Unique existence

The notation
! x. P(x)
stands for

the unique existence of an x for which the property P(x) holds .

That is,

Ix.P(x) A (Vy.Vz. (P(y) A P(z)) = y :z)
— ~
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Disjunction

Disjunctive statements are of the form

or, in other words,

or, in symbols,

PorQ

either P, Q, or both hold

PV Q

__ OR




The main proof strategy for disjunction:

To prove a goal of the form
PV Q
you may

1. try to prove P (if you succeed, then you are done); or

2. try to prove Q (if you succeed, then you are done);
otherwise

3. break your proof into cases; proving, in each case,
either P or Q.

__ 00 —



Proposition 25 For all integers n, either n* = 0 (mod 4) or
n? =1 (mod 4).
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The use of disjunction:

To use a disjunctive assumption
P; V P,

to establish a goal Q, consider the following two cases in
turn: (i) assume P, to establish Q, and (ii) assume P, to

establish Q. A_S;%‘C éw),(‘ @N 689(
Rl &
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Scratch work:

Before using the strategy
Assumptions Goal

Q
Py V P,

After using the strategy
Assumptions Goal Assumptions Goal

Q Q
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Proof pattern:
In order to prove Q from some assumptions amongst which there
IS

P; V P,
write: We prove the following two cases in turn: (i) that assuming
Pi, we have Q; and (ii) that assuming P,, we have Q. Case (i):
Assume P;. and provide a proof of Q from it and the other as-
sumptions. Case (ii): Assume P,. and provide a proof of Q from
it and the other assumptions.
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Lemma 27 For all positive integers p afbd natural numbers m, if
m=0orm=p then (?) =1 (mod p).
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Lemma 28 For all integers p and m, if p is prime and 0 < m < p
then (?) = 0 (mod p).
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Proposition 29 For all prime numbers p and integers 0 < m < p,
either (?) = 0 (mod p) or (?) =1 (mod p).
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A little more arithmetic

Corollary 33 (The Freshman’s Dream) For all natural numbers m,
n and primes p,
gp

(M +n)? = mP 4+ nP (mod p) .
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Corollary 34 (The Dropout Lemma) For all natural numbers m and
primes p,

(M4 1) =mP 4+ 1 (mod p) .

Proposition 35 (The Many Dropout Lemma) For all natural num-
bers m and i, and primes p,

(M +1)P =mP +1 (mod p) .
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The Many Dropout Lemma (Proposition 35) gives the fist part of the
following very important theorem as a corollary.

Theorem 36 (Fermat’s Little Theorem) For all natural numbers i
and primes p,

1.|\ip =1 (mod p)} and

2. i*71 =1 (mod p) whenever i is not a multiple of p.

The fact that the first part of Fermat's Little Theorem implies the
second one will be proved later on .
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Btw

1. Fermat’s Little Theorem has applications to:
(a) primality testing?,
(b) the verification of floating-point algorithms, and

(c) cryptographic security.

“For instance, to establish that a positive integer m is not prime one may

proceed to find an integer i such that i™ # 1 (mod m).
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