Euclid’s infinitude of primes

Theorem 80 The set of primes is infinite.
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Objectives

To introduce the basics of the theory of sets and some of its uses.
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Abstract sets
It has been said that a set is like a mental “bag of dots”, except of

course that the bag has no shape; thus,
-
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may be a convenient way of picturing a certain set for some con-
siderations, but what is apparently the same set may be pictured
as

[.m,n o2 o(1.2) o22) o(13) o(23) (14 o24) (1,5 .(2,5)]
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for other considerations.

or even simply as
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Naive Set Theory

We are not going to be formally studying Set Theory here; rather,
we will be naively looking at ubiquituous structures that are
available within it.
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Extensionality axiom

Two sets are equal if they have the same elements.

0; # 10,1} = 11,0; # 2} = 2,2}
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Subsets and supersets
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Lemma 83

1. Reflexivity.
For all sets A, A C A.

2. Transitivity.
Forall setsA,B,C, ACB ABCC) — A CC.

@ Antisymmetry.
For allsets A,B, ACB ANBCA) — A =B.
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Separation principle

For any set A and any definable property P, there is a
set containing precisely those elements of A for which
the property P holds.




Russell’s paradox .
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defined by

or, equivalently, by

Empty set

D or {}

Vx.x & ()

—(Ix.x € 0)
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Cardinality

"'he cardinality of a set specifies its size. If this is a natural number,
then the set is said to be finite.

ypical notations for the cardinality of a set S are #S or |S|.

Example:
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Powerset axiom

For any set, there is a set consisting of all its subsets.
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Proposition 84 For all finite sets U,

H#P(U) =274
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