Proposition 46 Let m be a positive integer. For all natural numbers k and l,

PROOF: Let m a positive integer, k and l natural numbers.

(=) Assume
$$k = l \pmod{m} = k - l = i \cdot m$$
 for some integer i

By div. 24g. $k = q \cdot m + r \cdot 0 \le r \le m$
 $l = q! \cdot m + r' \cdot 0 \le r \le m$
 $\Rightarrow k = l = (q - q!) \cdot m + (r - r')$

Say wlog rar!, We have i.m+0 = (q-q!).m+(r-r!)05 r-r!<m i=q-q' $0=r-r' \implies r=r'$ by mique was of questionts and ferrainders

(=) Exercise.

X

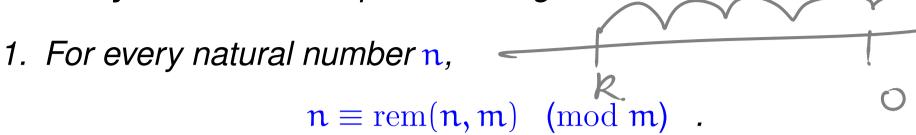
Corollary 47 Let m be a positive integer.

1. For every natural number n,

$$\begin{array}{l}
n \equiv \operatorname{rem}(n, m) \pmod{m} . \\
\text{Few } (n, m) = \operatorname{rem} \left(\operatorname{rem}(n, m), m \right) \\
\text{Exercise} \\
\left(\text{use the uniqueness property} \\
\text{of remainders} \right) .
\end{array}$$

PROOF:

Corollary 47 Let m be a positive integer.



m m m --- n

2. For every integer k there exists a unique integer $[k]_m$ such that

PROOF: Let
$$k$$
 be an integer. We proceed by costs. Cose 1: k >, 0 Then take $\lceil k \rceil_m = \text{rem}(k,m)$. Cose 1: k < 0 $k = k + m = k + 2m = \cdots = k + lm$ Then $k = k + (\lceil k \rceil + 1) m = \text{rem}(k + (\lceil k \rceil + 1) m, m) = \lceil k \rceil_m$

Modular arithmetic

For every positive integer m, the *integers modulo* m are:

$$\mathbb{Z}_{\mathfrak{m}}$$
 : 0, 1, ..., $\mathfrak{m}-1$.

with arithmetic operations of addition $+_m$ and multiplication \cdot_m defined as follows

$$k +_{m} l = [k + l]_{m} = rem(k + l, m),$$

 $k \cdot_{m} l = [k \cdot l]_{m} = rem(k \cdot l, m)$

for all $0 \le k, l < m$.

(k+ml)+mp=k+m(l+mp)rem (rem (k+l, m) +p, m) reun (k.+ reun (l.+p,m), m) 0 tm p = p

Similarly for on with unit 1.

Example 49 The addition and multiplication tables for \mathbb{Z}_4 are: \triangleright

1	Ì				1	Ì				
+4	0	1	2	3	•4	0	1	2	3	24
0	0	1	2	3	0			0		1
1	1	2	3	0	1	0	1	2	3	
2					2	0	2	0	2	
3	3	0	1	2	3	0	3	2 (TY	/
	l							•		

Note that the addition table has a cyclic pattern, while there is no obvious pattern in the multiplication table.

2 does not hare a mtlipticative artise.

From the addition and multiplication tables, we can readily read tables for additive and multiplicative inverses:

	additive inverse		multiplicative inverse
0	0	0	_
1	3	1	1
2	2	2	
3	1	3	3

Interestingly, we have a non-trivial multiplicative inverse; namely, 3.

De hore all ultiplicative Er verses.

Example 50 The addition and multiplication tables for \mathbb{Z}_5 are:

+5	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3					
4	4	0	1	2	3

Again, the addition table has a cyclic pattern, while this time the multiplication table restricted to non-zero elements has a permutation pattern.

From the addition and multiplication tables, we can readily read tables for additive and multiplicative inverses:

	additive inverse		multiplicative inverse
0	0	0	_
1	4	1	1
2	3	2	3
3	2	3	2
4	1	4	4

Surprisingly, every non-zero element has a multiplicative inverse.

Remark We know from PLT
$$iP^{-1} = 1 \pmod{p}$$

for $i \neq 0 \pmod{p}$ $i \cdot (iP^{-2}) = 1 \pmod{p}$
Proposition 51 For all natural numbers $m > 1$, the modular-arithmetic structure $IP = iP = 1 \pmod{p}$
 $(\mathbb{Z}_m, 0, +_m, 1, \cdot_m)$ where of i

is a commutative ring.

NB Quite surprisingly, modular-arithmetic number systems have further mathematical structure in the form of multiplicative inverses

Important mathematical jargon: Sets

Very roughly, sets are the mathematicians' data structures. Informally, we will consider a <u>set</u> as a (well-defined, unordered) collection of mathematical objects, called the <u>elements</u> (or <u>members</u>) of the set.

Set membership

The symbol '∈' known as the *set membership* predicate is central to the theory of sets, and its purpose is to build statements of the form

$$x \in A$$

that are true whenever it is the case that the object x is an element of the set A, and false otherwise.

Defining sets

The set	of even primes of booleans	is {true, false}
	[-23]	$\{-2, -1, 0, 1, 2, 3\}$
		note That { true, phase = { folse, true?

Set comprehension

The basic idea behind set comprehension is to define a set by means of a property that precisely characterises all the elements of the set.

Notations:

$$\{x \in A \mid P(x)\}\$$
, $\{x \in A : P(x)\}\$

Greatest common divisor

Given a natural number n, the set of its *divisors* is defined by set comprehension as follows

$$D(n) = \{ d \in \mathbb{N} : d \mid n \}$$
.

Example 53

1.
$$D(0) = \mathbb{N}$$

2.
$$D(1224) = \begin{cases} 1, 2, 3, 4, 6, 8, 9, 12, 17, 18, 24, 34, 36, 51, 68, \\ 72, 102, 136, 153, 204, 306, 408, 612, 1224 \end{cases}$$

Remark Sets of divisors are hard to compute. However, the computation of the greatest divisor is straightforward. :)

Going a step further, what about the *common divisors* of pairs of natural numbers? That is, the set

$$CD(m,n) = \{ d \in \mathbb{N} : d \mid m \wedge d \mid n \}$$

for $m, n \in \mathbb{N}$.

Example 54

$$CD(1224,660) = \{1,2,3,4,6,12\}$$

Since CD(n,n) = D(n), the computation of common divisors is as hard as that of divisors. But, what about the computation of the *greatest common divisor*?

Lemma 56 (Key Lemma) Let m and m' be natural numbers and let n be a positive integer such that $m \equiv m' \pmod{n}$. Then,

PROOF: Let
$$m, n!$$
 be not and n pos. Int.

A sound $m = m! (mrd n)$

PTP: $CD(m, n) = CD(m', n)$
 $CD(m, n) = CD(m', n)$
 $CD(m, n) = CD(m', n)$
 $CD(m, n) = CD(m', n)$

Assume m=m' (mdn) (=) m-m'=i.n fr some uti Let d. be as hitrary $(dlm \wedge dln) \Rightarrow (dlm' \wedge aln)$ Assume d/m and d/n By Lemma RTCP: d/n By 28saptish. dandb=> dp.a+q.b ne are done.

CD(m,n)
CD(m,n) CD(m2,n) CD (m2, N1)

 $M \equiv M_1 \pmod{n}$ $M_1 = M_2 (Mdh)$ ng En (hurd m2)