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Digital Electronics –  

Sequential Logic 

Dr. I. J. Wassell 

Sequential Logic 
• The logic circuits discussed previously 

are known as combinational, in that the 

output depends only on the condition of 

the latest inputs 

• However, we will now introduce a type 

of logic where the output depends not 

only on the latest inputs, but also on the 

condition of earlier inputs. These circuits 

are known as sequential, and implicitly 

they contain memory elements 
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Memory Elements 

• A memory stores data – usually one bit per 

element 

• A snapshot of the memory is called the state 

• A one bit memory is often called a bistable, 

i.e., it has 2 stable internal states 

• Flip-flops and latches are particular 

implementations of bistables 

RS Latch 

• An RS latch is a memory element with 2 

inputs: Reset (R) and Set (S) and 2 

outputs:    and    . Q Q

Q

Q

R

S

Q 

0 

0 

1 

0 

0 
1 

0 
0 1 

1 1 

QRS comment 

Q Q
1 
0 
0 

hold 
reset 
set 

illegal 

Where      is the next state 

and       is the current state 

Q

Q
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RS Latch - Operation 

Q

Q

R

S

1 

2 

a y 

0 
1 

1 

b 

0 
0 0 

0 
1 0 0 
1 1 

b complemented 

NOR truth table 

always 0 

• R = 1 and S = 0 

– Gate 1 output in ‘always 0’ condition,  

– Gate 2 in ‘complement’ condition, so 

• This is the (R)eset condition    

0Q

1Q

RS Latch - Operation 

Q

Q

R

S

1 

2 

a y 

0 
1 

1 

b 

0 
0 0 

0 
1 0 0 
1 1 

b complemented 

NOR truth table 

always 0 

• S = 0 and R to 0  

– Gate 2 remains in ‘complement’ condition,  

– Gate 1 into ‘complement’ condition, 

• This is the hold condition    

0Q

1Q
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RS Latch - Operation 

Q

Q

R

S

1 

2 

a y 

0 
1 

1 

b 

0 
0 0 

0 
1 0 0 
1 1 

b complemented 

NOR truth table 

always 0 

• S = 1 and R = 0  

– Gate 1 into ‘complement’ condition, 

– Gate 2 in ‘always 0’ condition,  

• This is the (S)et condition    

1Q

0Q

RS Latch - Operation 

Q

Q

R

S

1 

2 

a y 

0 
1 

1 

b 

0 
0 0 

0 
1 0 0 
1 1 

b complemented 

NOR truth table 

always 0 

• S = 1 and R = 1  

– Gate 1 in ‘always 0’ condition, 

– Gate 2 in ‘always 0’ condition,  

• This is the illegal condition    

0Q

0Q
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RS Latch – State Transition Table 

• A state transition table is an alternative 

way of viewing its operation 

1 

0 

0 
1 

QRS comment 

hold 
reset 
set 
illegal 

1 

0 

0 

0 

0 
1 
1 

0 

0 
1 
1 1 

Q

0 

0 
0 
0 

1 

1 
1 
1 

0 

0 
1 
0 

1 

0 
1 
0 

hold 
reset 
set 
illegal 

• A state transition table can also be 

expressed in the form of a state diagram 

RS Latch – State Diagram 

• A state diagram in this case has 2 

states, i.e., Q=0 and Q=1 

• The state diagram shows the input 

conditions required to transition 

between states. In this case we see that 

there are 4 possible transitions 

• We will consider them in turn 
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RS Latch – State Diagram 

1 

0 

0 
1 

QRS comment 

hold 
reset 
set 
illegal 

1 

0 

0 

0 

0 
1 
1 

0 

0 
1 
1 1 

Q

0 

0 
0 
0 

1 

1 
1 
1 

0 

0 
1 
0 

1 

0 
1 
0 

hold 
reset 
set 
illegal 

0Q 0Q

From the table we can see: 

RSRSSS

RSSRSRRS

RSRSRS







)).((

..).(

...

1Q 1Q

From the table we can see: 

R

SSRRSRS  ).(..

RS Latch – State Diagram 

1 

0 

0 
1 

QRS comment 

hold 
reset 
set 
illegal 

1 

0 

0 

0 

0 
1 
1 

0 

0 
1 
1 1 

Q

0 

0 
0 
0 

1 

1 
1 
1 

0 

0 
1 
0 

1 

0 
1 
0 

hold 
reset 
set 
illegal 

1Q 0Q

From the table we can see: 

RSSR

RSRS





).(

..

0Q 1Q

From the table we can see: 

RS.
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RS Latch – State Diagram 

• Which gives the following state diagram: 

0Q 1QRS  R

RS.

R
• A similar diagram can be constructed for the      

 output 

• We will see later that state diagrams are a 

useful tool for designing sequential systems 

Q

Clocks and Synchronous Circuits 

• For the RS latch we have just described, we 

can see that the output state changes occur 

directly in response to changes in the inputs. 

This is called asynchronous operation 

• However, virtually all sequential circuits 

currently employ the notion of synchronous 

operation, that is, the output of a sequential 

circuit is constrained to change only at a time 

specified by a global enabling signal. This 

signal is generally known as the system clock 
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Clocks and Synchronous Circuits 

• The Clock: What is it and what is it for? 

– Typically it is a square wave signal at a 

particular frequency 

– It imposes order on the state changes 

– Allows lots of states to appear to update 

simultaneously 

• How can we modify an asynchronous 

circuit to act synchronously, i.e., in 

synchronism with a clock signal? 

 

Transparent D Latch 

• We now modify the RS Latch such that its 

output state is only permitted to change when 

a valid enable signal (which could be the 

system clock) is present 

• This is achieved by introducing a couple of 

AND gates in cascade with the R and S inputs 

that are controlled by an additional input 

known as the enable (EN) input. 
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Transparent D Latch 

Q

Q

R

S

D

EN

D Q 

EN 

Symbol 

a y 

0 

1 

1 
0 

b 

0 
0 
1 

0 
0 0 

1 1 

AND truth table • See from the AND truth table: 
– if one of the inputs, say a is 0, the output 

is always 0 

– Output follows b input if a is 1 

• The complement function ensures 
that R and S can never be 1 at the 
same time, i.e., illegal avoided 

Transparent D Latch 

Q

Q

R

S

D

EN

RS hold 

Q 

0 1 

0 

1 1 

QD comment 

Q Q
1 
0 

RS reset 

RS set 

EN

0 

X 

1 

• See Q follows D input provided EN=1. 
If EN=0, Q maintains previous state 
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Master-Slave Flip-Flops 

• The transparent D latch is so called ‘level’ 
triggered. We can see it exhibits transparent 
behaviour if EN=1. It is often more simple to 
design sequential circuits if the outputs 
change only on the either rising (positive 
going) or falling (negative going) ‘edges’ of 
the clock (i.e., enable) signal 

• We can achieve this kind of operation by 
combining 2 transparent D latches in a so 
called Master-Slave configuration 

Master-Slave D Flip-Flop 
Symbol 

D Q D Q D Q D 

CLK 

Q 

Master Slave 

Qint 

• To see how this works, we will use a timing diagram 

• Note that both latch inputs are effectively connected 

to the clock signal (admittedly one is a complement 

of the other) 
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Master-Slave D Flip-Flop 

D Q D Q D 

CLK 

Q 

Master Slave 

Qint 

CLK

CLK

D

intQ

Q

Note propagation delays 

have been neglected in 

the timing diagram 

See Q changes on rising 

edge of CLK 

D Flip-Flops 

• The Master-Slave configuration has 
now been superseded by new F-F 
circuits which are easier to implement 
and have better performance 

• When designing synchronous circuits it 
is best to use truly edge triggered F-F 
devices 

• We will not consider the design of such 
F-Fs on this course 
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Other Types of Flip-Flops 

• Historically, other types of Flip-Flops 

have been important, e.g., J-K Flip-

Flops and T-Flip-Flops 

• However, J-K FFs are a lot more 

complex to build than D-types and so 

have fallen out of favour in modern 

designs, e.g., for field programmable 

gate arrays (FPGAs) and VLSI chips 

Other Types of Flip-Flops 

• Consequently we will only consider 

synchronous circuit design using D-type 

FFs 

• However for completeness we will 

briefly look at the truth table for J-K and 

T type FFs 
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J-K Flip-Flop 

• The J-K FF is similar in function to a 

clocked RS FF, but with the illegal state 

replaced with a new ‘toggle’ state 

Q 

0 

1 

0 

0 
1 

0 
0 1 

1 1 

QKJ comment 

Q Q
1 
0 

hold 
reset 
set 

toggle 

Where      is the next state 

and       is the current state 

Q

Q

Q Q

Symbol 

J 

K Q

Q

T Flip-Flop 

• This is essentially a J-K FF with its J 

and K inputs connected together and 

renamed as the T input 

Q 

0 

1 

QT comment 

Q Q hold 

toggle 

Where      is the next state 

and       is the current state 

Q

Q

Q Q

Symbol 

T 

Q

Q
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Asynchronous Inputs 

• It is common for the FF types we have mentioned 

to also have additional so called ‘asynchronous’ 

inputs 

• They are called asynchronous since they take 

effect independently of any clock or enable inputs 

• Reset/Clear – force Q to 0 

• Preset/Set – force Q to 1 

• Often used to force a synchronous circuit into a 

known state, say at start-up. 

Timing 

• Various timings must be satisfied if a FF 

is to operate properly: 

– Setup time: Is the minimum duration that 

the data must be stable at the input before 

the clock edge 

– Hold time: Is the minimum duration that the 

data must remain stable on the FF input 

after the clock edge 
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Timing 

CLK

D

Q
sut ht

pt

sut Set-up time 

ht Hold time 

pt Propagation delay 

Applications of Flip-Flops 

• Counters 

– A clocked sequential circuit that goes through a 

predetermined sequence of states 

– A commonly used counter is an n-bit binary 

counter. This has n FFs and 2
n
 states which are 

passed through in the order 0, 1, 2, ….2
n
-1, 0, 1, . 

– Uses include: 

• Counting 

• Producing delays of a particular duration 

• Sequencers for control logic in a processor 

• Divide by m counter (a divider), as used in a digital 

watch 
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Applications of Flip-Flops 

• Memories, e.g., 

– Shift register 

• Parallel loading shift register : can be used for 

parallel to serial conversion in serial data 

communication 

• Serial in, parallel out shift register: can be used 

for serial to parallel conversion in a serial data 

communication system. 

 

Counters 

• In most books you will see 2 basic types 

of counters, namely ripple counters and 

synchronous counters 

• In this course we are concerned with 

synchronous design principles. Ripple 

counters do not follow these principles 

and should generally be avoided if at all 

possible. We will now look at the 

problems with ripple counters 
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Ripple Counters 
• A ripple counter can be made be cascading 

together negative edge triggered T-type FFs 
operating in ‘toggle’ mode, i.e., T =1 

• See that the FFs are not clocked using the 

same clock, i.e., this is not a synchronous 

design. This gives some problems…. 

T 

Q

Q
‘1’ 

CLK 

T 

Q

Q
‘1’ 

T 

Q

Q
‘1’ 

0Q 1Q 2Q

Ripple Counters 
• We will now draw a timing diagram 

0Q

CLK

1Q

2Q

0 1 2 3 4 5 6 7 0 

• Problems: 
See outputs do not change at the same time, i.e., synchronously. 

So hard to know when count output is actually valid. 

Propagation delay builds up from stage to stage, limiting 

maximum clock speed before miscounting occurs. 
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Ripple Counters 

• If you observe the frequency of the counter 

output signals you will note that each has half 

the frequency, i.e., double the repetition 

period of the previous one. This is why 

counters are often known as dividers 

• Often we wish to have a count which is not a 

power of 2, e.g., for a BCD counter (0 to 9).To 

do this: 

– use FFs having a Reset/Clear input 

– Use an AND gate to detect the count of 10 and 

use its output to Reset the FFs 

Synchronous Counters 

• Owing to the problems identified with ripple 
counters, they should not usually be used to 
implement counter functions 

• It is recommended that synchronous counter 
designs be used 

• In a synchronous design 
–  all the FF clock inputs  are directly connected to the clock 

signal and so all FF outputs change at the same time, i.e., 
synchronously 

– more complex combinational logic is now needed to 
generate the appropriate FF input signals (which will be 
different depending upon the type of FF chosen) 
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Synchronous Counters 

• We will now investigate the design of 

synchronous counters 

• We will consider the use of D-type FFs 

only, although the technique can be 

extended to cover other FF types. 

• As an example, we will consider a 0 to 7 

up-counter 

Synchronous Counters 

• To assist in the design of the counter we will make 

use of a modified state transition table. This table 

has additional columns that define the required FF 

inputs (or excitation as it is known) 

– Note we have used a state transition table previously 

when determining the state diagram for an RS latch 

• We will also make use of the so called ‘excitation 

table’ for a D-type FF 

• First however, we will investigate the so called 

characteristic table and characteristic equation for a 

D-type FF 
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Characteristic Table 

• In general, a characteristic table for a FF 

gives the next state of the output, i.e.,    in 

terms of its current state    and current inputs Q

Q

1 
0 

0 
1 

QDQ

0 
0 

1 
1 

0 
1 

0 
1 

Which gives the characteristic equation, 

DQ '

i.e., the next output state is equal to the 

current input value 

Since      is independent of      

the characteristic table can 

be rewritten as 1 
0 

QD

0 
1 

Q Q

Excitation Table 
• The characteristic table can be modified to 

give the excitation table. This table tells us 

the required FF input value required to 

achieve a particular next state from a given 

current state 

1 
0 

0 
1 

Q DQ

0 
0 

1 
1 

0 
1 

0 
1 

As with the characteristic table it can 

be seen that      , does not depend 

upon,      , however this is not 

generally true for other FF types, in 

which case, the excitation table is 

more useful. Clearly for a D-FF,   

Q
Q

'QD 
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Characteristic and Excitation 

Tables 
• Characteristic and excitation tables can 

be determined for other FF types. 

• These should be used in the design 

process if D-type FFs are not used 

• For example, for a J-K FF the following 

tables are appropriate: 

Characteristic and Excitation 

Tables 

• We will now determine the modified 
state transition table for the example 0 
to 7 up-counter 

1 
0 

0 

1 

QKJ

0 
0 

1 

1 

1 

0 

Q

Q
1 
0 

0 
1 

Q JQ

0 
0 

1 
1 

0 
1 

0 
1 

K

x 
x 

x 
x 

Truth table Excitation table 
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Modified State Transition 

Table 

• In addition to columns representing the 

current and desired next states (as in a 

conventional state transition table), the 

modified table has additional columns 

representing the required FF inputs to 

achieve the next desired FF states 

Modified State Transition Table 

• For a 0 to 7 counter, 3 D-type FFs are needed 
Current 

state 

0Q1Q2Q

0 0 0 

1 

0 

1 

0 

1 1 

1 0 0 
0 1 0 

0 

1 
1 0 1 
0 1 1 

1 

'
0Q'1Q'

2Q 0D1D2D

1 
0 
1 

1 

0 

0 

0 
1 
1 

0 

0 
1 
1 1 

0 
0 
0 

1 

1 
1 
1 

0 0 0 

1 
0 
1 

1 

0 

0 

0 
1 
1 

0 

0 
1 
1 1 

0 
0 
0 

1 

1 
1 
1 

0 0 0 

Next 

state 

FF 

inputs 

Note: Since             (or              ) for a D-FF, the 

required FF inputs are identical to the Next state   
DQ '

The procedure is to: 

 Write down the desired 

count sequence in the 

current state columns 

Write down the required 

next states in the next  

state columns 

Fill in the FF inputs 

required to give the 

defined next state 

'QD 
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Synchronous Counter Example 

• If using J-K FFs for example, we need J and K 
input columns for each FF 

• Also note that if we are using D-type FFs, it is not 
necessary to explicitly write out the FF input 
columns, since we know they are identical to 
those for the next state 

• To complete the design we now have to 
determine appropriate combinational logic circuits 
which will generate the required FF inputs from 
the current states 

• We can do this from inspection, using Boolean 
algebra or using K-maps. 

Synchronous Counter Example 

Current 

state 

0Q1Q2Q

0 0 0 

1 

0 

1 

0 

1 1 

1 0 0 
0 1 0 

0 

1 
1 0 1 
0 1 1 

1 

'
0Q'1Q'

2Q 0D1D2D

1 
0 
1 

1 

0 

0 

0 
1 
1 

0 

0 
1 
1 1 

0 
0 
0 

1 

1 
1 
1 

0 0 0 

1 
0 
1 

1 

0 

0 

0 
1 
1 

0 

0 
1 
1 1 

0 
0 
0 

1 

1 
1 
1 

0 0 0 

Next 

state 

FF 

inputs 
By inspection, 

00 QD 

Note: FF0 is toggling 

Also, 101 QQD 

Use a K-map for      , 2D

1Q 0Q
1 1 0 0 0 1 1 0 

0 

1 1 1 

1 

1 2Q

20.QQ

2Q

1Q

0Q

21.QQ 210 .. QQQ
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Synchronous Counter Example 

1Q 0Q
1 1 0 0 0 1 1 0 

0 

1 1 1 

1 

1 2Q

20.QQ

2Q

1Q

0Q

21.QQ 210 .. QQQ

So, 

2101022

21021202

..)..(

....

QQQQQQD

QQQQQQQD





D 

Q

Q

CLK 

0Q

0D
D 

Q

Q

1Q

1D
D 

Q

Q

2Q

2D

Combinati-

onal logic 

0Q

0Q

1Q

1Q

2Q

2Q

Synchronous Counter 

• A similar procedure can be used to design 

counters having an arbitrary count sequence 

– Write down the state transition table 

– Determine the FF excitation (easy for D-types) 

– Determine the combinational logic necessary to 

generate the required FF excitation from the 

current states – Note: remember to take into 

account any unused counts since these can be 

used as don’t care states when determining the 

combinational logic circuits 



10/05/2017 

25 

Shift Register 

• A shift register can be implemented 

using a chain of D-type FFs 

D 

Q

Q

D 

Q

Q

0Q 1Q 2Q

D 

Q

Q

Din 

CLK 

• Has a serial input, Din and parallel 

output Q0, Q1 and Q2. 

Shift Register 

inD

CLK

0Q

1Q

2Q

• See data moves one position to the 

right on application of each clock edge 
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Shift Register 

• Preset and Clear inputs on the FFs can 
be utilised to provide a parallel data 
input feature 

• Data can then be clocked out through 
Q2 in a serial fashion, i.e., we now have 
a parallel in, serial out arrangement 

• This along with the previous serial in, 
parallel out shift register arrangement 
can be used as the basis for a serial 
data link 

Serial Data Link 

CLK 

0Q 1Q 2Q

Parallel in 

serial out 

0Q 1Q 2Q

Serial in 

parallel out 

Serial Data 

• One data bit at a time is sent across the serial 
data link 

• See less wires are required than for a parallel 
data link 
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Synchronous State Machines 

Synchronous State Machines 

• We have seen how we can use FFs (D-types 

in particular) to design synchronous counters 

• We will now investigate how these principles 

can be extended to the design of synchronous 

state machines (of which counters are a 

subset) 

• We will begin with some definitions and then 

introduce two popular types of machines 
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Definitions 

• Finite State Machine (FSM) – a deterministic 

machine (circuit) that produces outputs which 

depend on its internal state and external inputs 

• States – the set of internal memorised values, 

shown as circles on the state diagram 

• Inputs – External stimuli, labelled as arcs on the 

state diagram 

• Outputs – Results from the FSM 

 

 

Types of State Machines 

• Two types of state machines are in 

general use, namely Moore machines 

and Mealy machines 

• We will see that the state diagrams (and 

associated state tables) corresponding 

with the 2 types of machine are slightly 

different 
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Machine Schematics 

Outputs 
Next state 

combinational 

logic m 

CLK 

Optional 

combinational 

logic 
D 

Q

Q

m 
Inputs 

n 

Current state Moore 

Machine 

Mealy 

Machine 

Next state 

combinational 

logic 
D 

Q

Q

m 

CLK 

combinational 

logic m 
Inputs 

n 

Current state 

Outputs 

Moore vs. Mealy Machines 

• Outputs from Mealy Machines depend upon 

the timing of the inputs 

• Outputs from Moore machines come directly 

from clocked FFs so: 

– They have guaranteed timing characteristics 

– They are glitch free 

• Any Mealy machine can be converted to a 

Moore machine and vice versa, though their 

timing properties will be different 
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Moore Machine State Diagram 
• Example FSM has 3 states (A, B and C), inputs e and r, and 

output s 

[s1 s0] 

FF labels 

A B 

C 

[10] [00] 

[01] 

r

r

re.

re.

re. re.

e

e

In this case the 

output s is given 

by s1, i.e., s=s1  

• See inputs only appear on transitions between states, i.e., 

next state is given by current state and current inputs 

• Outputs determined from current state via combinational 

logic (if required)  

Mealy Machine State Diagram 
• Example FSM has 3 states (A, B and C), inputs x and y, and 

output s 

[s1 s0] 

Transition labels: 

Inputs/Output 

FF labels: 

A B 

C 

[10] [00] 

[01] 

sy /

sy /

syx /.

syx /.

syx /.

sx /

• Inputs and outputs appear on transitions between states, 

i.e., next state is given by current state and current inputs 

• Output determined from current state and inputs via 

combinational logic  
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Moore Machine - Example 

• We will design a Moore Machine to implement 

a traffic light controller 

• In order to visualise the problem it is often 

helpful to draw the state transition diagram 

• This is used to generate the state transition 

table 

• The state transition table is used to generate 

– The next state combinational logic 

– The output combinational logic (if required) 

Example – Traffic Light Controller 

R 

R 

G 

A A 

See we have 4 states 

So in theory we could 

use a minimum of 2 FFs 

However, by using 3 FFs 

we will see that we do not 

need to use any output 

combinational logic 

So, we will only use 4 of 

the 8 possible states 

In general, state assignment is a 

difficult problem and the optimum 

choice is not always obvious 
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Example – Traffic Light Controller 
By using 3 FFs (we will use 

D-types), we can assign one 

to each of the required 

outputs (R, A, G), eliminating 

the need for output logic 
State 

010 

R 

R 

G 

A A 

State 

100 

State 

001 

State 

110 

We now need to write down 

the state transition table 

We will label the FF outputs 

R, A and G 

Remember we do not need to 

explicitly include columns for FF 

excitation since if we use D-types 

these are identical to the next state 

Example – Traffic Light Controller 
Current 

state 

GAR

0 0 1 

0 1 

0 1 1 
1 0 0 

0 

'G'A'R

0 
1 
0 

0 

1 
0 
1 

0 

1 
0 
0 

1 

Next 

state R 

R 

G 

A A 

State 

100 

State 

001 

State 

110 

State 

010 

Unused states, 000, 011, 101 and 

111. Since these states will never 

occur, we don’t care what output 

the next state combinational logic  

gives for these inputs. These don’t 

care conditions can be used to 

simplify the required next state 

combinational logic 
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Example – Traffic Light Controller 

Current 

state 

GAR

0 0 1 

0 1 

0 1 1 
1 0 0 

0 

'G'A'R

0 
1 
0 

0 

1 
0 
1 

0 

1 
0 
0 

1 

Next 

state 

Unused states, 000, 

011, 101 and 111. 

We now need to determine the next 

state combinational logic 

For the R FF, we need to determine DR 

To do this we will use a K-map 

A G
1 1 0 0 0 1 1 0 

0 

1 

1 

1 X 

AR.

R

R

G

A

X 

X 

X 

AR.

ARARARDR  ..

Example – Traffic Light Controller 

Current 

state 

GAR

0 0 1 

0 1 

0 1 1 
1 0 0 

0 

'G'A'R

0 
1 
0 

0 

1 
0 
1 

0 

1 
0 
0 

1 

Next 

state 

Unused states, 000, 

011, 101 and 111. 

By inspection we can also see: 

ADA 

and, 

ARDG .
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Example – Traffic Light Controller 

D 

Q

Q

CLK 

A

AD
D 

Q

Q

R

RD
D 

Q

Q

G

GD

FSM Problems 

• Consider what could happen on power-up 

• The state of the FFs could by chance be in 

one of the unused states 

– This could potentially cause the machine to 

become stuck in some unanticipated sequence of 

states which never goes back to a used state 
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FSM Problems 

• What can be done? 

– Check to see if the FSM can eventually 

enter a known state from any of the 

unused states 

– If not, add additional logic to do this, i.e., 

include unused states in the state transition 

table along with a valid next state 

– Alternatively use asynchronous Clear and 

Preset FF inputs to set a known (used) 

state at power up 

 

Example – Traffic Light Controller 

• Does the example FSM self-start? 

• Check what the next state logic outputs 

if we begin in any of the unused states 

• Turns out: 

Start 

state 

Next state 

logic output 

000 010 
011 100 
101 110 
111 001 

Which are all 

valid states 

So it does 

self start 
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Example 2 

• We extend Example 1 so that the traffic 
signals spend extra time for the R and G 
lights 

• Essentially, we need 2 additional states, i.e., 
6 in total. 

• In theory, the 3 FF machine gives us the 
potential for sufficient states 

• However, to make the machine combinational 
logic easier, it is more convenient to add 
another FF (labelled S), making 4 in total 

Example 2 

FF labels 

R A G S 

R 

G 

R 

A A 

State 

1000 

State 

0010 

State 

1100 

State 

0101 

R 

G 

State 

1001 

State 

0011 

See that new FF 

toggles which 

makes the next 

state logic easier 

As before, the first 

step is to write 

down the state 

transition table 
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Example 2 

FF 

labels 

R A G S 

R 

G 

R 

A A 

State 

1000 

State 

0010 

State 

1100 

State 

0101 

R 

G 

State 

1001 

State 

0011 

Current 

state 

AR G 'G'A'R

Next 

state 

S

0 1 0 0 0 1 0 

'S

1 

0 1 1 1 0 0 0 

0 1 0 0 0 1 1 0 

1 
1 0 0 1 0 0 1 0 

0 1 0 0 1 1 1 0 

1 0 0 0 1 0 0 1 

Clearly a lot of unused states. 

When plotting k-maps to determine 

the next state logic it is probably 

easier to plot 0s and 1s in the map 

and then mark the unused states 

Example 2 

We will now use k-maps to determine 

the next state combinational logic 

Current 

state 

AR G 'G'A'R

Next 

state 

S

0 1 0 0 0 1 0 

'S

1 

0 1 1 1 0 0 0 

0 1 0 0 0 1 1 0 

1 
1 0 0 1 0 0 1 0 

0 1 0 0 1 1 1 0 

1 0 0 0 1 0 0 1 

For the R FF, we need to determine DR 

1 1 0 0 0 1 1 0 

0 0 

0 1 

1 1 

1 0 

AR 
SG 

1 
R

A

G

S

1 

0 

1 

AR.

AR.

0 0 

X X 

X X X 

X X X 

X X 

ARARARDR  ..
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Example 2 

We can plot k-maps for DA and DG 

to give: 

Current 

state 

AR G 'G'A'R

Next 

state 

S

0 1 0 0 0 1 0 

'S

1 

0 1 1 1 0 0 0 

0 1 0 0 0 1 1 0 

1 
1 0 0 1 0 0 1 0 

0 1 0 0 1 1 1 0 

1 0 0 0 1 0 0 1 

By inspection we can also see: 

SGSRDA ..  or 

SRSRSRDA  ..

SGARDG ..  or 

SASGDG .. 

SDS 

State Assignment 

• As we have mentioned previously, state 
assignment is not necessarily obvious or 
straightforward 

– Depends what we are trying to optimise, e.g., 
• Complexity (which also depends on the 

implementation technology, e.g., FPGA,  74 series 
logic chips).  

– FF implementation may take less chip area than you may 
think given their gate level representation 

– Wiring complexity can be as big an issue as gate complexity 

• Speed 

– Algorithms do exist for selecting the ‘optimising’ 
state assignment, but are not suitable for manual 
execution 
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State Assignment 

• If we have m states, we need at least            

FFs (or more informally, bits) to encode the 

states, e.g., for 8 states we need a min of 3 

FFs 

• We will now present an example giving 

various potential state assignments, some 

using more FFs than the minimum 

m2log

Example Problem 

• We wish to investigate some state 
assignment options to implement a divide by 
5 counter which gives a 1 output for 2 clock 
edges and is 0 for 3 clock edges 

CLK

Output
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Sequential State Assignment 

• Here we simply assign the states in an 
increasing natural binary count 

• As usual we need to write down the 
state transition table. In this case we 
need 5 states, i.e., a minimum of 3 FFs 
(or state bits). We will designate the 3 
FF outputs as c, b, and a 

• We can then determine the necessary 
next state logic and any output logic. 

Sequential State Assignment 

Unused states, 101, 

110 and 111. 

Current 

state 

abc

0 0 0 
1 0 0 
0 1 0 

abc

1 
0 
1 

0 
1 
1 

0 
0 
0 

1 1 0 0 0 1 

Next 

state 

0 0 1 0 0 0 

By inspection we can see: 

The required output is from FF b 

Plot k-maps to determine the 

next state logic: 

For FF a: 

b a
1 1 0 0 0 1 1 0 

0 

1 

1 1 

X c X X 

c

a

b

ca.

caDa .
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Sequential State Assignment 

Unused states, 101, 

110 and 111. 

Current 

state 

abc

0 0 0 
1 0 0 
0 1 0 

abc

1 
0 
1 

0 
1 
1 

0 
0 
0 

1 1 0 0 0 1 

Next 

state 

0 0 1 0 0 0 

For FF b: 

b a
1 1 0 0 0 1 1 0 

0 

1 

1 

X c X X 

c

a

b

ba.

bababaDb  ..

1 

ba.

For FF c: 

b a
1 1 0 0 0 1 1 0 

0 

1 

1 

X c X X 

c

a

b

ba.

baDc .

Sliding State Assignment 

Unused states, 010, 

101, and 111. 

Current 

state 

abc

0 0 0 
1 0 0 
1 1 0 

abc

1 
1 
0 

0 
1 
1 

0 
0 
1 

0 1 1 0 0 1 

Next 

state 

0 0 1 0 0 0 

For FF a: 

b a
1 1 0 0 0 1 1 0 

0 

1 

1 1 

X c X 

X 

c

a

b

cb .

cbDa .

Plot k-maps to determine the 

next state logic: 

By inspection we can see that 

we can use any of the FF 

outputs as the wanted output 
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Sliding State Assignment 

Unused states, 010, 

101, and 111. 

Current 

state 

abc

0 0 0 
1 0 0 
1 1 0 

abc

1 
1 
0 

0 
1 
1 

0 
0 
1 

0 1 1 0 0 1 

Next 

state 

0 0 1 0 0 0 

By inspection we can see that: 

For FF b: 

For FF c: 

aDb 

bDc 

Shift Register Assignment 

• As the name implies, the FFs are connected 

together to form a shift register. In addition, 

the output from the final shift register in the 

chain is connected to the input of the first 

FF: 

– Consequently the data continuously cycles 

through the register 
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Shift Register Assignment 

Unused states. Lots! 

Current 

state 

a

1 
0 
0 

0 

Next 

state 

1 

bc

1 0 
1 1 
0 1 

0 0 
0 0 

abc

0 
0 
0 

1 
0 
0 

1 
1 
0 

1 0 0 
1 1 0 

0 
0 
1 

1 
0 

de

0 
0 
0 

1 
1 

0 
1 
1 

0 
0 

d e

0 
0 
1 

1 
0 

Because of the shift register 

configuration and also from the 

state table we can see that: 

eDa 

aDb 
bDc 
cDd 
dDe 

By inspection we can see that 

we can use any of the FF 

outputs as the wanted output 

See needs 2 more FFs, but no logic and simple wiring 

One Hot State Encoding 

• This is a shift register design style where only 

one FF at a time holds a 1 

• Consequently we have 1 FF per state, 

compared with          for sequential assignment 

• However, can result in simple fast state 

machines 

• Outputs are generated by ORing together 

appropriate FF outputs 

m2log
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One Hot - Example 

• We will return to the traffic signal example, 

which recall has 4 states 

R 

R 

G 

A A 

For 1 hot, we need 1 FF for 

each state, i.e., 4 in this case 

The FFs are connected to form 

a shift register as in the 

previous shift register example, 

however in 1 hot, only 1 FF 

holds a 1 at any time 

We can write down the state 

transition table as follows 

One Hot - Example 

R 

R 

G 

A A 

Unused states. Lots! 

Current 

state 

Next 

state 

a

0 
0 
0 

1 

g

0 
0 
1 

0 

ra

0 
1 
0 

0 

1 
0 
0 

0 

r a

0 
0 
1 

0 

g

0 
1 
0 

0 

ar 

1 
0 
0 

0 

0 
0 
0 

1 

r

Because of the shift register configuration 

and also from the state table we can see 

that: gDa  raDg  rDra  aDr 

To generate the R, A and G outputs we do the following ORing: 

rarR  araA  gG 
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One Hot - Example 
gDa  raDg  rDra  aDr 

rarR  araA  gG 

D 

Q

Q
r ra

D 

Q

Q
g

D 

Q

Q
Dr 

CLK 

D 

Q

Q a
Dra Dg Da 

R A G

Tripos Example 
• The state diagram for a synchroniser is shown. 

It has 3 states and 2 inputs, namely e and r. 

The states are mapped using sequential 

assignment as shown.  

[s1 s0] 

FF labels 

Sync Hunt 

Sight 

[10] [00] 

[01] 

r

r

re.

re.

re. re.

e

e

An output, s should be 

true if in Sync state 



10/05/2017 

46 

Tripos Example 

Sync Hunt 

Sight 

[10] [00] 

[01] 

r

r

re.

re.

re. re.

e

e

Unused state 11 

Current 

state 

re

0 X 
1 X 

'
1s

'
0s

0 
1 

0 
0 

Next 

state 

0s

0 0 
0 0 

Input 

1s

X 0 1 0 
0 1 0 0 1 0 

1 0 

1 1 0 1 1 0 

0 1 0 0 0 1 
X 0 0 1 0 1 

1 1 0 1 0 1 

X X X X 1 1 
From inspection,  1ss 

Tripos Example 
Plot k-maps to determine the 

next state logic 

Current 

state 

re

0 X 
1 X 

'
1s

'
0s

0 
1 

0 
0 

Next 

state 

0s

0 0 
0 0 

Input 

1s

X 0 1 0 
0 1 0 0 1 0 

1 0 

1 1 0 1 1 0 

0 1 0 0 0 1 
X 0 0 1 0 1 

1 1 0 1 0 1 

X X X X 1 1 

For FF 1: 

1 1 0 0 0 1 1 0 

0 0 

0 1 

1 1 

1 0 

01 ss
re 

1 
1s

0s

e

r

1 

1 

res ..0

es .1

X X X X 

1 

rs .1

resrsesD .... 0111 
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Tripos Example 
Plot k-maps to determine the 

next state logic 

Current 

state 

re

0 X 
1 X 

'
1s

'
0s

0 
1 

0 
0 

Next 

state 

0s

0 0 
0 0 

Input 

1s

X 0 1 0 
0 1 0 0 1 0 

1 0 

1 1 0 1 1 0 

0 1 0 0 0 1 
X 0 0 1 0 1 

1 1 0 1 0 1 

X X X X 1 1 

For FF 0: 

1 1 0 0 0 1 1 0 

0 0 

0 1 

1 1 

1 0 

01 ss
re 

1 

1s

0s

e

r

1 

1 
rss .. 01

es .0

X X X X 

1 

rssesD ... 0100 

Tripos Example 

• We will now re-implement the synchroniser 

using a 1 hot approach 

• In this case we will need 3 FFs 

Sync Hunt 

Sight 

[100] [001] 

[010] 

r

r

re.

re.

re. re.

e

e

[s2 s1 s0] 

FF labels 

An output, s should be 

true if in Sync state 

From inspection,  2ss 
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Tripos Example 

Sync Hunt 

Sight 

[100] [001] 

[010] 

r

r

re.

re.

re. re.

e

e

Current 

state 

re

0 X 
1 X 

'
2s

0 
0 

Next 

state 

0s

1 
1 

Input 

X 0 0 
0 1 0 0 

0 

1 1 1 0 

0 1 0 0 
X 0 1 0 

1 1 1 0 

'
1s

0 
1 

1 
0 
0 

0 
0 

0 

0 
0 

1s

1 
1 

1 

0 
0 

0 

'
0s

1 
0 

0 
1 
0 

1 
0 

0 

0 
0 

2s

0 
0 

0 

1 
1 

1 

Remember when interpreting this table, because of the 1-

hot shift structure, only 1 FF is 1 at a time, consequently it 

is straightforward to write down the next state equations 

Tripos Example 

Current 

state 

re

0 X 
1 X 

'
2s

0 
0 

Next 

state 

0s

1 
1 

Input 

X 0 0 
0 1 0 0 

0 

1 1 1 0 

0 1 0 0 
X 0 1 0 

1 1 1 0 

'
1s

0 
1 

1 
0 
0 

0 
0 

0 

0 
0 

1s

1 
1 

1 

0 
0 

0 

'
0s

1 
0 

0 
1 
0 

1 
0 

0 

0 
0 

2s

0 
0 

0 

1 
1 

1 

For FF 2: 

resesresD ..... 2212 

For FF 1: 

esrsD .. 101 

For FF 0: 

resresrsD ..... 2100 
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Tripos Example 

Sync Hunt 

Sight 

[100] [001] 

[010] 

r

r

re.

re.

re. re.

e

e

Note that it is not strictly 

necessary to write down the 

state table, since the next state 

equations can be obtained from 

the state diagram 

It can be seen that for each 

state variable, the required 

equation is given by terms 

representing the incoming arcs 

on the graph 

For example, for FF 2:  resesresD ..... 2212 

Also note some simplification is possible by noting that:  

1012  sss (which is equivalent to e.g.,                      ) 012 sss 

Tripos Example 

• So in this example, the 1 hot is easier to 

design, but it results in more hardware 

compared with the sequential state 

assignment design 
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Elimination of Redundant 

States 

• Sometimes, when designing state 

machines it is possible that 

unnecessary states may be introduced 

• In general, reducing the number of 

states may reduce the number of FFs 

required and may also reduce the 

complexity of the next state logic owing 

to the presence of more unused states 

(don’t cares) 

Elimination of Redundant 

States - Example 
• Consider the following State Table that 

corresponds with a Mealy Machine 

implementation 

• This is so, since the inputs and outputs from 

the machine are on the transitions (arcs) 

between states 

• The following state table is drawn in a 

compact form by incorporating the 2 possible 

input values as parallel columns within both 

the next state and output columns of the table 
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Example 

Current 

State 

Next 

State Output (Z) 

C 
E 
G 
I 
K 

P 
M 

A 
A 
A 
A 
A 
A 
A 
A 

B 
D 
F 
H 
J 

N 
L 

A 
A 
A 
A 
A 
A 
A 
A 

0 
0 
0 

0 
0 

0 
0 

0 
0 
1 
0 
1 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

A 
B 

D 
C 

E 

G 
F 

H 
I 
J 
K 
L 
M 
N 
P 

X=0 X=1 X=0 X=1 
• From the table, we see 

that there is no way of 

telling states H and I apart, 

so we can replace I with H 

when it appears in the 

Next State portion of the 

table 

Example 

Current 

State 

Next 

State Output (Z) 

C 
E 
G 
H 
K 

P 
M 

A 

A 
A 
A 
A 
A 
A 

B 
D 
F 
H 
J 

N 
L 

A 

A 
A 
A 
A 
A 
A 

0 
0 
0 

0 
0 

0 
0 

0 

1 
0 
1 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 

0 

0 
0 
0 
0 
0 
0 

A 
B 

D 
C 

E 

G 
F 

H 

J 
K 
L 
M 
N 
P 

X=0 X=1 X=0 X=1 
• We also see that there is 

now no way to get to state 

I so we can remove row I 

from the table 

• Similarly, rows K, M, N and 

P have the same next 

state and output as H and 

can be replaced by H 
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Example 

Current 

State 

Next 

State Output (Z) 

C 
E 
G 
H 
H 

H 
H 

A 

A 

A 

B 
D 
F 
H 
J 

H 
L 

A 

A 

A 

0 
0 
0 

0 
0 

0 
0 

0 

1 

1 

0 
0 
0 
0 
0 

0 
0 

0 

0 

0 

A 
B 

D 
C 

E 

G 
F 

H 

J 

L 

X=0 X=1 X=0 X=1 
• Similarly, there is now no 

way to get to states K, M, 

N and P and so we can 

remove these rows from 

the table 

• Also, the next state and 

outputs are identical for 

rows J and L, thus L can 

be replaced by J and row L 

eliminated from the table 

Example 

Current 

State 

Next 

State Output (Z) 

C 
E 
G 
H 
H 

H 
H 

A 

A 

B 
D 
F 
H 
J 

H 
J 

A 

A 

0 
0 
0 

0 
0 

0 
0 

0 

1 

0 
0 
0 
0 
0 

0 
0 

0 

0 

A 
B 

D 
C 

E 

G 
F 

H 

J 

X=0 X=1 X=0 X=1 
• Now rows D and G are 

identical, as are rows E 

and F. 

• Consequently, G can be 

replaced by D, and row G 

eliminated. Also, F can be 

replaced by E and row F 

eliminated from the table 
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Example 

Current 

State 

Next 

State Output (Z) 

C 
E 
D 
H 
H 

A 

A 

B 
D 
E 
H 
J 

A 

A 

0 
0 
0 

0 
0 

0 

1 

0 
0 
0 
0 
0 

0 

0 

A 
B 

D 
C 

E 

H 

J 

X=0 X=1 X=0 X=1 
• The procedure employed 

to find equivalent states in 

this example is known as 

row matching.  

• However, we note row 

matching is not sufficient to 

find all the equivalent 

states except for certain 

special cases 

Implementation of FSMs 

• We saw previously that programmable logic 
can be used to implement combinational logic 
circuits, i.e., using PLA devices 

• PAL style devices have been modified to 
include D-type FFs to permit FSMs to be 
implemented using programmable logic 

• One particular style is known as Generic 
Logic Array (GLA) 
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GLA Devices 

• They are similar in concept to PLAs, but 

have the option to make use of a D-type flip-

flops in the OR plane (one following each OR 

gate). In addition, the outputs from the D-

types are also made available to the AND 

plane (in addition to the usual inputs) 

– Consequently it becomes possible to build 

programmable sequential logic circuits 

AND plane 

OR plane D 
Q

Q

D 
Q

Q

GLA 

Device 
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GLA Devices 

• A modified form of a GLA known as a 

Generic Array Logic (GAL) is used in the 

Hardware Laboratory classes to implement 

various FSMs. 

GAL Devices 

f0 

a

b

fn 

AND 

plane 

OR 

plane 

D 
Q

Q

D 
Q

Q

CLK
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FPGA 

• Field Programmable Gate Arrays (FPGAs) are 

the latest type of programmable logic 

• Are an array of configurable logic blocks (CLBs) 

surrounded by Input Output Blocks (IOBs): 

– programmable routing channels permit CLBs to be 

connected to other CLBs and to IOBs 

– CLBs contain look up tables (LUTs), multiplexers 

(MUXs) and D-type FFs 

– The FPGA is configured by specifying the contents 

of the LUTs and select signals for the MUXs 

FPGA – Xilinx Spartan 
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FPGA – Xilinx Spartan 
• Simplified schematic showing CLBs and 

programmable routing channels, i.e., wires 

plus programmable switch matrices (SMs) 

FPGA - Spartan CLB 



10/05/2017 

58 

FPGA - Spartan CLB 
• Has 2, 4-input LUTs (F and G) and 1, 3 input 

LUT (H) 

• Has to ‘combinational’ outputs (Y and X) and 

2 ‘registered’ outputs (i.e., from  D-FFs) YQ 

and XQ 

• Depending on MUX configuration Y is given 

by output of either G or H LUTs and X from 

either F or H LUTs. 

• D-FF inputs come from DIN, or from F, G, or 

H LUTs 

FPGA - Spartan CLB 
• Thus each CLB can perform up to 2 

combinational and/or 2 registered functions 

• All functions can involve at least 4 input 

variables (e.g., G1 to G4, and F1 to F4), but 

can be up to 9 (owing to the possibility of 

implementing 2-level combinational logic 

functions), i.e., G1 to G4, F1 to F4, DIN. 

• Created using either a schematic (block) 

diagram or more likely a Hardware 

Description Language (HDL) of the design 
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FPGA - Spartan CLB 
• The synthesis tool determines how the LUTs, 

MUXs and routing channels are configured 

• This configuration information is then 

downloaded to the FPGA 

• Xilinx devices store their configuration 

information in static RAM (SRAM) so can be 

easily reprogrammed 

• The SRAM contents can be downloaded 

either from a computer or from an EEPROM 

device when the system is powered-up 

FPGA 
• Other FPGA manufacturers are available, 

e.g., Altera. 

• Particular manufacturers have many different 

product lines 

• Main differences will be the no. of CLBs, the 

structure of the CLBs, internal or external 

ROM, additional features such as specialised 

arithmetic blocks, user RAM etc. 
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Appendix – Workshop 2 
Contact B 

Contact A 

Contact B 

Contact A 
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