
10/05/2017

1

Digital Electronics –

Sequential Logic

Dr. I. J. Wassell

Sequential Logic
• The logic circuits discussed previously

are known as combinational, in that the

output depends only on the condition of

the latest inputs

• However, we will now introduce a type

of logic where the output depends not

only on the latest inputs, but also on the

condition of earlier inputs. These circuits

are known as sequential, and implicitly

they contain memory elements

10/05/2017

2

Memory Elements

• A memory stores data – usually one bit per

element

• A snapshot of the memory is called the state

• A one bit memory is often called a bistable,

i.e., it has 2 stable internal states

• Flip-flops and latches are particular

implementations of bistables

RS Latch

• An RS latch is a memory element with 2

inputs: Reset (R) and Set (S) and 2

outputs: and . Q Q

Q

Q

R

S

Q 

0

0

1

0

0
1

0
0 1

1 1

QRS comment

Q Q
1
0
0

hold
reset
set

illegal

Where is the next state

and is the current state

Q

Q

10/05/2017

3

RS Latch - Operation

Q

Q

R

S

1

2

a y

0
1

1

b

0
0 0

0
1 0 0
1 1

b complemented

NOR truth table

always 0

• R = 1 and S = 0

– Gate 1 output in ‘always 0’ condition,

– Gate 2 in ‘complement’ condition, so

• This is the (R)eset condition

0Q

1Q

RS Latch - Operation

Q

Q

R

S

1

2

a y

0
1

1

b

0
0 0

0
1 0 0
1 1

b complemented

NOR truth table

always 0

• S = 0 and R to 0

– Gate 2 remains in ‘complement’ condition,

– Gate 1 into ‘complement’ condition,

• This is the hold condition

0Q

1Q

10/05/2017

4

RS Latch - Operation

Q

Q

R

S

1

2

a y

0
1

1

b

0
0 0

0
1 0 0
1 1

b complemented

NOR truth table

always 0

• S = 1 and R = 0

– Gate 1 into ‘complement’ condition,

– Gate 2 in ‘always 0’ condition,

• This is the (S)et condition

1Q

0Q

RS Latch - Operation

Q

Q

R

S

1

2

a y

0
1

1

b

0
0 0

0
1 0 0
1 1

b complemented

NOR truth table

always 0

• S = 1 and R = 1

– Gate 1 in ‘always 0’ condition,

– Gate 2 in ‘always 0’ condition,

• This is the illegal condition

0Q

0Q

10/05/2017

5

RS Latch – State Transition Table

• A state transition table is an alternative

way of viewing its operation

1

0

0
1

QRS comment

hold
reset
set
illegal

1

0

0

0

0
1
1

0

0
1
1 1

Q

0

0
0
0

1

1
1
1

0

0
1
0

1

0
1
0

hold
reset
set
illegal

• A state transition table can also be

expressed in the form of a state diagram

RS Latch – State Diagram

• A state diagram in this case has 2

states, i.e., Q=0 and Q=1

• The state diagram shows the input

conditions required to transition

between states. In this case we see that

there are 4 possible transitions

• We will consider them in turn

10/05/2017

6

RS Latch – State Diagram

1

0

0
1

QRS comment

hold
reset
set
illegal

1

0

0

0

0
1
1

0

0
1
1 1

Q

0

0
0
0

1

1
1
1

0

0
1
0

1

0
1
0

hold
reset
set
illegal

0Q 0Q

From the table we can see:

RSRSSS

RSSRSRRS

RSRSRS







)).((

..).(

...

1Q 1Q

From the table we can see:

R

SSRRSRS ).(..

RS Latch – State Diagram

1

0

0
1

QRS comment

hold
reset
set
illegal

1

0

0

0

0
1
1

0

0
1
1 1

Q

0

0
0
0

1

1
1
1

0

0
1
0

1

0
1
0

hold
reset
set
illegal

1Q 0Q

From the table we can see:

RSSR

RSRS





).(

..

0Q 1Q

From the table we can see:

RS.

10/05/2017

7

RS Latch – State Diagram

• Which gives the following state diagram:

0Q 1QRS  R

RS.

R
• A similar diagram can be constructed for the

 output

• We will see later that state diagrams are a

useful tool for designing sequential systems

Q

Clocks and Synchronous Circuits

• For the RS latch we have just described, we

can see that the output state changes occur

directly in response to changes in the inputs.

This is called asynchronous operation

• However, virtually all sequential circuits

currently employ the notion of synchronous

operation, that is, the output of a sequential

circuit is constrained to change only at a time

specified by a global enabling signal. This

signal is generally known as the system clock

10/05/2017

8

Clocks and Synchronous Circuits

• The Clock: What is it and what is it for?

– Typically it is a square wave signal at a

particular frequency

– It imposes order on the state changes

– Allows lots of states to appear to update

simultaneously

• How can we modify an asynchronous

circuit to act synchronously, i.e., in

synchronism with a clock signal?

Transparent D Latch

• We now modify the RS Latch such that its

output state is only permitted to change when

a valid enable signal (which could be the

system clock) is present

• This is achieved by introducing a couple of

AND gates in cascade with the R and S inputs

that are controlled by an additional input

known as the enable (EN) input.

10/05/2017

9

Transparent D Latch

Q

Q

R

S

D

EN

D Q

EN

Symbol

a y

0

1

1
0

b

0
0
1

0
0 0

1 1

AND truth table • See from the AND truth table:
– if one of the inputs, say a is 0, the output

is always 0

– Output follows b input if a is 1

• The complement function ensures
that R and S can never be 1 at the
same time, i.e., illegal avoided

Transparent D Latch

Q

Q

R

S

D

EN

RS hold

Q 

0 1

0

1 1

QD comment

Q Q
1
0

RS reset

RS set

EN

0

X

1

• See Q follows D input provided EN=1.
If EN=0, Q maintains previous state

10/05/2017

10

Master-Slave Flip-Flops

• The transparent D latch is so called ‘level’
triggered. We can see it exhibits transparent
behaviour if EN=1. It is often more simple to
design sequential circuits if the outputs
change only on the either rising (positive
going) or falling (negative going) ‘edges’ of
the clock (i.e., enable) signal

• We can achieve this kind of operation by
combining 2 transparent D latches in a so
called Master-Slave configuration

Master-Slave D Flip-Flop
Symbol

D Q D Q D Q D

CLK

Q

Master Slave

Qint

• To see how this works, we will use a timing diagram

• Note that both latch inputs are effectively connected

to the clock signal (admittedly one is a complement

of the other)

10/05/2017

11

Master-Slave D Flip-Flop

D Q D Q D

CLK

Q

Master Slave

Qint

CLK

CLK

D

intQ

Q

Note propagation delays

have been neglected in

the timing diagram

See Q changes on rising

edge of CLK

D Flip-Flops

• The Master-Slave configuration has
now been superseded by new F-F
circuits which are easier to implement
and have better performance

• When designing synchronous circuits it
is best to use truly edge triggered F-F
devices

• We will not consider the design of such
F-Fs on this course

10/05/2017

12

Other Types of Flip-Flops

• Historically, other types of Flip-Flops

have been important, e.g., J-K Flip-

Flops and T-Flip-Flops

• However, J-K FFs are a lot more

complex to build than D-types and so

have fallen out of favour in modern

designs, e.g., for field programmable

gate arrays (FPGAs) and VLSI chips

Other Types of Flip-Flops

• Consequently we will only consider

synchronous circuit design using D-type

FFs

• However for completeness we will

briefly look at the truth table for J-K and

T type FFs

10/05/2017

13

J-K Flip-Flop

• The J-K FF is similar in function to a

clocked RS FF, but with the illegal state

replaced with a new ‘toggle’ state

Q 

0

1

0

0
1

0
0 1

1 1

QKJ comment

Q Q
1
0

hold
reset
set

toggle

Where is the next state

and is the current state

Q

Q

Q Q

Symbol

J

K Q

Q

T Flip-Flop

• This is essentially a J-K FF with its J

and K inputs connected together and

renamed as the T input

Q 

0

1

QT comment

Q Q hold

toggle

Where is the next state

and is the current state

Q

Q

Q Q

Symbol

T

Q

Q

10/05/2017

14

Asynchronous Inputs

• It is common for the FF types we have mentioned

to also have additional so called ‘asynchronous’

inputs

• They are called asynchronous since they take

effect independently of any clock or enable inputs

• Reset/Clear – force Q to 0

• Preset/Set – force Q to 1

• Often used to force a synchronous circuit into a

known state, say at start-up.

Timing

• Various timings must be satisfied if a FF

is to operate properly:

– Setup time: Is the minimum duration that

the data must be stable at the input before

the clock edge

– Hold time: Is the minimum duration that the

data must remain stable on the FF input

after the clock edge

10/05/2017

15

Timing

CLK

D

Q
sut ht

pt

sut Set-up time

ht Hold time

pt Propagation delay

Applications of Flip-Flops

• Counters

– A clocked sequential circuit that goes through a

predetermined sequence of states

– A commonly used counter is an n-bit binary

counter. This has n FFs and 2
n
 states which are

passed through in the order 0, 1, 2, ….2
n
-1, 0, 1, .

– Uses include:

• Counting

• Producing delays of a particular duration

• Sequencers for control logic in a processor

• Divide by m counter (a divider), as used in a digital

watch

10/05/2017

16

Applications of Flip-Flops

• Memories, e.g.,

– Shift register

• Parallel loading shift register : can be used for

parallel to serial conversion in serial data

communication

• Serial in, parallel out shift register: can be used

for serial to parallel conversion in a serial data

communication system.

Counters

• In most books you will see 2 basic types

of counters, namely ripple counters and

synchronous counters

• In this course we are concerned with

synchronous design principles. Ripple

counters do not follow these principles

and should generally be avoided if at all

possible. We will now look at the

problems with ripple counters

10/05/2017

17

Ripple Counters
• A ripple counter can be made be cascading

together negative edge triggered T-type FFs
operating in ‘toggle’ mode, i.e., T =1

• See that the FFs are not clocked using the

same clock, i.e., this is not a synchronous

design. This gives some problems….

T

Q

Q
‘1’

CLK

T

Q

Q
‘1’

T

Q

Q
‘1’

0Q 1Q 2Q

Ripple Counters
• We will now draw a timing diagram

0Q

CLK

1Q

2Q

0 1 2 3 4 5 6 7 0

• Problems:
See outputs do not change at the same time, i.e., synchronously.

So hard to know when count output is actually valid.

Propagation delay builds up from stage to stage, limiting

maximum clock speed before miscounting occurs.

10/05/2017

18

Ripple Counters

• If you observe the frequency of the counter

output signals you will note that each has half

the frequency, i.e., double the repetition

period of the previous one. This is why

counters are often known as dividers

• Often we wish to have a count which is not a

power of 2, e.g., for a BCD counter (0 to 9).To

do this:

– use FFs having a Reset/Clear input

– Use an AND gate to detect the count of 10 and

use its output to Reset the FFs

Synchronous Counters

• Owing to the problems identified with ripple
counters, they should not usually be used to
implement counter functions

• It is recommended that synchronous counter
designs be used

• In a synchronous design
– all the FF clock inputs are directly connected to the clock

signal and so all FF outputs change at the same time, i.e.,
synchronously

– more complex combinational logic is now needed to
generate the appropriate FF input signals (which will be
different depending upon the type of FF chosen)

10/05/2017

19

Synchronous Counters

• We will now investigate the design of

synchronous counters

• We will consider the use of D-type FFs

only, although the technique can be

extended to cover other FF types.

• As an example, we will consider a 0 to 7

up-counter

Synchronous Counters

• To assist in the design of the counter we will make

use of a modified state transition table. This table

has additional columns that define the required FF

inputs (or excitation as it is known)

– Note we have used a state transition table previously

when determining the state diagram for an RS latch

• We will also make use of the so called ‘excitation

table’ for a D-type FF

• First however, we will investigate the so called

characteristic table and characteristic equation for a

D-type FF

10/05/2017

20

Characteristic Table

• In general, a characteristic table for a FF

gives the next state of the output, i.e., in

terms of its current state and current inputs Q

Q

1
0

0
1

QDQ

0
0

1
1

0
1

0
1

Which gives the characteristic equation,

DQ '

i.e., the next output state is equal to the

current input value

Since is independent of

the characteristic table can

be rewritten as 1
0

QD

0
1

Q Q

Excitation Table
• The characteristic table can be modified to

give the excitation table. This table tells us

the required FF input value required to

achieve a particular next state from a given

current state

1
0

0
1

Q DQ

0
0

1
1

0
1

0
1

As with the characteristic table it can

be seen that , does not depend

upon, , however this is not

generally true for other FF types, in

which case, the excitation table is

more useful. Clearly for a D-FF,

Q
Q

'QD 

10/05/2017

21

Characteristic and Excitation

Tables
• Characteristic and excitation tables can

be determined for other FF types.

• These should be used in the design

process if D-type FFs are not used

• For example, for a J-K FF the following

tables are appropriate:

Characteristic and Excitation

Tables

• We will now determine the modified
state transition table for the example 0
to 7 up-counter

1
0

0

1

QKJ

0
0

1

1

1

0

Q

Q
1
0

0
1

Q JQ

0
0

1
1

0
1

0
1

K

x
x

x
x

Truth table Excitation table

10/05/2017

22

Modified State Transition

Table

• In addition to columns representing the

current and desired next states (as in a

conventional state transition table), the

modified table has additional columns

representing the required FF inputs to

achieve the next desired FF states

Modified State Transition Table

• For a 0 to 7 counter, 3 D-type FFs are needed
Current

state

0Q1Q2Q

0 0 0

1

0

1

0

1 1

1 0 0
0 1 0

0

1
1 0 1
0 1 1

1

'
0Q'1Q'

2Q 0D1D2D

1
0
1

1

0

0

0
1
1

0

0
1
1 1

0
0
0

1

1
1
1

0 0 0

1
0
1

1

0

0

0
1
1

0

0
1
1 1

0
0
0

1

1
1
1

0 0 0

Next

state

FF

inputs

Note: Since (or) for a D-FF, the

required FF inputs are identical to the Next state
DQ '

The procedure is to:

 Write down the desired

count sequence in the

current state columns

Write down the required

next states in the next

state columns

Fill in the FF inputs

required to give the

defined next state

'QD 

10/05/2017

23

Synchronous Counter Example

• If using J-K FFs for example, we need J and K
input columns for each FF

• Also note that if we are using D-type FFs, it is not
necessary to explicitly write out the FF input
columns, since we know they are identical to
those for the next state

• To complete the design we now have to
determine appropriate combinational logic circuits
which will generate the required FF inputs from
the current states

• We can do this from inspection, using Boolean
algebra or using K-maps.

Synchronous Counter Example

Current

state

0Q1Q2Q

0 0 0

1

0

1

0

1 1

1 0 0
0 1 0

0

1
1 0 1
0 1 1

1

'
0Q'1Q'

2Q 0D1D2D

1
0
1

1

0

0

0
1
1

0

0
1
1 1

0
0
0

1

1
1
1

0 0 0

1
0
1

1

0

0

0
1
1

0

0
1
1 1

0
0
0

1

1
1
1

0 0 0

Next

state

FF

inputs
By inspection,

00 QD 

Note: FF0 is toggling

Also, 101 QQD 

Use a K-map for , 2D

1Q 0Q
1 1 0 0 0 1 1 0

0

1 1 1

1

1 2Q

20.QQ

2Q

1Q

0Q

21.QQ 210 .. QQQ

10/05/2017

24

Synchronous Counter Example

1Q 0Q
1 1 0 0 0 1 1 0

0

1 1 1

1

1 2Q

20.QQ

2Q

1Q

0Q

21.QQ 210 .. QQQ

So,

2101022

21021202

..)..(

....

QQQQQQD

QQQQQQQD





D

Q

Q

CLK

0Q

0D
D

Q

Q

1Q

1D
D

Q

Q

2Q

2D

Combinati-

onal logic

0Q

0Q

1Q

1Q

2Q

2Q

Synchronous Counter

• A similar procedure can be used to design

counters having an arbitrary count sequence

– Write down the state transition table

– Determine the FF excitation (easy for D-types)

– Determine the combinational logic necessary to

generate the required FF excitation from the

current states – Note: remember to take into

account any unused counts since these can be

used as don’t care states when determining the

combinational logic circuits

10/05/2017

25

Shift Register

• A shift register can be implemented

using a chain of D-type FFs

D

Q

Q

D

Q

Q

0Q 1Q 2Q

D

Q

Q

Din

CLK

• Has a serial input, Din and parallel

output Q0, Q1 and Q2.

Shift Register

inD

CLK

0Q

1Q

2Q

• See data moves one position to the

right on application of each clock edge

10/05/2017

26

Shift Register

• Preset and Clear inputs on the FFs can
be utilised to provide a parallel data
input feature

• Data can then be clocked out through
Q2 in a serial fashion, i.e., we now have
a parallel in, serial out arrangement

• This along with the previous serial in,
parallel out shift register arrangement
can be used as the basis for a serial
data link

Serial Data Link

CLK

0Q 1Q 2Q

Parallel in

serial out

0Q 1Q 2Q

Serial in

parallel out

Serial Data

• One data bit at a time is sent across the serial
data link

• See less wires are required than for a parallel
data link

10/05/2017

27

Synchronous State Machines

Synchronous State Machines

• We have seen how we can use FFs (D-types

in particular) to design synchronous counters

• We will now investigate how these principles

can be extended to the design of synchronous

state machines (of which counters are a

subset)

• We will begin with some definitions and then

introduce two popular types of machines

10/05/2017

28

Definitions

• Finite State Machine (FSM) – a deterministic

machine (circuit) that produces outputs which

depend on its internal state and external inputs

• States – the set of internal memorised values,

shown as circles on the state diagram

• Inputs – External stimuli, labelled as arcs on the

state diagram

• Outputs – Results from the FSM

Types of State Machines

• Two types of state machines are in

general use, namely Moore machines

and Mealy machines

• We will see that the state diagrams (and

associated state tables) corresponding

with the 2 types of machine are slightly

different

10/05/2017

29

Machine Schematics

Outputs
Next state

combinational

logic m

CLK

Optional

combinational

logic
D

Q

Q

m
Inputs

n

Current state Moore

Machine

Mealy

Machine

Next state

combinational

logic
D

Q

Q

m

CLK

combinational

logic m
Inputs

n

Current state

Outputs

Moore vs. Mealy Machines

• Outputs from Mealy Machines depend upon

the timing of the inputs

• Outputs from Moore machines come directly

from clocked FFs so:

– They have guaranteed timing characteristics

– They are glitch free

• Any Mealy machine can be converted to a

Moore machine and vice versa, though their

timing properties will be different

10/05/2017

30

Moore Machine State Diagram
• Example FSM has 3 states (A, B and C), inputs e and r, and

output s

[s1 s0]

FF labels

A B

C

[10] [00]

[01]

r

r

re.

re.

re. re.

e

e

In this case the

output s is given

by s1, i.e., s=s1

• See inputs only appear on transitions between states, i.e.,

next state is given by current state and current inputs

• Outputs determined from current state via combinational

logic (if required)

Mealy Machine State Diagram
• Example FSM has 3 states (A, B and C), inputs x and y, and

output s

[s1 s0]

Transition labels:

Inputs/Output

FF labels:

A B

C

[10] [00]

[01]

sy /

sy /

syx /.

syx /.

syx /.

sx /

• Inputs and outputs appear on transitions between states,

i.e., next state is given by current state and current inputs

• Output determined from current state and inputs via

combinational logic

10/05/2017

31

Moore Machine - Example

• We will design a Moore Machine to implement

a traffic light controller

• In order to visualise the problem it is often

helpful to draw the state transition diagram

• This is used to generate the state transition

table

• The state transition table is used to generate

– The next state combinational logic

– The output combinational logic (if required)

Example – Traffic Light Controller

R

R

G

A A

See we have 4 states

So in theory we could

use a minimum of 2 FFs

However, by using 3 FFs

we will see that we do not

need to use any output

combinational logic

So, we will only use 4 of

the 8 possible states

In general, state assignment is a

difficult problem and the optimum

choice is not always obvious

10/05/2017

32

Example – Traffic Light Controller
By using 3 FFs (we will use

D-types), we can assign one

to each of the required

outputs (R, A, G), eliminating

the need for output logic
State

010

R

R

G

A A

State

100

State

001

State

110

We now need to write down

the state transition table

We will label the FF outputs

R, A and G

Remember we do not need to

explicitly include columns for FF

excitation since if we use D-types

these are identical to the next state

Example – Traffic Light Controller
Current

state

GAR

0 0 1

0 1

0 1 1
1 0 0

0

'G'A'R

0
1
0

0

1
0
1

0

1
0
0

1

Next

state R

R

G

A A

State

100

State

001

State

110

State

010

Unused states, 000, 011, 101 and

111. Since these states will never

occur, we don’t care what output

the next state combinational logic

gives for these inputs. These don’t

care conditions can be used to

simplify the required next state

combinational logic

10/05/2017

33

Example – Traffic Light Controller

Current

state

GAR

0 0 1

0 1

0 1 1
1 0 0

0

'G'A'R

0
1
0

0

1
0
1

0

1
0
0

1

Next

state

Unused states, 000,

011, 101 and 111.

We now need to determine the next

state combinational logic

For the R FF, we need to determine DR

To do this we will use a K-map

A G
1 1 0 0 0 1 1 0

0

1

1

1 X

AR.

R

R

G

A

X

X

X

AR.

ARARARDR  ..

Example – Traffic Light Controller

Current

state

GAR

0 0 1

0 1

0 1 1
1 0 0

0

'G'A'R

0
1
0

0

1
0
1

0

1
0
0

1

Next

state

Unused states, 000,

011, 101 and 111.

By inspection we can also see:

ADA 

and,

ARDG .

10/05/2017

34

Example – Traffic Light Controller

D

Q

Q

CLK

A

AD
D

Q

Q

R

RD
D

Q

Q

G

GD

FSM Problems

• Consider what could happen on power-up

• The state of the FFs could by chance be in

one of the unused states

– This could potentially cause the machine to

become stuck in some unanticipated sequence of

states which never goes back to a used state

10/05/2017

35

FSM Problems

• What can be done?

– Check to see if the FSM can eventually

enter a known state from any of the

unused states

– If not, add additional logic to do this, i.e.,

include unused states in the state transition

table along with a valid next state

– Alternatively use asynchronous Clear and

Preset FF inputs to set a known (used)

state at power up

Example – Traffic Light Controller

• Does the example FSM self-start?

• Check what the next state logic outputs

if we begin in any of the unused states

• Turns out:

Start

state

Next state

logic output

000 010
011 100
101 110
111 001

Which are all

valid states

So it does

self start

10/05/2017

36

Example 2

• We extend Example 1 so that the traffic
signals spend extra time for the R and G
lights

• Essentially, we need 2 additional states, i.e.,
6 in total.

• In theory, the 3 FF machine gives us the
potential for sufficient states

• However, to make the machine combinational
logic easier, it is more convenient to add
another FF (labelled S), making 4 in total

Example 2

FF labels

R A G S

R

G

R

A A

State

1000

State

0010

State

1100

State

0101

R

G

State

1001

State

0011

See that new FF

toggles which

makes the next

state logic easier

As before, the first

step is to write

down the state

transition table

10/05/2017

37

Example 2

FF

labels

R A G S

R

G

R

A A

State

1000

State

0010

State

1100

State

0101

R

G

State

1001

State

0011

Current

state

AR G 'G'A'R

Next

state

S

0 1 0 0 0 1 0

'S

1

0 1 1 1 0 0 0

0 1 0 0 0 1 1 0

1
1 0 0 1 0 0 1 0

0 1 0 0 1 1 1 0

1 0 0 0 1 0 0 1

Clearly a lot of unused states.

When plotting k-maps to determine

the next state logic it is probably

easier to plot 0s and 1s in the map

and then mark the unused states

Example 2

We will now use k-maps to determine

the next state combinational logic

Current

state

AR G 'G'A'R

Next

state

S

0 1 0 0 0 1 0

'S

1

0 1 1 1 0 0 0

0 1 0 0 0 1 1 0

1
1 0 0 1 0 0 1 0

0 1 0 0 1 1 1 0

1 0 0 0 1 0 0 1

For the R FF, we need to determine DR

1 1 0 0 0 1 1 0

0 0

0 1

1 1

1 0

AR
SG

1
R

A

G

S

1

0

1

AR.

AR.

0 0

X X

X X X

X X X

X X

ARARARDR  ..

10/05/2017

38

Example 2

We can plot k-maps for DA and DG

to give:

Current

state

AR G 'G'A'R

Next

state

S

0 1 0 0 0 1 0

'S

1

0 1 1 1 0 0 0

0 1 0 0 0 1 1 0

1
1 0 0 1 0 0 1 0

0 1 0 0 1 1 1 0

1 0 0 0 1 0 0 1

By inspection we can also see:

SGSRDA ..  or

SRSRSRDA  ..

SGARDG ..  or

SASGDG .. 

SDS 

State Assignment

• As we have mentioned previously, state
assignment is not necessarily obvious or
straightforward

– Depends what we are trying to optimise, e.g.,
• Complexity (which also depends on the

implementation technology, e.g., FPGA, 74 series
logic chips).

– FF implementation may take less chip area than you may
think given their gate level representation

– Wiring complexity can be as big an issue as gate complexity

• Speed

– Algorithms do exist for selecting the ‘optimising’
state assignment, but are not suitable for manual
execution

10/05/2017

39

State Assignment

• If we have m states, we need at least

FFs (or more informally, bits) to encode the

states, e.g., for 8 states we need a min of 3

FFs

• We will now present an example giving

various potential state assignments, some

using more FFs than the minimum

m2log

Example Problem

• We wish to investigate some state
assignment options to implement a divide by
5 counter which gives a 1 output for 2 clock
edges and is 0 for 3 clock edges

CLK

Output

10/05/2017

40

Sequential State Assignment

• Here we simply assign the states in an
increasing natural binary count

• As usual we need to write down the
state transition table. In this case we
need 5 states, i.e., a minimum of 3 FFs
(or state bits). We will designate the 3
FF outputs as c, b, and a

• We can then determine the necessary
next state logic and any output logic.

Sequential State Assignment

Unused states, 101,

110 and 111.

Current

state

abc

0 0 0
1 0 0
0 1 0

abc

1
0
1

0
1
1

0
0
0

1 1 0 0 0 1

Next

state

0 0 1 0 0 0

By inspection we can see:

The required output is from FF b

Plot k-maps to determine the

next state logic:

For FF a:

b a
1 1 0 0 0 1 1 0

0

1

1 1

X c X X

c

a

b

ca.

caDa .

10/05/2017

41

Sequential State Assignment

Unused states, 101,

110 and 111.

Current

state

abc

0 0 0
1 0 0
0 1 0

abc

1
0
1

0
1
1

0
0
0

1 1 0 0 0 1

Next

state

0 0 1 0 0 0

For FF b:

b a
1 1 0 0 0 1 1 0

0

1

1

X c X X

c

a

b

ba.

bababaDb  ..

1

ba.

For FF c:

b a
1 1 0 0 0 1 1 0

0

1

1

X c X X

c

a

b

ba.

baDc .

Sliding State Assignment

Unused states, 010,

101, and 111.

Current

state

abc

0 0 0
1 0 0
1 1 0

abc

1
1
0

0
1
1

0
0
1

0 1 1 0 0 1

Next

state

0 0 1 0 0 0

For FF a:

b a
1 1 0 0 0 1 1 0

0

1

1 1

X c X

X

c

a

b

cb .

cbDa .

Plot k-maps to determine the

next state logic:

By inspection we can see that

we can use any of the FF

outputs as the wanted output

10/05/2017

42

Sliding State Assignment

Unused states, 010,

101, and 111.

Current

state

abc

0 0 0
1 0 0
1 1 0

abc

1
1
0

0
1
1

0
0
1

0 1 1 0 0 1

Next

state

0 0 1 0 0 0

By inspection we can see that:

For FF b:

For FF c:

aDb 

bDc 

Shift Register Assignment

• As the name implies, the FFs are connected

together to form a shift register. In addition,

the output from the final shift register in the

chain is connected to the input of the first

FF:

– Consequently the data continuously cycles

through the register

10/05/2017

43

Shift Register Assignment

Unused states. Lots!

Current

state

a

1
0
0

0

Next

state

1

bc

1 0
1 1
0 1

0 0
0 0

abc

0
0
0

1
0
0

1
1
0

1 0 0
1 1 0

0
0
1

1
0

de

0
0
0

1
1

0
1
1

0
0

d e

0
0
1

1
0

Because of the shift register

configuration and also from the

state table we can see that:

eDa 

aDb 
bDc 
cDd 
dDe 

By inspection we can see that

we can use any of the FF

outputs as the wanted output

See needs 2 more FFs, but no logic and simple wiring

One Hot State Encoding

• This is a shift register design style where only

one FF at a time holds a 1

• Consequently we have 1 FF per state,

compared with for sequential assignment

• However, can result in simple fast state

machines

• Outputs are generated by ORing together

appropriate FF outputs

m2log

10/05/2017

44

One Hot - Example

• We will return to the traffic signal example,

which recall has 4 states

R

R

G

A A

For 1 hot, we need 1 FF for

each state, i.e., 4 in this case

The FFs are connected to form

a shift register as in the

previous shift register example,

however in 1 hot, only 1 FF

holds a 1 at any time

We can write down the state

transition table as follows

One Hot - Example

R

R

G

A A

Unused states. Lots!

Current

state

Next

state

a

0
0
0

1

g

0
0
1

0

ra

0
1
0

0

1
0
0

0

r a

0
0
1

0

g

0
1
0

0

ar 

1
0
0

0

0
0
0

1

r

Because of the shift register configuration

and also from the state table we can see

that: gDa  raDg  rDra  aDr 

To generate the R, A and G outputs we do the following ORing:

rarR  araA  gG 

10/05/2017

45

One Hot - Example
gDa  raDg  rDra  aDr 

rarR  araA  gG 

D

Q

Q
r ra

D

Q

Q
g

D

Q

Q
Dr

CLK

D

Q

Q a
Dra Dg Da

R A G

Tripos Example
• The state diagram for a synchroniser is shown.

It has 3 states and 2 inputs, namely e and r.

The states are mapped using sequential

assignment as shown.

[s1 s0]

FF labels

Sync Hunt

Sight

[10] [00]

[01]

r

r

re.

re.

re. re.

e

e

An output, s should be

true if in Sync state

10/05/2017

46

Tripos Example

Sync Hunt

Sight

[10] [00]

[01]

r

r

re.

re.

re. re.

e

e

Unused state 11

Current

state

re

0 X
1 X

'
1s

'
0s

0
1

0
0

Next

state

0s

0 0
0 0

Input

1s

X 0 1 0
0 1 0 0 1 0

1 0

1 1 0 1 1 0

0 1 0 0 0 1
X 0 0 1 0 1

1 1 0 1 0 1

X X X X 1 1
From inspection, 1ss 

Tripos Example
Plot k-maps to determine the

next state logic

Current

state

re

0 X
1 X

'
1s

'
0s

0
1

0
0

Next

state

0s

0 0
0 0

Input

1s

X 0 1 0
0 1 0 0 1 0

1 0

1 1 0 1 1 0

0 1 0 0 0 1
X 0 0 1 0 1

1 1 0 1 0 1

X X X X 1 1

For FF 1:

1 1 0 0 0 1 1 0

0 0

0 1

1 1

1 0

01 ss
re

1
1s

0s

e

r

1

1

res ..0

es .1

X X X X

1

rs .1

resrsesD 0111 

10/05/2017

47

Tripos Example
Plot k-maps to determine the

next state logic

Current

state

re

0 X
1 X

'
1s

'
0s

0
1

0
0

Next

state

0s

0 0
0 0

Input

1s

X 0 1 0
0 1 0 0 1 0

1 0

1 1 0 1 1 0

0 1 0 0 0 1
X 0 0 1 0 1

1 1 0 1 0 1

X X X X 1 1

For FF 0:

1 1 0 0 0 1 1 0

0 0

0 1

1 1

1 0

01 ss
re

1

1s

0s

e

r

1

1
rss .. 01

es .0

X X X X

1

rssesD ... 0100 

Tripos Example

• We will now re-implement the synchroniser

using a 1 hot approach

• In this case we will need 3 FFs

Sync Hunt

Sight

[100] [001]

[010]

r

r

re.

re.

re. re.

e

e

[s2 s1 s0]

FF labels

An output, s should be

true if in Sync state

From inspection, 2ss 

10/05/2017

48

Tripos Example

Sync Hunt

Sight

[100] [001]

[010]

r

r

re.

re.

re. re.

e

e

Current

state

re

0 X
1 X

'
2s

0
0

Next

state

0s

1
1

Input

X 0 0
0 1 0 0

0

1 1 1 0

0 1 0 0
X 0 1 0

1 1 1 0

'
1s

0
1

1
0
0

0
0

0

0
0

1s

1
1

1

0
0

0

'
0s

1
0

0
1
0

1
0

0

0
0

2s

0
0

0

1
1

1

Remember when interpreting this table, because of the 1-

hot shift structure, only 1 FF is 1 at a time, consequently it

is straightforward to write down the next state equations

Tripos Example

Current

state

re

0 X
1 X

'
2s

0
0

Next

state

0s

1
1

Input

X 0 0
0 1 0 0

0

1 1 1 0

0 1 0 0
X 0 1 0

1 1 1 0

'
1s

0
1

1
0
0

0
0

0

0
0

1s

1
1

1

0
0

0

'
0s

1
0

0
1
0

1
0

0

0
0

2s

0
0

0

1
1

1

For FF 2:

resesresD 2212 

For FF 1:

esrsD .. 101 

For FF 0:

resresrsD 2100 

10/05/2017

49

Tripos Example

Sync Hunt

Sight

[100] [001]

[010]

r

r

re.

re.

re. re.

e

e

Note that it is not strictly

necessary to write down the

state table, since the next state

equations can be obtained from

the state diagram

It can be seen that for each

state variable, the required

equation is given by terms

representing the incoming arcs

on the graph

For example, for FF 2: resesresD 2212 

Also note some simplification is possible by noting that:

1012  sss (which is equivalent to e.g.,) 012 sss 

Tripos Example

• So in this example, the 1 hot is easier to

design, but it results in more hardware

compared with the sequential state

assignment design

10/05/2017

50

Elimination of Redundant

States

• Sometimes, when designing state

machines it is possible that

unnecessary states may be introduced

• In general, reducing the number of

states may reduce the number of FFs

required and may also reduce the

complexity of the next state logic owing

to the presence of more unused states

(don’t cares)

Elimination of Redundant

States - Example
• Consider the following State Table that

corresponds with a Mealy Machine

implementation

• This is so, since the inputs and outputs from

the machine are on the transitions (arcs)

between states

• The following state table is drawn in a

compact form by incorporating the 2 possible

input values as parallel columns within both

the next state and output columns of the table

10/05/2017

51

Example

Current

State

Next

State Output (Z)

C
E
G
I
K

P
M

A
A
A
A
A
A
A
A

B
D
F
H
J

N
L

A
A
A
A
A
A
A
A

0
0
0

0
0

0
0

0
0
1
0
1
0
0
0

0
0
0
0
0

0
0

0
0
0
0
0
0
0
0

A
B

D
C

E

G
F

H
I
J
K
L
M
N
P

X=0 X=1 X=0 X=1
• From the table, we see

that there is no way of

telling states H and I apart,

so we can replace I with H

when it appears in the

Next State portion of the

table

Example

Current

State

Next

State Output (Z)

C
E
G
H
K

P
M

A

A
A
A
A
A
A

B
D
F
H
J

N
L

A

A
A
A
A
A
A

0
0
0

0
0

0
0

0

1
0
1
0
0
0

0
0
0
0
0

0
0

0

0
0
0
0
0
0

A
B

D
C

E

G
F

H

J
K
L
M
N
P

X=0 X=1 X=0 X=1
• We also see that there is

now no way to get to state

I so we can remove row I

from the table

• Similarly, rows K, M, N and

P have the same next

state and output as H and

can be replaced by H

10/05/2017

52

Example

Current

State

Next

State Output (Z)

C
E
G
H
H

H
H

A

A

A

B
D
F
H
J

H
L

A

A

A

0
0
0

0
0

0
0

0

1

1

0
0
0
0
0

0
0

0

0

0

A
B

D
C

E

G
F

H

J

L

X=0 X=1 X=0 X=1
• Similarly, there is now no

way to get to states K, M,

N and P and so we can

remove these rows from

the table

• Also, the next state and

outputs are identical for

rows J and L, thus L can

be replaced by J and row L

eliminated from the table

Example

Current

State

Next

State Output (Z)

C
E
G
H
H

H
H

A

A

B
D
F
H
J

H
J

A

A

0
0
0

0
0

0
0

0

1

0
0
0
0
0

0
0

0

0

A
B

D
C

E

G
F

H

J

X=0 X=1 X=0 X=1
• Now rows D and G are

identical, as are rows E

and F.

• Consequently, G can be

replaced by D, and row G

eliminated. Also, F can be

replaced by E and row F

eliminated from the table

10/05/2017

53

Example

Current

State

Next

State Output (Z)

C
E
D
H
H

A

A

B
D
E
H
J

A

A

0
0
0

0
0

0

1

0
0
0
0
0

0

0

A
B

D
C

E

H

J

X=0 X=1 X=0 X=1
• The procedure employed

to find equivalent states in

this example is known as

row matching.

• However, we note row

matching is not sufficient to

find all the equivalent

states except for certain

special cases

Implementation of FSMs

• We saw previously that programmable logic
can be used to implement combinational logic
circuits, i.e., using PLA devices

• PAL style devices have been modified to
include D-type FFs to permit FSMs to be
implemented using programmable logic

• One particular style is known as Generic
Logic Array (GLA)

10/05/2017

54

GLA Devices

• They are similar in concept to PLAs, but

have the option to make use of a D-type flip-

flops in the OR plane (one following each OR

gate). In addition, the outputs from the D-

types are also made available to the AND

plane (in addition to the usual inputs)

– Consequently it becomes possible to build

programmable sequential logic circuits

AND plane

OR plane D
Q

Q

D
Q

Q

GLA

Device

10/05/2017

55

GLA Devices

• A modified form of a GLA known as a

Generic Array Logic (GAL) is used in the

Hardware Laboratory classes to implement

various FSMs.

GAL Devices

f0

a

b

fn

AND

plane

OR

plane

D
Q

Q

D
Q

Q

CLK

10/05/2017

56

FPGA

• Field Programmable Gate Arrays (FPGAs) are

the latest type of programmable logic

• Are an array of configurable logic blocks (CLBs)

surrounded by Input Output Blocks (IOBs):

– programmable routing channels permit CLBs to be

connected to other CLBs and to IOBs

– CLBs contain look up tables (LUTs), multiplexers

(MUXs) and D-type FFs

– The FPGA is configured by specifying the contents

of the LUTs and select signals for the MUXs

FPGA – Xilinx Spartan

10/05/2017

57

FPGA – Xilinx Spartan
• Simplified schematic showing CLBs and

programmable routing channels, i.e., wires

plus programmable switch matrices (SMs)

FPGA - Spartan CLB

10/05/2017

58

FPGA - Spartan CLB
• Has 2, 4-input LUTs (F and G) and 1, 3 input

LUT (H)

• Has to ‘combinational’ outputs (Y and X) and

2 ‘registered’ outputs (i.e., from D-FFs) YQ

and XQ

• Depending on MUX configuration Y is given

by output of either G or H LUTs and X from

either F or H LUTs.

• D-FF inputs come from DIN, or from F, G, or

H LUTs

FPGA - Spartan CLB
• Thus each CLB can perform up to 2

combinational and/or 2 registered functions

• All functions can involve at least 4 input

variables (e.g., G1 to G4, and F1 to F4), but

can be up to 9 (owing to the possibility of

implementing 2-level combinational logic

functions), i.e., G1 to G4, F1 to F4, DIN.

• Created using either a schematic (block)

diagram or more likely a Hardware

Description Language (HDL) of the design

10/05/2017

59

FPGA - Spartan CLB
• The synthesis tool determines how the LUTs,

MUXs and routing channels are configured

• This configuration information is then

downloaded to the FPGA

• Xilinx devices store their configuration

information in static RAM (SRAM) so can be

easily reprogrammed

• The SRAM contents can be downloaded

either from a computer or from an EEPROM

device when the system is powered-up

FPGA
• Other FPGA manufacturers are available,

e.g., Altera.

• Particular manufacturers have many different

product lines

• Main differences will be the no. of CLBs, the

structure of the CLBs, internal or external

ROM, additional features such as specialised

arithmetic blocks, user RAM etc.

10/05/2017

60

Appendix – Workshop 2
Contact B

Contact A

Contact B

Contact A

Appendix – Workshop 2

