Lecture 8: Designing complex systems

Case studies on applying theory to hard HCI problems

Overview of the course

- Theory driven approaches to HCI
- Design of visual displays
- Goal-oriented interaction
- Designing smart systems (guest lecturer)
- Designing efficient systems
- Designing meaningful systems (guest lecturer)
- Evaluating interactive system designs
- Designing complex systems

What are some things that make designs complex?

- How complex is the domain?
- How many different tasks might a user perform?
- How well defined are the outcomes? (Wicked problems, L3)
- How easy is it to understand each part?
- When the parts are put together how easy is to guess the behaviour?
- Does the system do things when the user isn't there? (Attention Investment from L3)

Designing tasks vs interaction spaces

Consider a (slightly silly) APIs for sending a message:

- (1)sendTheRightMessage()(2)sendMessage(Enum message)(3)sendMessage(String message, Urgency status)
- Naive design would result (1). Complex systems tend to be built out of reusable components that the users configure (2,3)
- Building this kind of system involves discussing tradeoffs as well as detailed design decisions
- This is the kind of system that most of you will build:
 - Programming languages, APIs, AI systems

Broad brush techniques

- Descriptions of specific actions result in a 'death by detail'
- Don't describe specific actions with an interface
 - Describe interaction with a level of *analytical distance* from the interface
 - Use an analytical frame which is a way of structuring a description of an interaction
 - The description can then be compared to an ideal for a domain to become a critical perspective (see Lecture 1)
- These techniques often give names to the patterns

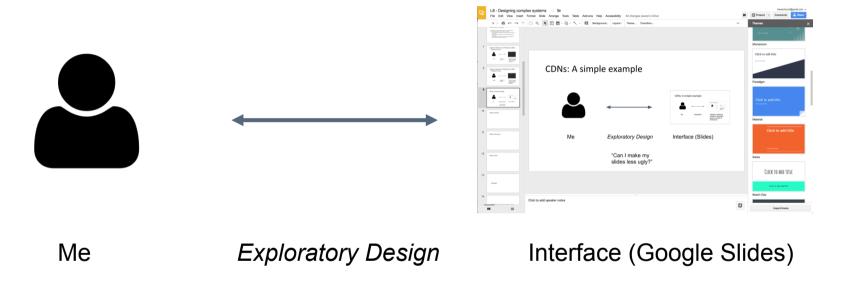
Cognitive Dimensions of Notations (CDNs): Analytical Frame

A user

Performs an activity

Interface containing notations, described along a number of dimensions

Cognitive Dimensions of Notations (CDNs): Analytical Frame

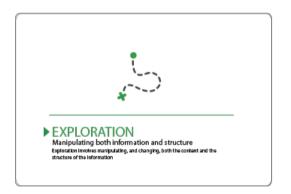


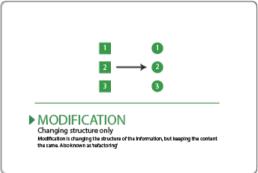
A user

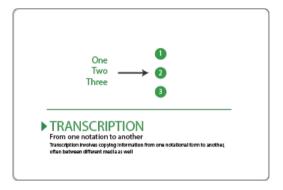
Performs an activity

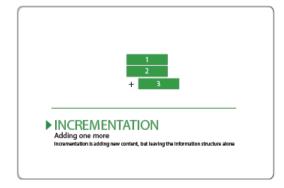
Interface containing notations, described along a number of dimensions

CDNs: A simple example

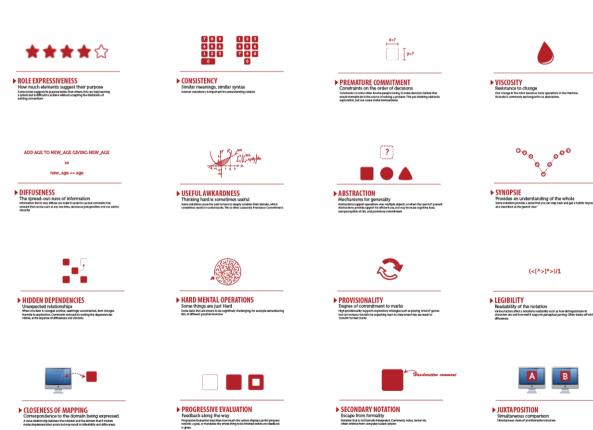


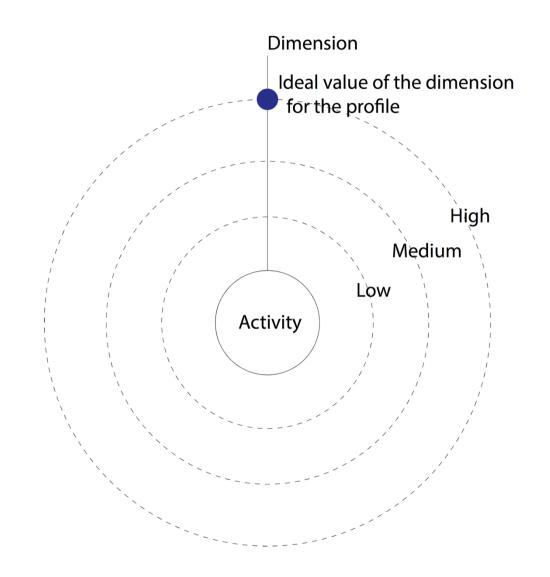

"Can I make my slides less ugly?"


CDNs: A simple example (Demo)

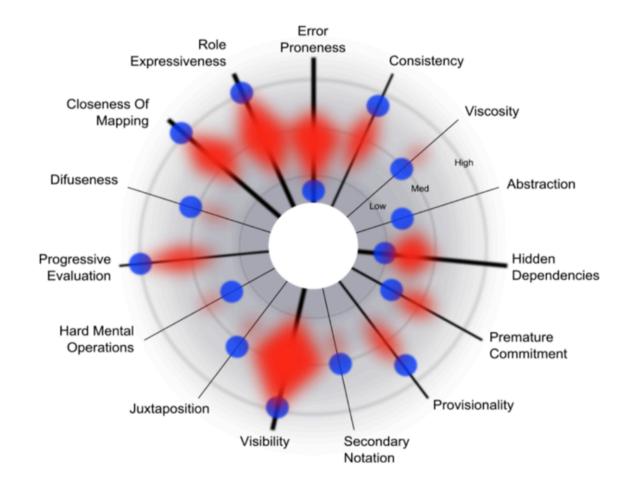

- One described change "Make the font of the headings Comic Sans"
 - Select the first slide, change the font
 - Select the second slide, change the font
 - Yawn.
- This is repetition Viscosity, many operations to perform one change
- Design maneuver: Introduce an Abstraction (master slide), decreases Viscosity, but increases Premature Commitment
- NB: CDNs analysis is meaningless independent of an interface.

CDNs: Activities





CDNs: Dimensions



(<[^>]*>)/1

CDNs: Profile

CDNs: Profile

Case Study: Dynamo's type system

Dynamo

- Language for exploring building designs
- Live Demo
- Includes a constructor Point(x, y, z) and array literal syntax [1,2]

Design question for discussion:

"What should **Point([0, 1, 2], 10, 10)** do?"

- What activities are important?
- How important: Viscosity? Premature commitment? Hidden Dependencies? Abstraction hunger?


Case Study: Interaction with Machine Learning

FlashFill for Excel

- From 2011 research by Sumit Gulwani at Microsoft Research
- "Synthesises a program from input-output examples"
 - How do you choose the examples?
 - How do you know what will happen?
- Live Demo (requires Excel 2013/16)
 - Paste a list of semi-structured text data into the left column
 - Type an example transform result in top cell to the right, then <Enter>
 - Press <Ctrl+E>

Some current research problems

Augmented reality is still a visual representation (remember metaphor?)

Microsoft Hololens

Programming, or direct manipulation?

- Many Internet of Things (IoT) devices have physical switches etc
 - But how do you define configuration, policy, future action?
 - Now we need a notation or a programming language
- Remember behavioural economics and attention investment
 - Even around your house, bounded rationality happens

Conversational agents

- Do they build a user model, goal model or task model?
- Will this be more or less complex than FlashFill?
- How can you see it the model?
 - i.e. what is the notation?
- How could you modify the model?
 - ... in response to errors (yours, or the system's)
 - ... if you change your goals?
- Does having a 'body' help?
 - (remember metaphor)

Human issues in machine learning

- Ethics and accountability
 - automating and/or justifying bias and prejudice
- Digital humanities
 - treating text and images as meaningful and sophisticated
 - (rather than just statistical fodder)
- Reward
 - who does the intellectual 'work' of providing training corpus content, data labelling, how are they paid, and where do the profits go?

Global challenges

- Is knowledge infrastructure built to ...
 - ... prioritise low income populations
 - ... advance United Nations Sustainable Development Goals (human rights, education etc)?

Africa's Voices Foundation / Cambridge Global Challenges

Further interest...

- Part II: Project
- Part III: Interacting with Machine Learning
- Research Skills: Working with artists and designers