind of
speculative design is created to provoke and question, and design criteria relate not to
efficiency, but to how interesting or thoughtful the interaction will be.

Alternative perspectives

HCI is not a static field. New design practices and theoretical advances are being made
constantly, and these inform the invention and deployment of new kinds of interactive
product and computer system. Further "waves" of thinking will continue emerging, including
at the "alt.chi" venue that was created for controversial research rejected from the CHI
conference. Future developments may include positive computing that focuses on wellbeing,
flow, empathy, mindfulness, altruism (Calvo and Peters), work on inclusion and accessibility
that addresses physical and sensory capabilities, ageing, low income and human rights, or
explicitly critical points of view such as Bardzell's feminist utopianism, where design critique
directly attacks the mechanisms of institutional privilege, using practices that are designed to
amplify marginalized voices when thinking about the future.

Revision suggestion: Dip into the Interaction Design textbook, or even the online archives of
the ACM CHI conference series, asking which one of the three waves of HCI a given piece
of research belongs to. What are the objectives and methods of the research? What kind of
theoretical terminology is used? Does it refer to research literature from outside computer
science - perhaps to psychology, to anthropology, or philosophy - and which wave is
indicated by that orientation?

Lecture 2 - Design of visual displays

This lecture is based on an encyclopaedia article that was prepared by the lecturer for an 2

online encyclopaedia on interaction design. It introduces mainstream theories and principles
of visual representation and visual design. Some of these will be familiar to you from school
studies and popular general knowledge, while others may be new. New kinds of visual
representation are invented very slowly. However, the development of computer
technologies frequently require new ways of thinking about information we put on screens
(or other display surfaces, tangible, augmented or virtual reality).
The fundamental principle of designing a visual display is that it is necessary to work out a
correspondence between the (invisible) information structure that is being represented, and
the visible marks that the user can see. An information structure consists of some number
and variety of individual elements, and relationships between them. Each element or
relationship may correspond to a visible mark or arrangement of marks on a display surface.
Display design involves choosing the correspondences, marks and arrangements of marks

2
https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/visual-representatio
n

3

https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/visual-representation
https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/visual-representation

in ways such that the overall result makes sense to the user.

Imagine that you were setting out to design a new kind of music notation. Unlike the familiar
common music notation, you might choose to make letters correspond to different
instruments (for example f=flute, d=drum), colours correspond to musical notes (you may
have experienced “Colourstrings” kindergarten teaching), font size correspond to

loudness, and order of the notes correspond to an animated dive through a 3D
perspective scene in virtual reality (as in the Guitar Hero game series). All of these are
design decisions, and there are many possible alternatives. In order to do a good job of
design, you need to understand the possible ways that values in an invisible information
structure (here the musical notes and their relations) can have meaningful correspondence
to a display (here the fonts, colours and perspective). Many of the possible design choices
are influenced primarily by the historical conventions of how other visual displays have
been created in the past, especially if these have become familiar to everyday users. The
bulk of this lecture is therefore focused on understanding the historical precedents that
inform or govern our design choices when inventing new kinds of display.

Typography and text

For many years, computer displays resembled paper documents. This does not mean that
they were simplistic or unreasonably constrained. On the contrary, most aspects of modern
industrial society have been successfully achieved using the representational conventions of
paper, so those conventions seem to be powerful ones. Information on paper can be
structured using tabulated columns, alignment, indentation and emphasis, borders and
shading. All of those were incorporated into computer text displays. Interaction conventions,
however, were restricted to operations of the typewriter rather than the pencil. Each
character typed would appear at a specific location. Locations could be constrained, like
filling boxes on a paper form. And shortcut command keys could be defined using onscreen
labels or paper overlays. It is not text itself, but keyboard interaction with text that is limited
and frustrating compared to what we can do with paper.

But despite the constraints on keyboard interaction, most information on computer screens is
still represented as text. Conventions of typography and graphic design help us to interpret
that text as if it were on a page, and human readers benefit from many centuries of
refinement in text document design. Text itself, including many writing systems as well as
specialised notations such as algebra, is a visual representation that has its own research
and educational literature. Documents that contain a mix of bordered or coloured regions
containing pictures, text and diagrammatic elements can be interpreted according to the
conventions of magazine design, poster advertising, form design, textbooks and
encyclopedias. Designers of screen representations should take care to properly apply the
specialist knowledge of those graphic and typographic professions. Position on the page,
use of typographic grids, and genre-specific illustrative conventions should all be taken into
account.

Summary: most screen-based information is interpreted according to textual and

4

typographic conventions, in which graphical elements are arranged within a grid system,
occasionally divided or contained with ruled and coloured borders.

Maps and graphs

The computer has, however, also acquired a specialised visual vocabulary and conventions.
Before the text-based ‘glass teletype’ became ubiquitous, cathode ray tube displays were
already used to display oscilloscope waves and radar echoes. Both could be easily
interpreted because of their correspondence to existing paper conventions. An oscilloscope
uses a horizontal time axis to trace variation of a quantity over time, as pioneered by
William Playfair in his 1786 charts of the British economy. A radar screen shows direction
and distance of objects from a central reference point, just as the Hereford Mappa Mundi of
1300 organised places according to their approximate direction and distance from
Jerusalem. Many visual displays on computers continue to use these ancient but powerful
inventions – the map and the graph. In particular, the first truly large software project, the
SAGE air defense system, set out to present data in the form of an augmented radar screen
– an abstract map, on which symbols and text could be overlaid. The first graphics
computer, the Lincoln Laboratory Whirlwind, was created to show maps, not text.

Summary: basic diagrammatic conventions rely on quantitative correspondence between
a direction on the surface and a continuous quantity such as time or distance. These should
follow established conventions of maps and graphs.

Schematic drawings

Ivan Sutherland’s groundbreaking PhD research with Whirlwind’s successor TX-2 introduced
several more sophisticated alternatives. The use of a light pen allowed users to draw
arbitrary lines, rather than relying on control keys to select predefined options. An obvious
application, in the engineering context of MIT, was to make engineering drawings such as
a girder bridge. Lines on the screen are scaled versions of the actual girders, and text
information can be overlaid to give details of force calculations. Plans of this kind, as a visual
representation, are closely related to maps. However, where the plane of a map corresponds
to a continuous surface, engineering drawings need not be continuous. Each set of
connected components must share the same scale, but white space indicates an
interpretive break, so that independent representations can potentially share the same
divided surface – a convention introduced in Diderot’s encyclopedia of 1772, which showed
pictures of multiple objects on a page, but cut them loose from any shared pictorial context.

Summary: engineering drawing conventions allow schematic views of connected
components to be shown in relative scale, and with text annotations labelling the parts.
White space in the representation plane can be used to help the reader distinguish elements
from each other rather than directly representing physical space.

Pictures

Sutherland also suggested the potential value that computer screens might offer as artistic

5

tools. His Sketchpad system was used to create a simple animated cartoon of a winking girl.
This is the first computer visual representation that might suffer from the ‘resemblance
fallacy’, i.e. that drawings are able to depict real object or scenes because the visual
perception of the flat image simulates the visual perception of the real scene. Sutherland’s
cartoon could only be called an approximate simulation, but many flat images (photographs,
photorealistic ray-traced renderings, ‘old master’ oil paintings) have been described as
though perceiving the representation is equivalent to perceiving a real object.

In reality, new perspective rendering conventions are invented and esteemed for their
accuracy by critical consensus, and only more slowly adopted by untrained readers. The
consensus on preferred perspective shifts across cultures and historical periods, as is
obvious from comparison of prehistoric, classical, medieval and renaissance artworks. It
would be naïve to assume that the conventions of today are the final and perfect product of
technical evolution. As with text, we become so accustomed to interpreting these
representations that we are blind to the artifice. When even psychological object-recognition
experiments employ line drawings as though they were objects, it can be hard to insist on
the true nature of the representation. But professional artists are fully aware of the
conventions they use – the way that a photograph is framed changes its meaning, and a
skilled pencil drawing is completely unlike visual edge-detection thresholds. A good pictorial
representation need not simulate visual experience any more than a good painting of a
unicorn need resemble an actual unicorn.

Summary: pictorial representations, including line drawings, paintings, perspective
renderings and photographs rely on shared interpretive conventions for their meaning. It is
naïve to treat screen representations as though they were simulations of experience in the
physical world.

Node-and-link diagrams

The first impulse of a computer scientist, when given a pencil, seems to be to draw boxes
and connect them with lines. These node and link diagrams can be analysed in terms of the
connectivity in graph structures that are fundamental to the study of algorithms (but
unrelated to the visual representations known as graphs or charts - a common cause of
confusion in discussion with users). A predecessor of these connectivity diagrams can be
found in electrical circuit schematics, where the exact location of components, and the
lengths of the wires, can be arranged anywhere, because they are irrelevant to the circuit
function. Another early program created for the TX-2, this time by Ivan Sutherland’s brother
Bert, allowed users to create circuit diagrams of this kind. The distinctive feature of a
node-and-link connectivity diagram is that, since the position of each node is irrelevant to the
operation of the circuit, it can be used to carry other information, through ‘secondary
notation’ – use of the plane to assist the reader in ways not related to the technical content
(see Cognitive Dimensions in Lecture 8 for a further description of secondary notation)

Circuit connectivity diagrams have been most widely popularised through the London
Underground diagram, an invention of electrical engineer Henry Beck. The diagram has
been clarified by exploiting the fact that most underground travellers are only interested in

6

order and connectivity, not location, of the stations on the line. However, popular resistance
to reading ‘diagrams’ means that this one is more often described as the London
Underground ‘map’, despite Beck’s complaints.

Summary: node and link diagrams are still widely perceived as being too technical for broad
acceptance. Nevertheless, they can present information about ordering and relationships
clearly, especially if consideration is given to the value of allowing human users to specify
positions.

Icons and symbols

Maps frequently use symbols to indicate specific kinds of landmark. Sometimes these are
recognisably pictorial (e.g. the standard symbols for tree and church), but others are fairly
arbitrary conventions (e.g. the symbol for a railway station). As the resolution of computer
displays increased in the 1970s, a greater variety of symbols could be differentiated, by
making them more detailed, as in the MIT SDMS system that mapped a naval battle
scenario with symbols for different kinds of ship. However, the dividing line between pictures
and symbols is ambiguous. Children’s drawings of houses often use conventional symbols
(door, four windows, triangle roof and chimney) whether or not their own house has two
storeys, or a fireplace. Letters of the Latin alphabet are shapes with completely arbitrary
relationship to their phonetic meaning, but the Korean phonetic alphabet is easier to learn
because the forms mimic the shape of the mouth when pronouncing those sounds. The field
of semiotics offers sophisticated ways of analysing the basis on which marks correspond to
meanings. In most cases, the best approach for an interaction designer is simply to adopt
familiar conventions. When these do not exist, the design task is more challenging.

It is unclear which of the designers working on the Xerox Star coined the term ‘icon’ for the
small pictures symbolising different kinds of system object. David Canfield Smith winningly
described them as being like religious icons, which he said were pictures standing for
(abstract) spiritual concepts. But ‘icon’ is also used as a technical term in semiotics.
Unfortunately, few of the Xerox team had a sophisticated understanding of semiotics. It was
fine art PhD Susan Kare’s design work on the Apple Macintosh that established a visual
vocabulary which has informed the genre ever since. Many software publishers simply opt
for a memorable brand logo, while others seriously misjudge the kinds of correspondence
that are appropriate.

It has been suggested that icons, being pictorial, are easier to understand than text, and that
pre-literate children, or speakers of different languages, might thereby be able to use
computers without being able to read. In practice, most icons simply add decoration to text
labels, and those that are intended to be self-explanatory must be supported with textual
tooltips.

Summary: the design of simple and memorable visual symbols is a sophisticated graphic
design skill. Following established conventions is the easiest option, but new symbols must
be designed with an awareness of what sort of correspondence is intended - pictorial,
symbolic, metonymic (e.g. a key to represent locking), bizarrely mnemonic, but probably

7

not monolingual puns.

Visual metaphor

The ambitious graphic designs of the Xerox Star/Alto and Apple Lisa/Macintosh were the
first mass-market visual interfaces. They were marketed to office professionals, making the
‘cover story’ that they resembled an office desktop a convenient explanatory device. Of
course, as was frequently noted at the time, these interfaces behaved nothing like a real
desktop. The mnemonic symbol for file deletion (a wastebasket) was ridiculous if interpreted
as an object placed on a desk. And nobody could explain why the desk had windows in it
(the name was derived from the ‘clipping window’ of the graphics architecture used to
implement them – it was at some later point that they began to be explained as resembling
sheets of paper on a desk). There were immediate complaints from luminaries such as Alan
Kay and Ted Nelson that strict correspondence by analogy to physical objects would
become obstructive rather than instructive. Nevertheless, for many years the marketing story
behind the desktop metaphor was taken seriously, despite the fact that all attempts to
improve the Macintosh design with more elaborate visual analogies, as in General Magic
and Microsoft Bob, subsequently failed.

The ‘desktop’ can be far more profitably analysed (and extended) by understanding the
representational conventions that it uses. The size and position of icons and windows on the
desktop has no meaning, they are not connected, and there is no visual perspective, so it is
neither a map, graph nor picture. The real value is the extent to which it allows secondary
notation, with the user creating her own meaning by arranging items as she wishes.
Window borders separate areas of the screen into different pictorial, text or symbolic
contexts as in the typographic page design of a textbook or magazine. Icons use a large
variety of conventions to indicate symbolic correspondence to software operations and/or
company brands, but they are only occasionally or incidentally organised into more complex
semiotic structures.

Summary: theories of visual representation, rather than theories of visual metaphor, are the
best approach to explaining the conventional Macintosh/Windows ‘desktop’. There is huge
room for improvement.

Unified theories of visual representation

The analysis in this lecture has addressed the most important principles of visual
representation for screen design, introduced with examples from the early history of
graphical user interfaces. In most cases, these principles have been developed and
elaborated within whole fields of study and professional skill – typography, cartography,
engineering and architectural drafting, art criticism and semiotics. Improving on the current
conventions requires serious skill and understanding. Nevertheless, interaction designers
should be able, when necessary, to invent new visual representations.

One approach is to take a holistic perspective on visual language, information design,
notations, or diagrams. Specialist research communities in these fields address many

8

relevant factors from low-level visual perception to critique of visual culture. Across all of
them, it can be necessary to ignore (or not be distracted by) technical and marketing claims,
and to remember that all visual representations simply comprise marks on a surface that are
intended to correspond to things understood by the reader. The two dimensions of the
surface can be made to correspond to physical space (in a map), to dimensions of an object,
to a pictorial perspective, or to continuous abstract scales (time or quantity). The surface can
also be partitioned into regions that should be interpreted differently. Within any region,
elements can be aligned, grouped, connected or contained in order to express their
relationships. In each case, the correspondence between that arrangement, and the
intended interpretation, must be understood by convention or explained. Finally, any
individual element might be assigned meaning according to many different semiotic
principles of correspondence. All of these are summarised in the table included in lecture
materials.

For further reading, short video lectures, and an interactive version of the overview table, the
online encyclopaedia article is a useful source. It includes many of the images seen in the
lecture, with explanations of how they relate to the theoretical content. It also includes an
interactive implementation of the illustrative example.

https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-inter
action-2nd-ed/visual-representation

Revision suggestion: review the encyclopaedia article, and follow suggested readings that
interest you. Choose some examples of unusual or everyday visual representations, and
practice breaking them down according to the design principles that have been applied.
Consider what alternatives could have been used - the example at the end of the lecture
showed how a highly standardised and familiar formal visual representation (music notation)
still has potential for design improvements that support specific kinds of activity (here,
sight-reading).

Lecture 3 - Goal-oriented interaction

This lecture addresses the ways that we can use cognitive theories of planning, learning and
understanding to understand user behaviour, and what they find hard. This approach is
founded on a meta-theory of first-wave HCI, that "user interaction can be modelled as
search". General purpose search algorithms are familiar in computer science, where an
objective function can be combined with a state space and dependency graph to recursively
search for optimal solutions using a wide variety of breadth-first or depth-first strategies for
reducing the distance to some goal or target.

If we can provide a clear definition of the user's goal, then we can model their interaction
with a user interface as a search process - searching for actions that will get them closer to
that goal. The Cognitive Walkthrough evaluation method (introduced in Interaction Design)
proceeds in this way: analyse the user interface by identifying the next user goal,
determining whether the necessary actions are available, ensuring that they are labelled in

9

https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/visual-representation
https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/visual-representation

a way that the user will recognise them, and confirming that the system will give appropriate
feedback of progression toward the goal.

Models of human decision making

Unfortunately, there are many situations in which users may not be able to achieve an
optimal goal, and where it may not be possible for designers to correctly anticipate what the
user's goal is. The above process works well for simple user interfaces, in which there is an
exact specification of what the user ought to do, and where their understanding of their goals
is consistent with the designer's view.

In more complex situations, even where an optimal solution exists, the amount of search
time necessary to find it may be too large to be justified. Models of goal-directed planning
that take the expense of computation into account are described as bounded rationality.
Rather than optimising strategies, users often engage in satisficing strategies, where they
follow a plan that is satisfactory, rather than optimal, within constraints.

Models of economic decision making are based on observations of human decision making
in satisficing and bounded rationality situations, with a focus on the assessment of costs and
benefits rather than goal-directed search. Kahneman and Tversky's prospect theory
describes human behaviour in terms of a utility model that considers the outcome of
possible actions, with weighting of estimated benefits by likelihood. Where optimising search
assumes complete knowledge of the state space, prospect theory assumes only that people
choose actions based on estimated utility.

The basis of decisions in behavioural economics is modified by external considerations such
as future value discounting, and internal considerations such as bounded rationality. The
result can be described as a collection of heuristics and biases that account for observed
patterns in human decision making that do not seem to be explained by optimising search.

Examples of these patterns include the availability heuristic, in which reasoning is based
on examples easily to hand; the affect heuristic, basing decisions on emotion rather than
calculating cost and benefit, and the representativeness heuristic, in which probability is
judged based on resemblance to a class of similar situations. Humans also apply biases to
ensure that the consequences of estimation error are within tolerable bounds. These include
loss aversion, that losses hurt more than gains feel good; expectation bias, in which
people observe results they expected; and the bandwagon effect, that prefers actions taken
by other people. Research in behavioural economics has identified many more patterns of
this kind, and popular lists can easily be found. Kahneman's book Thinking Fast and Slow
provides an accessible introduction to the psychological research, with Thaler and
Sunstein’s Nudge gives an economic perspective on the principles widely applied in UK
government under the name "nudge theory".

Revision suggestion: find one or two press reports of nudge theory, and write equations for
the estimated utility functions, including likelihood-weighted outcomes, and consider how a
search-based decision strategy could be applied in this situation.

10

Behavioural economics in HCI

The Attention Investment theory of abstraction use is a model of end-user programming,
which explains why users without prior experience of programming may take decisions that
favour repeated manual actions rather than automated shortcuts.

This occurs where automation involves forming an abstract specification, such as defining
a regular expression for search and replace. The benefit of automation is saving time and
concentration in future, but abstract specification (programming) takes time and
concentration. There is also the risk of "bugs" that might result in the automated solution
going wrong, and perhaps resulting more manual effort to fix up the consequences. So the
utility function compares future saving of attention from programming vs costs of
concentrating on a risky strategy. Biases such as loss aversion are likely to apply, and
bounded rationality will apply, since deciding what to do takes even more concentration.

In the extreme case of minimal concentration, it is worth remembering that much routine
computer usage is carried out simply on the basis of memorised patterns of interaction (for
example, repeatedly pushing the clear button on a calculator, the ‘walk’ button at a traffic
light etc), with no clear mental model or goal underlying these.

The limitations of goal based HCI

Rational models of planning assume that the user doesn’t make mistakes, which is
unrealistic even for experienced users. If we wanted to account and anticipate all user
actions, including errors, we would need a cognitive model of why the error occurred - that
is, a decision process that is not consistent with the identified goals, constraints, and search
space. This might include information loss due to cognitive limitations, incorrect mental
models, or misleading designs. Anticipating all of these factors would need description of a
user journey that accounts for problem identification, diagnosis, debugging, testing, iteration,
and many other procedures that characterise the user's own activity as a kind of design
process.

Most forms of decision theory assume that the user does have the right goal, but
persuasive design is a field of HCI that considers how users might choose alternative
goals, or modify their goals. These methods are useful in applications such as software
systems to reduce energy consumption, promote exercise, manage diet and nutrition, stop
smoking and so on. Persuasive design often apply "nudge" methods to modify the biases
that underlie inappropriate goals. However, strategies of this kind are often recognised by
users, who may respond negatively to a design that is paternalistic or patronising.

Wicked problems

Rittel and Webber described the class of problems that cannot be addressed with classical
goal-based problem solving methods. Many day-to-day political and social problems have
these characteristics, and almost all large ones (such as slowing climate change). The

11

characteristics of a wicked problem are:
1. There is no definitive formulation of a wicked problem
2. Wicked problems have no stopping rule
3. Solutions to wicked problems are not true-or-false, but good-or-bad
4. There is no immediate and no ultimate test of a solution to a wicked problem
5. Every solution to a wicked problem is a “one-shot operation”; because there is no
opportunity to learn by trial-and-error, every attempt counts significantly
6. Wicked problems do not have an enumerable (or an exhaustively describable) set of
potential solutions, nor is there a well-described set of permissible operations that may be
incorporated into the plan
7. Every wicked problem is essentially unique
8. Every wicked problem can be considered to be a symptom of another problem
9. The existence of a discrepancy representing a wicked problem can be explained in
numerous ways. The choice of explanation determines the nature of the problem's resolution
10. The planner has no right to be wrong

Lecture 4 - Designing smart systems (Per Ola Kristensson)

This lecture focused on the example of text entry systems, to illustrate how a probabilistic
model of the user's intentions can be used to create more efficient user interfaces. We are all
familiar with predictive text entry on mobile phones, and the everyday frustrations we have
all experienced can be used as a starting point to think about the design of other user
interfaces that rely on probabilistic models of the user's goals. These include the role of
practice and familarity, the need to correct errors, and the use of a Bayesian approach to
combine prior likelihood of alternative user goals with their observed actions.

The technical content of Dr Kristensson's lecture is summarised in this article:
http://www.cl.cam.ac.uk/teaching/1617/HCI/POK-paper.pdf

Revision suggestion: Take a predictive text entry system that you are familiar with, and use
Bayes theorem to write a mathematical expression that will order and select the most likely
word for insertion, taking into account a language model of word frequency, sentence
context based on your own writing, and the actions (e.g. touch or swipe) that the system
observes you making.

Lecture 5 - Designing efficient systems

This lecture is concerned with measuring and optimising human performance through
quantitative experimental methods. Probabilistic models can be used to model human
action, and also (in part) to predict human action. Such models can be updated in real time,
as demonstrated in predictive text entry systems, but they also allow efficiency of a user
interface to be predicted, and also measured at design time.

12

http://www.cl.cam.ac.uk/teaching/1617/HCI/POK-paper.pdf

Information constraints on speed and accuracy

A fundamental trade-off in human performance can be described in information-theoretic
terms. In many situations, users can choose to work slowly and carefully, or quickly at the
expense of making more mistakes. This is the speed versus accuracy trade-off, and can
be characterised as an information channel - fast and inaccurate actions result in more
channel noise, meaning that the information gain per unit of time does not increase as
quickly as the number of movements made.

Even single user actions can be described in terms of information channel constraints, as
characterised by Fitts’ Law. The demonstration in the lecture showed that the time taken to
point at something is proportional to the Distance to target, while inversely proportional to
Width of target. The ratio of width to distance is the index of difficulty, and can be
understood as the potential amount of information gained by the system when the user
points (selecting a small target from a wide range reflects greater information gain).

Time = k log (2D/W)

It is possible to use Fitts' Law to design more efficient user interfaces, if we have an accurate
prior expectation for the actions that a user is likely to take. “Semantic pointing” modifies
the mapping of mouse motion to screen pixels, so that the effective width of more likely
targets is increased, and the effective distance between them decreased.

Keystroke Level Model (KLM)

The speed with which an expert user can complete a task in a user interface can be
modeled as a series of unit operations - mouse movements and key strokes - with the KLM.
(Note that the user must be expert, because the model does not include learning time,
errors, or reasoning about an unfamiliar task). The time taken to point at a target is
estimated using Fitts' Law. Other components of the model include time taken to press a key
or mouse button (about 200 ms), time taken to "home" the hands on mouse or keyboard
(about 400 ms), mental preparation time between sequences of more automated actions
(about 1500 ms) and the time that the system takes to respond.

Hypothesis-testing user studies

When companies are able to collect large volumes of behavioural data, for example in
click-throughs from an online listing, it is possible to make randomised controlled trials by
giving different users different versions of the interface, and observing which version is more
likely to result in desired behaviour. This procedure is called an A/B test.

Controlled experiments to evaluate efficiency in a user interface often measure the
completion times for a task, comparing the distribution of times for two or more versions of
the user interface. A statistical significance test is then carried out, to see whether the
difference between the sample means might be due to chance. The null hypothesis is that
there is no difference in performance between the versions, and that the samples differ only

13

as a result of random variation. A simple significance test such as the t-test compares the
effect size (the difference between sample means) to the variance in the experimental data.
Experiments in HCI generally aim to minimise variance, and maximise effect size, to
demonstrate that an improved user interface has resulted in better performance.

Tests that compare sample distributions rely on the data following a normal or Gaussian
distribution. If user performance does not vary so consistently, then a non-parametric
statistical test such as the sign test can be used, to compare sets of matched samples. A
typical way to collected matched sample data is by carrying out a within-subject
comparison, asking each experimental participant to complete an experimental task with
both the original and the improved version of a user interface. For each participant, we note
whether the sign is positive (improved version faster) or negative (original version faster),
and then compare the proportion of each sign.

Successful user studies rely on controlled experiments to minimise variation in the data from
factors unrelated to the effect of the design change. The include individual differences
between subjects (e.g. IQ), errors or misunderstanding of the task, distractions during the
trial (e.g. sneezing), motivation of the participant (e.g. time of day), accidental intervention
by experimenter (e.g. hints), and other random factors. Difference in means should always
be reported with confidence intervals or error bars. However, a significant result is not
always interesting - very small effects can be shown to be reliable, if the variance is small or
the sample size very large. HCI research for design applications usually focuses on large
effect sizes, rather than statistical significance.

Drawbacks in experimental user studies

Statistical comparison of human performance has not always been viewed favourably in
commercial applications. The Hawthorne Effect was a famous finding from studies in the
1920s, measuring the effect of factory lighting levels on productivity. These seemed to show
that productivity improved if the lighting was increased, but also that productivity improved if
the lighting decreased! It turned out that worker motivation, and therefore productivity,
improved any time that an experiment was carried out, just because the workers liked the
fact that someone was taking an interest in them. The same thing often happens with user
interface modifications - an interesting design change may result in apparent efficiency
improvements in the experimental context, but not have any long-term benefits. This is
especially likely to occur when the experimenter has a personal investment in the new
design (perhaps because they designed it), and gives this away during the experiment.

Optimisation of human efficiency in an industrial context is called "Taylorism", after F.W.
Taylor (1856-1915), an engineer who invented scientific management techniques to
measure worker efficiency within a factory in ways that could be compared to machines, so
that it was possible to optimise the overall system by measurement (and correction) of the
human workers. Trade unions have worked to develop complementary perspectives in which
the human rights of the workers are considered alongside questions of pure efficiency, and
second wave HCI (the turn from human factors to social science) involved working closely
with trade unions, especially in Sweden and Denmark.

14

A further area of user interface design in which efficiency is not a sufficient measure of
system design is the creation of discretionary use systems, where the person using the
system is not an employee, has their own goals, and can decide for themselves whether or
not to be efficient (or whether they want to use the system at all). Where products are
designed for creative expression or personal enjoyment, it is also unclear how (or whether)
those goals can be quantified in a meaningful way. Third wave HCI therefore draws on
philosophy of art or experience of meaning (in the philosophical tradition of
phenomenology) to evaluate and inform design, rather than experimental measures.

Lecture 6 - Designing meaningful systems (Simon Pulman Jones)
Revision summary by Mariana Mărăs

�
oiu

Design ethnography offers holistic, in-context understanding of how life works so it can be
supported, enhanced and changed.

An ethnographic study attempts to observe people in their normal environment, over a
substantial period of time. During the observation the experiences of people are
documented in a variety of ways (e.g. photography, video, audio, notes), paying attention to
both peoples’ activities and the artefacts that they interact with. The outputs of an
ethnographic study are diverse including: task flow diagrams, journey maps, concept
generation maps, timeline of people’s activities, written reports, thick descriptions.

In industry, ethnography can be integrated in the product design and creation lifecycle to
drive innovation and inform design decisions. This can be seen as part of traditional
requirements capture, but ethnography rarely provides a set of requirements to be
implemented. Instead, it is more likely that ethnography is used by engineering and design
teams to develop an in depth understanding of the (potential) users of a product or service
and to inspire the design activity and the creation of prototypes. The design and engineering
leadership teams will sometimes participate in the ethnographic activities alongside the
anthropologists.

There are multiple ways in which ethnography can be integrated in the typical process of
design and implementation. For example, ethnographic studies can be used iteratively and
in parallel with design workshops, first to understand the experiences that people were
currently having and how those experiences could be supported or changed by a new
product, then to understand how people related to the scenarios produced by the design
team, and then to evaluate early product designs in a real-world context.

Alongside ethnographic research, quantitative research can be conducted as well (e.g.
online surveys). This approach of mixing qualitative and quantitative work, often known as
mixed methods, can result in a better understanding than would be achievable with a single
method alone - for example, ensuring that the people studied ethnographically are
representative to the market, but also that ethnography can be used to investigate in depth
interesting questions raised by the quantitative research.

15

In summary, ethnography helps designers, engineering and product teams understand
- how things happen
- what the everyday life of the users looks like
- what kinds of experiences with the technology they have
- what are people’s strategies for working with products, services and devices
to get stuff done
- how things matter
- how products help people be social, and how they integrate in the social life of people
- how products help people make meaning and sense of their life - how products help people
be in control of their life

This understanding is then included in the product development process to build technology
that better fits people’s needs.

Lecture 7- Evaluating interactive systems

This lecture compares and contrasts the range of approaches to evaluation in systems
research and engineering.

A fundamental distinction is between Formative vs Summative evaluation. Formative
evaluation is used to compare, assess and refine design ideas. Formative evaluation often
involves open research questions, in which the researcher is interested in learning further
information that may inform the design. Summative evaluation is more likely to involve
closed research questions, with the purpose of testing and evaluating systems according to
predefined criteria.

Two further distinctions are firstly the distinction between evaluation methods that are
Analytical (based on applying a theory to analysis and discussion of the design) versus
Empirical (making observations and measurement of users), and secondly the distinction
between methods that use Quantitative data (numbers) versus Qualitative data (words,
pictures, audio or video).

Analytical methods are useful for formative evaluation, because if the system design has not
yet been completed, it may be difficult to observe how it is used (although low fidelity
prototypes can be helpful here). Qualitative analytic methods include cognitive
walkthrough (useful for closed research questions), and the cognitive dimensions of
notations framework (useful for open research question). The Keystroke Level Model is a
quantitative analytic method, which can be used to create numerical comparisons of closed
research questions.

Qualitative empirical methods include think-aloud, interviews, and field observation
(covered in Lecture 6). They are usually associated with open research questions, where the
objective is to learn new information relevant to system design or use. Quantitative empirical
methods generally require a working system, so are most often summative. These include
the use of analytics and metrics in A/B experiments, and also controlled laboratory trials.

16

Randomised Controlled Trials

Randomised Control Trial (RCT) methods were introduced in Lecture 5. The general
approach of comparing human performance under alternative treatments is commonly used
in medicine, where the scientific logic of RCTs is generally associated with drugs trials. In
order to run an RCT, you need 1) a performance measure; 2) a representative sample of
your target population (who have given informed consent to participate); and 3) an
experimental task that can be used to collect performance data.

The results of an RCT are measured in terms of effect size, possibly including correlation
with factors that might affect performance, and reporting significance measures to check
whether the observed effects might have resulted from random variation or other factors
rather than the treatment. The problems with RCTs include the fact that overcoming natural
variation needs large samples, they do not naturally provide understanding of why a change
occurred, and this means that it is hard to know whether the effect will generalise (for
example to commercial contexts). If there are many relevant variables that are orthogonal to
each other, such as different product features or design options, many separate experiments
might therefore be required to distinguish between their effects and interactions.

As a result of these factors, RCTs are little used for design research in commercial products.
A far more justifiable performance measure is profit maximisation, although sales/profit are
often hard to measure with useful latency. Companies therefore tend to use proxy
measures such as the number of days that customers continue actively to use the product.

All controlled experiments must be assessed according to their Internal Validity and External
Validity. Internal Validity asks “Was the study done right?”, including factors such as
Reproducibility, Scientific integrity, and Refutability. External Validity asks “Does the study
tell us useful things?”, focusing on whether results can be generalisable to real world
situations, including factors such as representativeness of the sample population, the
experimental task, and the application context.

Analysing qualitative data

In contrast to statistical comparison of quantitative measures from controlled experiments,
interviews and field studies require analysis of qualitative data. This type of material is often
recorded and transcribed as written text, so that the analysis can proceed using a
reproducible scientific method.

Categorical coding is a qualitative data analysis method that can be used to answer
‘closed’ questions, for example comparing different groups of people or users of different
products. The first step is to create a coding frame of expected categories of interest. The
text data is then segmented (for example on phrase boundaries), and each segment is
assigned to one category, so that frequency and correspondence can be compared.

In a scientific context, categorical coding should incorporate some assessment of inter-rater

17

reliability, where two or more people make the coding decisions independently to avoid
systematic bias or misinterpretation. They then compare how many decisions agree,
relative to chance, using a statistical measure such as Cohen’s Kappa (for 2 people) or
Fleiss’ Kappa (for more), comparing to typical levels (0.6-0.8 is considered ‘substantial
agreement’). Inter-rater reliability may take account how many decisions still disagreed after
discussion, which may involve refining and iterating the coding frame to resolve decision
criteria. It is often useful to ‘prototype’ the coding frame by having the independent raters
discuss a sample before proceeding to code the main corpus.

Grounded theory is a qualitative data analysis method that can be used to answer ‘open’
questions, where there is no prior expectation or theoretical assumption of the insights that
the researcher is looking for. The first step is to read the data closely, looking for interesting
categories (‘open coding’). The researcher then collects fragments, writing ‘memos’ to
capture insights as they occur. Emerging themes are organised using ‘axial coding’ across
different sources of evidence. It is important to constantly compare memos, themes and
findings to the original data in order to ensure that these can be objectively justified. The
process ends when the theoretical description has reached 'saturation' in relation to the
original data, with the main themes complete and accounted for.

How to evaluate a Part II project

HCI methods will be relevant to the Evaluation section of a Part II project report in the case
of a) Systems that a user will interact with (e.g. games, programming systems, VR); b)
Systems with perceptual goals (e.g. graphics, audio, affective computing); c) Systems that
you plan to deploy (e.g. apps, mobile sensing, software tools); or d) Systems that analyse
social data.

Ethical review

In all these cases, you will be doing research with human participants - it is necessary to
study the Cambridge School of Technology guidance for avoiding possible harm, and
conducting your research in an ethical manner.
https://www.tech.cam.ac.uk/Ethics_guidance

After researching the necessary ethical concerns, you must inform the ethics committee of
the Department of Computer Science and Technology about your planned research before
you collect any data or recruit any participants. Fortunately, most HCI experiments involve
relatively little risk, so we are able to use a lightweight approval process. You should
describe the study you plan to carry out - who will participate, what you will ask them to do,
and what data you will collect. You must also say what precautions you are taking, as
appropriate to the nature of the research. This will include the approach you are taking to
informed consent, and whether participants will be anonymous.

Summary of analytic options (analysing your design)

Cognitive Walkthrough

18

Is normally used in formative contexts – if you do have a working system, then why aren’t
you observing a real user, which is far more informative than simulating or imagining one?
However, Cognitive Walkthrough can be a valuable time-saving precaution before user
studies start, to fix blatant usability bugs.

KLM/GOMS
It is unlikely that you’ll have alternative detailed UI designs in advance, so there is not much
to be learned from using these methods in the context of a Part II project. If do you have a
working system, a controlled observation is superior

Cognitive Dimensions (lecture 8)
Is better suited to less structured tasks than Cognitive Walkthrough and KLM/GOMS, which
rely on predefined user goal and task structure

Summary of empirical options (collecting data)

Interviews/ethnography
These could be useful in formative/preparation phase, where an open research method is
helpful in developing design ideas or capturing user requirements.

Think-aloud / Wizard of Oz
This is valuable for both paper prototypes and working systems. It is highly effective at
uncovering usability bugs, so long as the verbal protocol is analysed rigorously using
qualitative methods. If you have used a rigorous analysis method, it would be wise to make
this clear in your dissertation, to avoid any suspicion of qualitative methods that might be
associated with engineer's greater familiarity with quantitative data.

Controlled experiments
Numerical data is more familiar to computer scientists, and can help to establish the
engineering aspects of your work. However, it is important to ensure that you can measure
the important attributes in a meaningful way (with both internal and external validity) and that
you test significance and report confidence interval of observed means and effect sizes.

Surveys and informal questionnaires
Be clear what you are measuring – is self-report likely to be accurate? Take careful note of
the notes below regarding bad evaluation techniques. Use a mix of open questions, which
capture richer qualitative information, and closed questions that make it easier to aggregate
and test hypotheses. Open questions require a coding frame to structure and compare data,
or grounded theory methods (if you have broader research questions). Collecting survey
data via interviews is likely to give more insight, but questionnaires are faster, so that you
can collect data from a larger sample. Remember to test questionnaires with a pilot study, as
it’s easier to get them wrong than with interviews.

Field Testing
If you have created a working product, it may be possible to make a controlled release and
collect data on how it is used. However, do be careful to make risk assessment, and to seek

19

ethics approval before proceeding.

Standardised survey instruments
There are standard psychometric instruments to evaluate mental states such as fatigue,
stress, confusion and emotional state. There are also standard methods to assess individual
differences (e.g. personality, intelligence). You should use standardised approaches
wherever possible, so that your results can be compared to existing scientific literature.
Making changes to these standardised surveys generally invalidates the results, so don't be
tempted!

Bad evaluation techniques
Beware of bad evaluation techniques, and don’t use these! Don't use purely affective
reports, for example that 20 subjects answered the question “Do you like this nice new user
interface more than that ugly old one?” These look superficially like empirical or quantitative
(if you ask participants to rate your system on a scale of 1 to 10), but are probably biased – if
these are your friends, or trying to please you (this is called experimental demand). Don't
make claims with no testing or evidence at all, such as: “It was deemed that more colours
should be used in order to increase usability.” This is phrased as though it results from a
formative analytic process, but is subjective – since the author is the subject. Finally don't
use introspective reports made by a single subject (often the programmer, project manager
or your project supervisor): “I find it far more intuitive to do it this way, and the users will too.”
These opinions might be apparently analytic or qualitative, for example drawing on folk
wisdom, but are often both biased and subjective. Unfortunately this practice is relatively
common in industry, where it is known as the HiPPO evaluation method (Highest-Paid
Person’s Opinion).

Evaluating non-HCI projects

Principles that have been addressed in this course are also relevant to evaluation of other
projects that do not include human interactive aspects. It is always useful to approach
‘testing’ as a scientific exercise, having intellectual outcomes. You can define goals and
hypotheses, and understand the boundaries and performance limits of your system by
exploring them. In particular, keep in mind that it is often necessary to test to point of failure,
so that you can make comparisons or explain limits.

For non-interactive projects, it is still necessary to decide whether your evaluation should be
analytic (proceeding by reasoning and argument, in which case you should ask how
consistent and well-structured is your analytic framework) or empirical (proceeding by
measurement/observation, in which case you should ask what you are measuring and why,
and ensure that you have achieved scientific validity, where the measurements are
compatible with your claims).

All projects can potentially include a mix of formative and summative evaluation, although if
you only evaluate formatively, examiners might wonder why you didn't finish your project. If
carrying out summative evaluation, you should be clear whether the evaluation criteria are
internal (derived from some theory) or external (addressing some problem). Many projects in

20

computer science also include a mix of quantitative and qualitative data. Engineering
performance data is relatively easy to justify, but if your data is qualitative, how will you
establish objectivity (i.e. that this is not simply your own opinion)?

Lecture 8: Designing complex systems

This lecture discussed case studies of applying theory to hard HCI problems. Complex
systems can arise for a variety of reasons: because the domain is complex, because users
of the system may potentially undertake many different tasks, because the outcomes are not
well defined (e.g. wicked problems), because the combined behaviour of individual parts
makes the overall system operation too complex to anticipate, or because the system will
continue operating when the user is not there to observe it (i.e. programming).

Classical HCI methods, based in first wave HCI, such as Cognitive Walkthrough and
KLM/GOMS assume that the user has a well-defined goal, and that it is possible to define a
task involving a predictable sequence of actions. This kind of task-based design can be
contrasted with the design of interaction spaces, in which users select and configure
components. Many graduates of the Cambridge Computer Science tripos are likely to pursue
careers in which they build interaction spaces, rather than defined-use systems. Examples of
interaction spaces include: programming languages, APIs, artificial intelligence systems,
data analytic services, or computer-aided design tools.

Design of an interactive space requires a broad brush analysis technique, because attempts
to describe individual tasks and specific actions would result in a ‘death by detail,’ resulting
from a combinatorial explosion of possible tasks and potentially relevant domain elements.
Rather than describing specific actions that the user will carry out using an interface, broad
brush techniques aim to describe interaction at a level of analytical distance from the
interface. It is necessary to find an analytical frame that structures the description of an
interaction, so that it can then be compared to some ideal characterisation of the application
domain in terms of desirable interaction patterns offering a critical perspective.

A canonical example of a broad brush analysis technique, widely used in the design
programming languages and APIs, is the Cognitive Dimensions of Notations framework.
A textbook introduction to CDs can be found here:
http://www.cl.cam.ac.uk/~afb21/publications/BlackwellGreen-CDsChapter.pdf

More recent research approaches inspired by the CDs have been the “Physics of Notations,”
which tries to establish basic principles of visual perception that might be relevant (though
note the earlier advice in this course, regarding visual representation), and “Patterns of User
Experience”, which attempts to focus on the subjective experience of the user rather than
purely observable behavior. In this course, we will consider only CDs, since they introduce
the main philosophical principles that have been applied in developing other design
frameworks.

The CDs are presented as a vocabulary for design discussion. Many of the dimensions

21

http://www.cl.cam.ac.uk/~afb21/publications/BlackwellGreen-CDsChapter.pdf

reflect common usability factors that experienced designers might have noticed, but did not
have a name for. Giving them a name allows designers to discuss these factors easily.
Furthermore, CDs are based on the observation that there is no perfect user interface any
more than a perfect programming language. Any user interface design reflects a set of
design trade-offs that the designers have had to make. Giving designers a discussion
vocabulary means that they can discuss the trade-offs that result from their design decisions.
The nature of the trade-offs is reflected in the structure of the dimensions. It is not possible
to create a design that has perfect characteristics in every dimensions - making
improvements along one dimension often results in degradation along another.

An example dimension is called viscosity, meaning resistance to change. In some
notations, small conceptual changes can be very expensive to make. Imagine changing a
variable from int to long in a large Java program. The programmer has to find every function
to which that variable is passed, check the parameter declarations, check any temporary
local variables where it is stored, check any calculations using the value, and so on. The
idea of what the programmer needs to do is simple, but achieving it is hard. This is viscosity.
There are programming languages that do not suffer from this problem, but they have other
problems instead – trade-offs. This means that language designers must be able to
recognise and discuss such problems when planning a new language. Furthermore,
language semantics alone does not capture all the important usability considerations,
because it is possible to design tools (such as refactoring functions) that mitigate the
problems. The word “viscosity” helps that discussion to happen.

CDs are relevant to a wide range of content manipulation systems – audio and video editors,
social networking tools, calendar and project management systems, and many others.
These systems all provide a notation of some kind, and an environment for viewing and
manipulating the notation. Usability is a function of both the notation and the environment.

Representative cognitive dimensions

The following list gives brief definitions of the main dimensions, and examples of the
questions that can be considered in order to determine the effects that these dimensions will
have on different user activities.

Premature commitment: constraints on the order of doing things.
When you are working with the notation, can you go about the job in any order you like, or
does the system force you to think ahead and make certain decisions first? If so, what
decisions do you need to make in advance? What sort of problems can this cause in your
work?

Hidden dependencies: important links between entities are not visible.
If the structure of the product means some parts are closely related to other parts, and
changes to one may affect the other, are those dependencies visible? What kind of
dependencies are hidden? In what ways can it get worse when you are creating a
particularly large description? Do these dependencies stay the same, or are there some
actions that cause them to get frozen? If so, what are they?

22

Secondary notation: extra information in means other than formal syntax.
Is it possible to make notes to yourself, or express information that is not really recognised
as part of the notation? If it was printed on a piece of paper that you could annotate or
scribble on, what would you write or draw? Do you ever add extra marks (or colours or
format choices) to clarify, emphasise or repeat what is there already? If so, this may
constitute a helper device with its own notation.

Viscosity: resistance to change.
When you need to make changes to previous work, how easy is it to make the change?
Why? Are there particular changes that are especially difficult to make? Which ones?

Visibility: ability to view components easily.
How easy is it to see or find the various parts of the notation while it is being created or
changed? Why? What kind of things are difficult to see or find? If you need to compare or
combine different parts, can you see them at the same time? If not, why not?

Closeness of mapping: closeness of representation to domain.
How closely related is the notation to the result that you are describing? Why? (Note that if
this is a sub-device, the result may be part of another notation, not the end product). Which
parts seem to be a particularly strange way of doing or describing something?

Consistency: similar semantics are expressed in similar syntactic forms.
Where there are different parts of the notation that mean similar things, is the similarity clear
from the way they appear? Are there places where some things ought to be similar, but the
notation makes them different? What are they?

Diffuseness: verbosity of language.
Does the notation a) let you say what you want reasonably briefly, or b) is it long-winded?
Why? What sorts of things take more space to describe?

Error-proneness: the notation invites mistakes.
Do some kinds of mistake seem particularly common or easy to make? Which ones? Do you
often find yourself making small slips that irritate you or make you feel stupid? What are
some examples?

Hard mental operations: high demand on cognitive resources.
What kind of things require the most mental effort with this notation? Do some things seem
especially complex or difficult to work out in your head (e.g. when combining several things)?
What are they?

Progressive evaluation: work-to-date can be checked at any time.
How easy is it to stop in the middle of creating some notation, and check your work so far?
Can you do this any time you like? If not, why not? Can you find out how much progress you
have made, or check what stage in your work you are up to? If not, why not? Can you try out
partially-completed versions of the product? If not, why not?

23

Provisionality: degree of commitment to actions or marks.
Is it possible to sketch things out when you are playing around with ideas, or when you aren't
sure which way to proceed? What features of the notation help you to do this? What sort of
things can you do when you don't want to be too precise about the exact result you are trying
to get?

Role-expressiveness: the purpose of a component is readily inferred.
When reading the notation, is it easy to tell what each part is for? Why? Are there some
parts that are particularly difficult to interpret? Which ones? Are there parts that you really
don't know what they mean, but you put them in just because it's always been that way?
What are they?

Abstraction: types and availability of abstraction mechanisms.
Does the system give you any way of defining new facilities or terms within the notation, so
that you can extend it to describe new things or to express your ideas more clearly or
succinctly? What are they? Does the system insist that you start by defining new terms
before you can do anything else? What sort of things? These facilities are provided by an
abstraction manager - a redefinition device. It will have its own notation and set of
dimensions.

Notational activities

When users interact with content, there are a limited number of activities that they can
engage in, when considered with respect to the way the structure of the content might
change. A CDs evaluation must consider which classes of activity will be the primary type of
interaction for all representative system users. If the needs of different users have different
relative priorities, those activities can be emphasised when design trade-offs are selected as
a CDs profile. The basic list of activities includes:

Search
Finding information by navigating through the content structure, using the facilities provided
by the environment (e.g. finding a specific value in a spreadsheet). The notation is not
changing at all, though the parts of it that the users sees will vary. Visibility and hidden
dependencies can be important factors in search.

Incrementation
Adding further content without altering the structure in any way (e.g. adding a new formula to
a spreadsheet). If the structure will not change, then viscosity is not going to be very
important.

Modification
Changing an existing structure, possibly without adding new content (e.g. changing a
spreadsheet for use with a different problem).

Transcription

24

Copying content from one structure or notation to another notation (e.g. reading an equation
out of a textbook, and converting it into a spreadsheet formula).

Exploratory design
Combining incrementation and modification, with the further characteristic that the desired
end state is not known in advance (e.g. programming a spreadsheet on the fly or “hacking”).
Viscosity can make this kind of activity far more difficult. This is why good languages for
hacking may not be strictly typed, or make greater use of type inference, as maintaining type
declarations causes greater viscosity. Loosely typed languages are more likely to suffer from
hidden dependencies (a trade-off with viscosity), but this is not such a problem for
exploratory design, where the programmer can often hold this information in his head during
the relatively short development timescale.

Collaboration
If the main purpose of the notation is to be shared or discussed with other people, the design
considerations can be very different to those necessary for working by yourself.

Beyond cognition and interaction

In complex system design, it is sometimes hard to identify the boundary of the system. HCI
research often extends into fields such as artificial intelligence, where human issues in
machine learning include ethics and accountability that result from automating and/or
justifying bias and prejudice. Digital humanities research focuses on treating text and
images as meaningful and sophisticated, rather than simple categorical judgments. Ethical
research questions may extend beyond the system itself - who does the intellectual ‘work’ of
providing training corpus content or data labelling, how are they paid, and where do the
profits go? Many global challenges draw attention to the ways that the world is being shaped
by knowledge infrastructure. Should HCI researchers consider whether such systems are
built to prioritise low income populations, or to advance the Sustainable Development Goals
(human rights, education etc)?

Revision suggestion: Consider some recently popular interaction spaces, and explain them
by analogy to visual representation (Lecture 2) and cognitive dimensions of notations.
Augmented reality is still a visual representation, so does it escape the problems that result
from use of metaphor? Many Internet of Things (IoT) devices have physical switches etc, but
how does the user define configuration, policy, future action?

Now we need a notation - or a programming language. Remember behavioural economics
and attention investment. Even around your house, bounded rationality happens, for
example when you decide whether to learn how to set a timer on an appliance like a
breadmaker or heating control. Do conversational agents build a user model, goal model or
task model, and if so, how can the user see it, test it, or modify it?

Future courses for those with further interest in HCI ...

Part II and Part III: Many dissertation projects offer opportunities to design and evaluate

25

interactive systems

Part II: Computer Music

Part II: Advanced Graphics and Image Processing

Part III: Interacting with Machine Learning

Part III: Affective Computing

Part III: Advanced topics in mobile and sensor systems and data modelling

Part III: Computer Security: Principles and Foundations

Research Skills: Working with artists and designers

Research Skills: How to interpret experimental results

Research Skills: Working with sensitive data in the wild

Research Skills: How to design surveys

Research Skills: Issues in online research and observation of human participants

Research Skills: Qualitative research methods

26

