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Characteristic (or indicator) functions
P(A) = (A =[2])

X JA) = (A=[29)
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Finite cardinality

Definition 136 A set A is said to be finite whenever A = [n] for
somen € N, in which case we write #+A = n.

— 2K



Theorem 137 For allm,n € N,
Lo() =20 N Q{0 A1)
n
2. [m] x [n] =[m-n] 5{0,4/-'—“/2'"4}
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Infinity axiom

There is an infinite set, containing () and closed under successor.
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Bijections

Proposition 138 For a function f : A — B, the following are
equivalent.

1. f Is bijective.

2. VbeB.dlae A.f(a) =b.
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Injections

Definition 145 A function f : A — B is said to be injective, or an
Injection, and indicated f : A — B whenever

Va;,a; € A. (f((l]) — f((lz)) — A1 = Qy
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Definition 139 A function f : A — B is said to be surjective, or a
surjection, and indicated f : A — B whenever

Vbe B.dae A.f(a) =0 .
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Enumerability

Definition 142

A set A is said to be enumerable whenever there exists a
surjection N — A, referred to as an enumeration.

2. A countable set is one that is either empty or enumerable.
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Proposition 143 Every non-empty subset of an enumerable set is
enumerable.

PROOF: A.enw.&fbfe'&/ 6:N —Ab/ﬂr
S M«rwf% f Lk #,A/ reScA
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@ The product and disjoint union of countable sets is countable.

1. N, Z, QQ are countable sets.

3. Every finite set is countable.

4. Every subset of a countable set is countable.
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Unbounded cardinality

Theorem 156 (Cantor’s diagonalisation argument) For every
set A, no surjection from A to P(A) exists.
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THEOREM OF THE DAY

Cantor’s Uncountability Theorem There are uncountably many infinite 0-1 sequences.

Proof: Suppose you could count the sequences. Label them in order: S, S5, S3,..., and denote by S;(j) the j-th entry of sequence S;. Now
define a new sequence, S, whose i-th entry is S;(/)+ 1 (mod 2). So S is S 1(1)+1,5,(2)+1,53(3)+1,S44)+1,..., with all entries remaindered
modulo 2. S is certainly an infinite sequence of Os and 1s. So it must appear in our list: it is, say, Sy, so its k-th entry is (k). But this is, by
definition, S (k) + 1 (mod 2) # S (k). So we have contradicted the possibility of forming our enumeration. QED.

The theorem establishes that the real numbers are uncountable — that is, they cannot be enumerated in a list indexed by the positive integers
(1, 2, 3,...). To see this informally, consider the infinite sequences of Os and 1s to be the binary expansions of fractions (e.g. 0.010011... =
0/2+1/4+0/8+0/16+1/32+1/64 +...). More generally, it says that the set of subsets of a countably infinite set is uncountable, and to see
that, imagine every 0-1 sequence being a different recipe for building a subset: the i-th entry tells you whether to include the i-th element (1) or
exclude it (0).

Georg Cantor (1845-1918) discovered this theorem in 1874 but it apparently took another twenty years of thought about what
were then new and controversial concepts: ‘sets’, ‘cardinalities’, ‘orders of infinity’, to invent the important proof given here,
using the so-called diagonalisation method.

Web link: www.math.hawaii.edu/~dale/godel/godel.html. There is an interesting discussion on mathoverflow.net about the history of diagonalisation:
type ‘earliest diagonal’ into their search box.
Further reading: Mathematics: the Loss of Certainty by Morris Kline, Oxford University Press, New York, 1980.

Created by Robin Whitty for www.theoremoftheday.org .
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Corollary 159 The sets
PN) = (N=[2]) = [0,1] =R

are not enumerable.

Corollary 160 There are non-computable infinite sequences of
bits.
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Definition 157 A fixed-point of a function f : X — X is an element
x € X such that f(x) = x.

Theorem 158 (Lawvere’s fixed-point argument) For sets A and
X, if there exists a surjection A — (A = X) then every function
X — X has a fixed-point; and hence X is a singleton.

PROOF: £+ A=) (}@ X)
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Axiom of choice

Every surjection has a section.
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Replacement axiom

The direct image of every definable functional property
on a set is a set.
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Set-indexed constructions

For every mapping associating a set A; to each element of a set I,
we have the set

U At = U{Ailiel} = {alJielacA} .
Examples:

1. Indexed disjoint unions:
L"jiel Ay = Uiel 1} x A4

2. Finite sequences on a set A:

AY = e A"
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Foundation axiom

The membership relation is well-founded.

Thereby, providing a

Principle of e-Induction .

_A97



