T € 0/-"{ M"_'l%)
Relations from [m] to [n] and (m x n)-matrices over Booleans
provide two alternative views of the same structure.

This carries over to identities and to composition/multiplication .
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D1irected grapis R & AxrA

Definition 108 A directed graph (A, R) consists of a set A and a
relation R on A (i.e. a relation from A to A).
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Corollary 110 For every set A, the structure
(Rel(A), ida ,0)

IS a monoid.

Definition 111 ForR € Rel(A) andn € N, we let

R™ = Ro---oR € Rel(A)

vV

n times

be defined asid, forn =0, andasRoR°™ forn =m + 1.
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Proposition 113 Let (A, R) be a directed graph. For alln € N and

s,t € A, s R t Iff there exists a path of length . in R with source s

and target t.
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Definition 114 forR € Rel(A), let .

R* = J{R™MeRelA)IneN} = U, R .

neN

Corollary 115 Let (A, R) be a directed graph. For all s,t € A,
s R°* t iff there exists a path with source s and targett in R.
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The (n x n)-matrix M = mat(R) of a finite directed graph ([n], R)
for n a positive integer is called its adjacency matrix.

The adjacency matrix M* = mat(R°*) can be computed by matrix
multiplication and addition as M,, where

y

M, = I,
\ My = In—l—(M'Mk)

This gives an algorithm for establishing or refuting the existence of
paths in finite directed graphs.
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Preorders

Definition 116 Apreorder ( P, C ) consists of a set P and a relation
C onP (i.e. C € P(P x P)) satisfying the following two axioms.

» Reflexivity.

Vx e P. xCx

» Iransitivity.

P Vx,y,z€eP. ( xCy NyCz) = xLCz
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» (R, <)and (R,>). ) l
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Theorem 118 ForR C A x A, let

fWﬂW'

r ] -\
Fr = {QCAXA | RCQA Qisapreorder} .
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