
Further Graphics

Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd

Advanced
Shader

Techniques

1

Lighting and Shading (a quick refresher)

Recall the classic lighting equation:
● I = kA + kD(N•L) + kS(E•R)

n

where…
● kA is the ambient lighting coefficient of the object or scene
● kD(N•L) is the diffuse component of surface illumination (‘matte’)
● kS(E•R)

n is the specular component of surface illumination (‘shiny’)
where R = L - 2(L•N)N

We compute color by vertex or by polygon fragment:
● Color at the vertex: Gouraud shading
● Color at the polygon fragment: Phong shading

Vertex shader outputs are interpolated across fragments, so
code is clean whether we’re interpolating colors or normals.

2

Shading with shaders

For each vertex our Java code will need to provide:
● Vertex position
● Vertex normal
● [Optional] Vertex color, kA / kD / kS, reflectance,

transparency…
We also need global state:
● Camera position and orientation, represented as a

transform
● Object position and orientation, to modify the vertex

positions above
● A list of light positions, ideally in world coordinates

3

Shader sample –
Gouraud shading
#version 330

uniform mat4 modelToScreen;
uniform mat4 modelToWorld;
uniform mat3 normalToWorld;
uniform vec3 lightPosition;

in vec4 v;
in vec3 n;

out vec4 color;

const vec3 purple = vec3(0.2, 0.6, 0.8);

void main() {
 vec3 p = (modelToWorld * v).xyz;
 vec3 n = normalize(normalToWorld * n);
 vec3 l = normalize(lightPosition - p);
 float ambient = 0.2;
 float diffuse = 0.8 * clamp(0, dot(n, l), 1);

 color = vec4(purple
 * (ambient + diffuse), 1.0);
 gl_Position = modelToScreen * v;
}

#version 330

in vec4 color;

out vec4 fragmentColor;

void main() {
 fragmentColor = color;
}

Diffuse lighting
 d = kD(N•L)

expressed as a shader

4

Shader sample –
Phong shading
#version 330

uniform mat4 modelToScreen;
uniform mat4 modelToWorld;
uniform mat3 normalToWorld;

in vec4 v;
in vec3 n;

out vec3 position;
out vec3 normal;

void main() {
 normal = normalize(
 normalToWorld * n);
 position =
 (modelToWorld * v).xyz;
 gl_Position =
 modelToScreen * v;
}

#version 330

uniform vec3 eyePosition;
uniform vec3 lightPosition;

in vec3 position;
in vec3 normal;

out vec4 fragmentColor;

const vec3 purple = vec3(0.2, 0.6, 0.8);

void main() {
 vec3 n = normalize(normal);
 vec3 l = normalize(lightPosition - position);
 vec3 e = normalize(position - eyePosition);
 vec3 r = reflect(l, n);

 float ambient = 0.2;
 float diffuse = 0.4 * clamp(0, dot(n, l), 1);
 float specular = 0.4 *
 pow(clamp(0, dot(e, r), 1), 2);

 fragmentColor = vec4(purple *
 (ambient + diffuse + specular), 1.0);
}

a = kA
d = kD(N•L)
s = kS(E•R)n

GLSL includes handy helper methods for
illumination such as reflect()--perfect for
specular highlights.

5

Shader sample – Gooch shading

Image source: “A
Non-Photorealistic
Lighting Model For
Automatic Technical
Illustration”, Gooch,
Gooch, Shirley and
Cohen (1998).
Compare the Gooch
shader, above, to the
Phong shader (right).

Gooch shading is an example of non-realistic
rendering. It was designed by Amy and Bruce
Gooch to replace photorealistic lighting with a
lighting model that highlights structural and
contextual data.
● They use the term of the conventional lighting

equation to choose a map between ‘cool’ and
‘warm’ colors.

● This is in contrast to conventional illumination
where lighting simply scales the underlying
surface color.

● Combined with edge-highlighting through a
second renderer pass, this creates 3D models
which look like engineering schematics.

6

Shader sample –
Gooch shading

#version 330

// Original author: Randi Rost
// Copyright (c) 2002-2005 3Dlabs Inc. Ltd.

uniform mat4 modelToCamera;
uniform mat4 modelToScreen;
uniform mat3 normalToCamera;

vec3 LightPosition = vec3(0, 10, 4);

in vec4 vPosition;
in vec3 vNormal;

out float NdotL;
out vec3 ReflectVec;
out vec3 ViewVec;

void main()
{
 vec3 ecPos = vec3(modelToCamera * vPosition);
 vec3 tnorm = normalize(normalToCamera * vNormal);
 vec3 lightVec = normalize(LightPosition - ecPos);
 ReflectVec = normalize(reflect(-lightVec, tnorm));
 ViewVec = normalize(-ecPos);
 NdotL = (dot(lightVec, tnorm) + 1.0) * 0.5;
 gl_Position = modelToScreen * vPosition;
}

#version 330

// Original author: Randi Rost
// Copyright (c) 2002-2005 3Dlabs Inc. Ltd.

uniform vec3 vColor;

float DiffuseCool = 0.3;
float DiffuseWarm = 0.3;
vec3 Cool = vec3(0, 0, 0.6);
vec3 Warm = vec3(0.6, 0, 0);

in float NdotL;
in vec3 ReflectVec;
in vec3 ViewVec;

out vec4 result;

void main()
{
 vec3 kcool = min(Cool + DiffuseCool * vColor, 1.0);
 vec3 kwarm = min(Warm + DiffuseWarm * vColor, 1.0);
 vec3 kfinal = mix(kcool, kwarm, NdotL);

 vec3 nRefl = normalize(ReflectVec);
 vec3 nview = normalize(ViewVec);
 float spec = pow(max(dot(nRefl, nview), 0.0), 32.0);

 if (gl_FrontFacing) {
 result = vec4(min(kfinal + spec, 1.0), 1.0);
 } else {
 result = vec4(0, 0, 0, 1);
 }
}

7

Shader sample – Gooch shading
In the vertex shader source, notice the use of the built-in ability to
distinguish front faces from back faces:

if (gl_FrontFacing) {...
This supports distinguishing front faces (which should be shaded

smoothly) from the edges of back faces (which will be drawn in heavy
black.)
In the fragment shader source, this is used to choose the weighted color
by clipping with the a component:

vec3 kfinal = mix(kcool, kwarm, NdotL);
Here mix() is a GLSL method which returns the linear interpolation
between kcool and kwarm. The weighting factor is NdotL, the
lighting value.

8

Shader sample – Gooch shading

9

Texture mapping

Real-life objects rarely consist of perfectly smooth,
uniformly colored surfaces.

Texture mapping is the art of applying an image to a
surface, like a decal. Coordinates on the surface are
mapped to coordinates in the texture.

10

Procedural texture
Instead of relying on discrete

pixels, you can get infinitely
more precise results with
procedurally generated textures.

Procedural textures compute the
color directly from the U,V
coordinate without an image
lookup.

For example, here’s the code for
the torus’ brick pattern (right):

 tx = (int) 10 * u

 ty = (int) 10 * v
 oddity = (tx & 0x01) == (ty & 0x01)
 edge = ((10 * u - tx < 0.1) && oddity) || (10 * v - ty < 0.1)
 return edge ? WHITE : RED

I’ve cheated slightly and multiplied the u
coordinate by 4 to repeat the brick texture
four times around the torus.

11

Non-color textures: normal mapping

Normal mapping applies the principles of texture mapping
to the surface normal instead of surface color.

In a sense, the renderer
computes a trompe-l’oeuil
image on the fly and
‘paints’ the surface with
more detail than is actually
present in the geometry.

The specular and diffuse shading of the
surface varies with the normals in a
dent on the surface.

If we duplicate the normals, we don’t
have to duplicate the dent.

12

Non-color textures: normal mapping

13

// ...
const vec3 CENTER = vec3(0, 0, 1);
// ...

void main() {
 bool isOutsideFace =
 (length(position - CENTER) > 1);
 vec3 color = isOutsideFace ? BLACK : YELLOW;

 fragmentColor = vec4(color, 1.0);
}

Procedural texturing in the
fragment shader
// ...
const vec3 CENTER = vec3(0, 0, 1);
// ...

void main() {
 bool isOutsideFace =
 (length(position - CENTER) > 1);
 bool isMouth =
 (length(position - CENTER) < 0.75)
 && (position.y <= -0.1);

 vec3 color = (isMouth || isOutsideFace)
 ? BLACK : YELLOW;

 fragmentColor = vec4(color, 1.0);
}

(Code truncated for brevity--again, check out
the source on github for how I did the curved
mouth and oval eyes.)

// ...
const vec3 CENTER = vec3(0, 0, 1);
const vec3 LEFT_EYE = vec3(-0.2, 0.25, 0);
const vec3 RIGHT_EYE = vec3(0.2, 0.25, 0);
// ...

void main() {
 bool isOutsideFace = (length(position - CENTER) >
1);
 bool isEye = (length(position - LEFT_EYE) < 0.1)
 || (length(position - RIGHT_EYE) < 0.1);
 bool isMouth = (length(position - CENTER) < 0.75)
 && (position.y <= -0.1);

 vec3 color = (isMouth || isEye || isOutsideFace)
 ? BLACK : YELLOW;
 fragmentColor = vec4(color, 1.0);
}

14

Advanced surface effects
● Ray-tracing, ray-marching!
● Specular highlights
● Non-photorealistic

illumination
● Volumetric textures
● Bump-mapping
● Interactive surface effects
● Ray-casting in the shader
● Higher-order math in the

shader
● ...much, much more!

15

Antialiasing with OpenGL

Antialiasing remains a challenge with
hardware-rendered graphics, but image quality
can be significantly improved through GPU
hardware.
● The simplest form of hardware

anti-aliasing is Multi-Sample
Anti-Aliasing (MSAA).

● “Render everything at higher resolution,
then down-sample the image to blur
jaggies”

● Enable MSAA in OpenGL with
glfwWindowHint(GLFW_SAMPLES, 4);

16

Antialiasing with OpenGL: MSAA

Non-anti-aliased (left) vs
4x supersampled (right)
polygon edge, using
OpenGL’s built-in
supersampling support.
Images magnified 4x.

17

Antialiasing on the GPU
MSAA suffers from high memory constraints, and can be
very limiting in high-resolution scenarios (high demand
for time and texture access bandwidth.)
Eric Chan at MIT described an optimized hardware-based
anti-aliasing method in 2004:
1. Draw the scene normally
2. Draw wide lines at the objects' silhouettes

a. Use blurring filters and precomputed luminance tables to blur
the lines’ width

3. Composite the filtered lines into the framebuffer
using alpha blending

This approach is great for polygonal models, tougher for
effects-heavy visual scenes like video games

18

Antialiasing on
the GPU

More recently, NVIDIA’s Fast
Approximate Anti-Aliasing
(“FXAA”) has become popular because it optimizes MSAA’s limitations.
Abstract:
1. Use local contrast (pixel-vs-pixel) to find edges (red), especially those

subject to aliasing.
2. Map these to horizontal (gold) or vertical (blue) edges.
3. Given edge orientation, the highest contrast pixel pair 90 degrees to the edge

is selected (blue/green)
4. Identify edge ends (red/blue)
5. Re-sample at higher resolution along identified edges, using sub-pixel

offsets of edge orientations
6. Apply a slight blurring filter based on amount of detected sub-pixel aliasing

Image from
https://developer.download.nvidia.com/assets/
gamedev/files/sdk/11/FXAA_WhitePaper.pdf 19

https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf

Antialiasing technique: adaptive analytic prefiltering.
● The precision with which an edge is rendered to the screen is

dynamically refined based on the rate at which the function defining
the edge is changing with respect to the surrounding pixels on the
screen.

This is supported in GLSL by the methods dFdx(F) and
dFdy(F).
● These methods return the derivative with respect to X and Y, in screen

space, of some variable F.
● These are commonly used in choosing the filter width for antialiasing

procedural textures.

Preventing aliasing in texture reads

(A) Jagged lines visible in the box function of the procedural stripe texture
(B) Fixed-width averaging blends adjacent samples in texture space; aliasing still occurs at the
top, where adjacency in texture space does not align with adjacency in pixel space.
(C) Adaptive analytic prefiltering smoothly samples both areas.
Image source: Figure 17.4, p. 440, OpenGL Shading Language, Second Edition, Randi Rost,
Addison Wesley, 2006. Digital image scanned by Google Books.
Original image by Bert Freudenberg, University of Magdeburg, 2002. 20

Antialiasing texture reads with Signed
Distance Fields

Conventional anti-aliasing in texture reads can only smooth pixels immediately
adjacent to the source values.

Signed distance fields represent monochrome texture data as a distance map
instead of as pixels. This allows per-pixel smoothing at multiple distances.

21

3.6 2.8 2 1 -1

3.1 2.2 1.4 1 -1

2.8 2 1 -1 -1.4

2.2 1.4 1 -1 -2

2 1 -1 -1.4 -2.2

2 1 -1 -2 -2.8

Antialiasing texture reads with Signed
Distance Fields

The bitmap becomes a height map.
Each pixel stores the distance to the closest

black pixel (if white) or white pixel (if
black). Distance from white is negative.

Conventional antialiasing Signed distance field 22

Antialiasing texture reads with Signed
Distance Fields

Conventional bilinear filtering
computes a weighted average of
color, but an SDF computes a
weighted average of distances.

This means that a small step away
from the original values we find
smoother, straighter lines where
the slope of the isocline is
perpendicular to the slope of the
source data.

By smoothing the isocline of the
distance threshold, we achieve
smoother edges and nifty edge
effects.

low = 0.02; high = 0.035;

double dist =
bilinearSample(tex coords);

double t =
(dist - low) / (high - low);

return (dist < low) ? BLACK

 : (dist > high) ? WHITE

 : BLACK*(1 - t) + WHITE*(t);

Adding a
second
isocline
enables
colored
borders. 23

Tessellation shaders

One use of tessellation is in rendering
geometry such as game models or terrain
with view-dependent Levels of Detail
(“LOD”).
Another is to do with geometry what

ray-tracing did with bump-mapping:
high-precision realtime geometric
deformation.

Tesselation is a new shader type
introduced in OpenGL 4.x. Tesselation
shaders generate new vertices within
patches, transforming a small number of
vertices describing triangles or quads
into a large number of vertices which
can be positioned individually.

jabtunes.com’s WebGL tessellation demo
Florian Boesch’s LOD terrain demo

http://codeflow.org/entries/2010/nov/07/opengl-4-tessellation/

N
ot

e
ho

w
 tr

ia
ng

le
s a

re
 sm

al
l a

nd

de
ta

ile
d

cl
os

e
to

 th
e

ca
m

er
a,

 b
ut

be

co
m

e
ve

ry
 la

rg
e

an
d

co
ar

se
 in

th

e
di

st
an

ce
.

24

http://jabtunes.com/labs/3d/webgl_geometry_tessellation_exploding.html#Tessellation
http://codeflow.org/entries/2010/nov/07/opengl-4-tessellation/

Tessellation shaders

How it works:
● You tell OpenGL how many vertices a single

patch will have:
glPatchParameteri(GL_PATCH_VERTICES, 4);

● You tell OpenGL to render your patches:
glDrawArrays(GL_PATCHES, first, numVerts);

● The Tessellation Control Shader specifies output
parameters defining how a patch is split up:
gl_TessLevelOuter[] and
gl_TessLevelInner[].
These control the number of vertices per primitive
edge and the number of nested inner levels,
respectively.

Vertex shader

Tessellation Control Shader

Tessellation primitive generator

Tessellation Evaluation Shader

Geometry shader

Fragment shader

...

25

Tessellation shaders

The tessellation primitive generator
generates new vertices along the
outer edge and inside the patch, as
specified by
gl_TessLevelOuter[] and
gl_TessLevelInner[].

Each field is an array. Within the
array, each value sets the number of
intervals to generate during
subprimitive generation.

Triangles are indexed similarly, but
only use the first three Outer and
the first Inner array field.

gl_TessLevelOuter[3] = 5.0

gl_TessLevelOuter[1] = 3.0

gl_TessLevelInner[1] = 4.0

g
l
_
T
e
s
s
L
e
v
e
l
I
n
n
e
r
[
0
]

=

3
.
0

g
l
_
T
e
s
s
L
e
v
e
l
O
u
t
e
r
[
0
]

=

2
.
0

g
l
_
T
e
s
s
L
e
v
e
l
O
u
t
e
r
[
2
]

=

2
.
0

26

Tessellation shaders
The generated vertices are then
passed to the Tesselation
Evaluation Shader, which can
update vertex position, color,
normal, and all other per-vertex
data.

Ultimately the complete set of
new vertices is passed to the
geometry and fragment
shaders.

Image credit: Philip Rideout
http://prideout.net/blog/?p=4827

http://prideout.net/blog/?p=48

CPU vs GPU – an object demonstration

“NVIDIA: Mythbusters - CPU vs GPU”
https://www.youtube.com/watch?v=-P28LKWTzrI

R
ed

ux
: h

ttp
://

w
w

w
.y

ou
tu

be
.c

om
/w

at
ch

?v
=f

K
K

93
3K

K
6G

g

28

https://www.youtube.com/watch?v=-P28LKWTzrI
http://www.youtube.com/watch?v=fKK933KK6Gg
http://www.youtube.com/watch?v=-P28LKWTzrI

Recommended reading
Course source code on Github -- many demos
(https://github.com/AlexBenton/AdvancedGraphics)

The OpenGL Programming Guide (2013), by Shreiner, Sellers, Kessenich and Licea-Kane
Some also favor The OpenGL Superbible for code samples and demos
There’s also an OpenGL-ES reference, same series

OpenGL Insights (2012), by Cozzi and Riccio
OpenGL Shading Language (2009), by Rost, Licea-Kane, Ginsburg et al
The Graphics Gems series from Glassner

Anti-Aliasing:
https://people.csail.mit.edu/ericchan/articles/prefilter/
https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
http://iryoku.com/aacourse/downloads/09-FXAA-3.11-in-15-Slides.pdf

29

https://github.com/AlexBenton/AdvancedGraphics
https://people.csail.mit.edu/ericchan/articles/prefilter/
https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
http://iryoku.com/aacourse/downloads/09-FXAA-3.11-in-15-Slides.pdf

