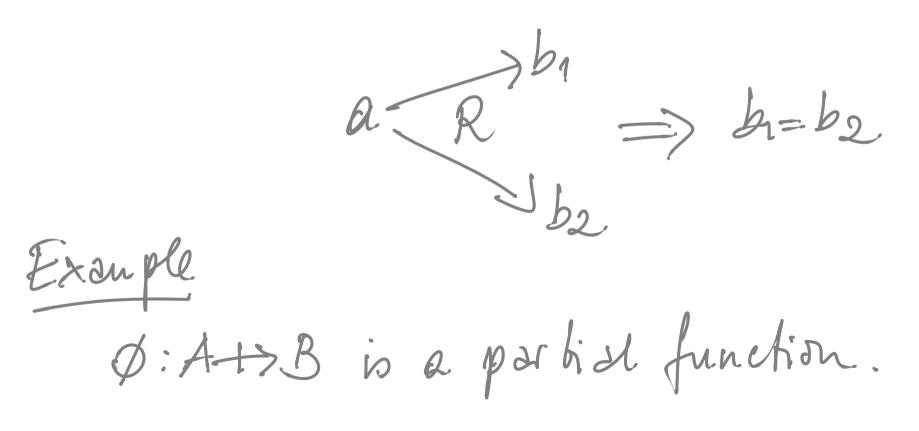
Partial functions

Definition 119 A relation $R : A \longrightarrow B$ is said to be <u>functional</u>, and called a partial function, whenever it is such that

 $\forall a \in A. \forall b_1, b_2 \in B. \ a \, R \, b_1 \, \land \, a \, R \, b_2 \implies b_1 = b_2 \quad .$



If f SAXB is a partial function ne wite, proch, there is fait if Zbeb. afb a f(a) 1 if Hbers. 7 (afb) L'Ihere is no "output" on a Wobstion For partial functions f: A - B we write, for a 6A Such Mat flar I, fr. The bEB with afb

Theorem 121 The identity relation is a partial function, and the composition of partial functions yields a partial function.

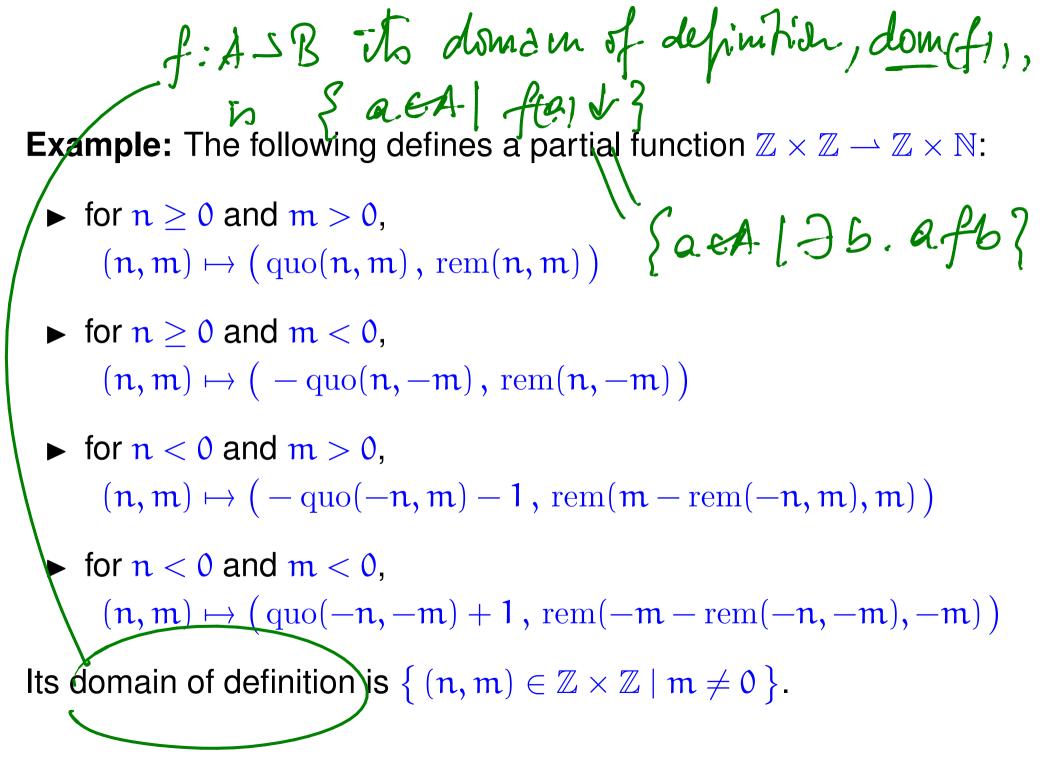
$$f = g : A \rightarrow B$$
 function.

-360 ----

NB

 $\forall a \in A. \left(f(a) \downarrow \iff g(a) \downarrow \right) \land f(a) = g(a)$ $\int_{f \to a} f \to a g,$ $\text{Spedefned} \left(\text{or pre on onlympt}^{\prime} \right)$ on A

$$\frac{\text{Nototion}}{\text{To define a partial function}} = \frac{1}{12} + \frac{1$$



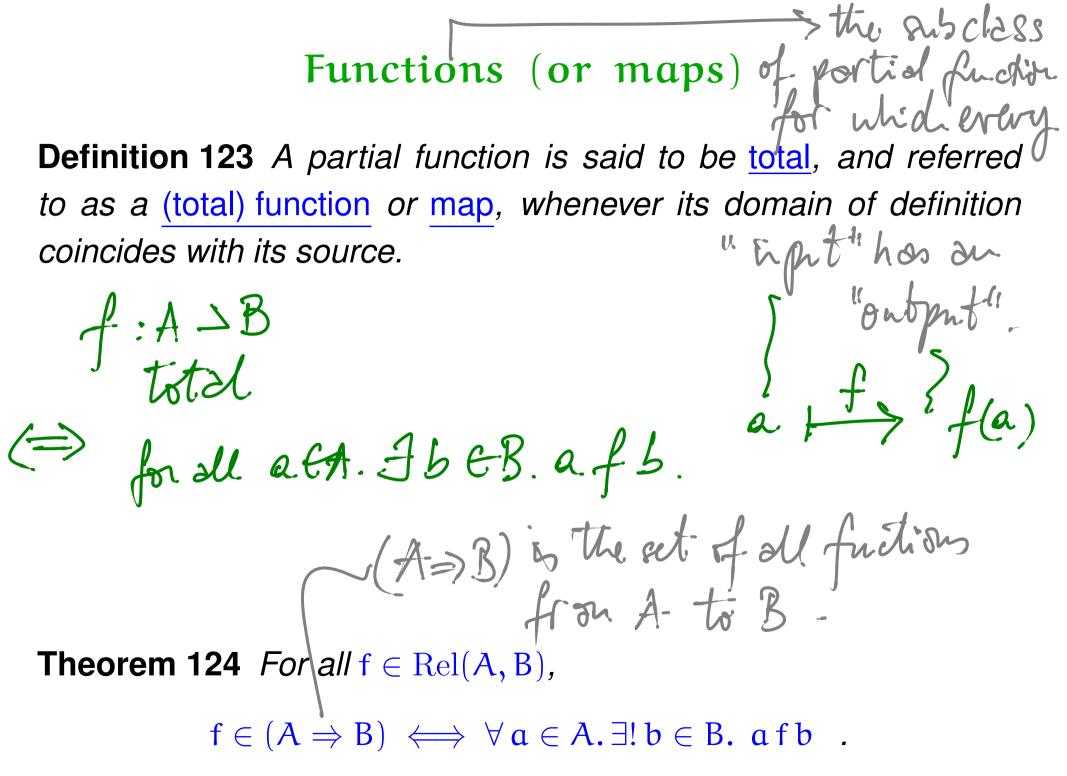
The number of relations between finte sets. #A = n #B = m $\# \operatorname{Rel}(A,B) = \# \operatorname{P}(A \times B)$ #O(X)= 2#X $= 2 \#(A \times B)$ #(AxB)=#A#B $=2^{\#A\cdot\#B}$

$(A \Rightarrow B) = \{f \in Rel(A,B) | f is a ps(hial function for all finite sets A and B, for all finite sets A$

 $\#(A \Longrightarrow B) = (\#B + 1)^{\#A}$.

PROOF IDEA:

A=- Sag,, ang #A=n #B= m B={b1, ..., bm.} A portial fuction may be presuted as: Rg L= {f SAxB fin a partial function Z

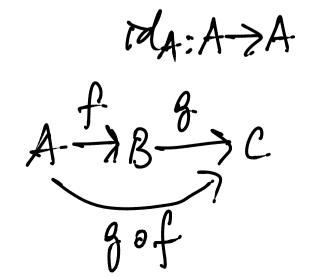


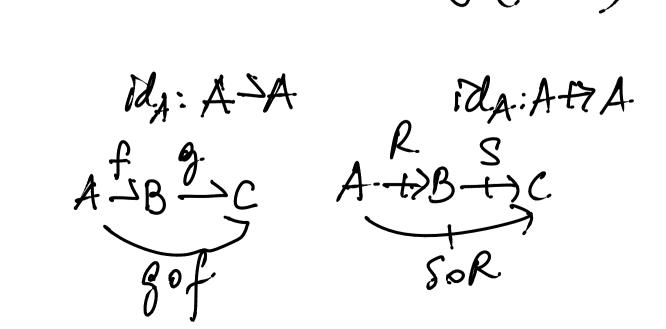
A++C is it a parkal gof function where fad g are?

NB:

 $(A \Rightarrow B) \subseteq (A \Rightarrow B) \subseteq Rel(A, B)$

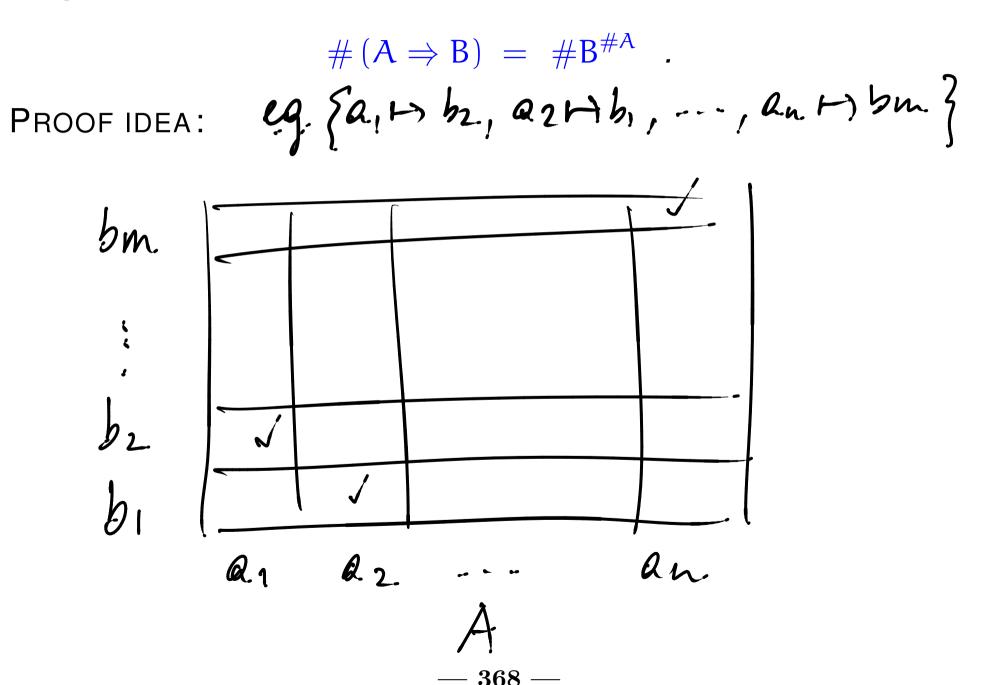
 $P(A \times B)$





 $A \longrightarrow B \xrightarrow{f} C$ $(g_{0}f)(a) \downarrow \iff f_{0}f_{0}J$ $\wedge g(f_{0})J$ F75 (gof)(a) $b' \qquad 7 \qquad (g(b'') \qquad g(f(a)))$ Exercise: (gof)(a) = g(f(a)) whenever f(a)

Proposition 125 For all finite sets A and B,



Theorem 126 The identity partial function is a function, and the composition of functions yields a function.

NB

- 1. $f = g : A \rightarrow B$ iff $\forall a \in A. f(a) = g(a)$.
- 2. For all sets A, the identity function $id_A : A \to A$ is given by the rule

 $\operatorname{id}_A(\mathfrak{a}) = \mathfrak{a}$

and, for all functions $f : A \to B$ and $g : B \to C$, the composition function $g \circ f : A \to C$ is given by the rule

 $(g \circ f)(a) = g(f(a))$.