
IB FoundaƟons of Data Science
Damon Wischik, Computer Laboratory, Cambridge University
Michaelmas Term 2017

• There will be 12 lectures.
• There will be three example sheets, combining pen-and-paper work with practical work.

The material covered in the practicals may be tested in the exam, but the practicals
themselves won’t be graded. Example sheets will be handed out in advance of the
material they cover.

• There will be four practical help sessions. These are optional.

ii

ACKNOWLEDGEMENTS

Thanks to Jakub Perlin, Richard Gibbens, Thomas Sauerwald, and A. Student for pointing
out mistakes in the notes.

1

0. What is data science?
The Harvard Business Review called data science “the sexiest job of the 21st century”1, and
the Economist says “The world’s most valuable resource is no longer oil, but data”2. So it
is no surprise that data science is a label that many people have seized upon, to mean many
different things. Here is my attempt at a definition:

Data science is any field of study where you can be surprised by data.

What do you think data science is? Note down your answer now, and again at the end of
the course.

0.1. ‘Surprised by data’: reasoning about uncertainty
Here are some results from a survey of undergraduates, 15 female, 94 male, 4 other / didn’t
specify.

F M X
I am treated fairly in lectures yes 14 86 ·

no 1 8 ·
I’m comfortable asking questions str.agree 2 36 ·

str.disagree 10 36 ·

Simple percentages say that female students are more likely to say they’re treated fairly
in lectures than male students, and yet they’re less comfortable asking questions, which seems
surprising—but when we look at actual numbers rather than percentages we intuit that the
numbers are so small we might expect some mixed signals. Is this intuition correct? In other
words, what counts as surprising, and what counts as chance variation?

Data science is about fields of study where you can be surprised by data. To say what’s
suprising, we need to be able to reason about uncertainty. Here is a quote from an astronomer,
about possible detection of an exomoon, which illustrates that reasoning about uncertainty
does not come naturally:

The work by Dr Kipping, his Columbia colleague Alex Teachey and citizen scientist
Allan R Schmitt, assigns a confidence level of four sigma to the signal from the
distant planetary system. The confidence level describes how unlikely it is that
an experimental result is simply down to chance. If you express it in terms of
tossing a coin, it’s equivalent to tossing 15 heads in row.
But Dr Kipping said this is not the best way to gauge the potential detection. He
told BBC News: “We’re excited about it... statistically, formally, it’s a very high
probability. But do we really trust the statistics? That’s something unquantifiable.
Until we get the measurements from Hubble, it may as well be 50–50 in my mind.”3

Today’s neural networks for image classification also have trouble reasoning about uncertainty,
as this adversarial panda illustrates:4

panda,
57.7%
confidence

+ 0.07×

nematode,
8.2%
confidence

=

gibbon,
99.3%
confidence

The main goal of this course is to learn how to express uncertainty in equations and
computer programs, so that ‘what you know in your mind’ and ‘what your probability com-
putations say’ support each other.

1https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
2https://www.economist.com/news/leaders/21721656-data-economy-demands-new-approach-

antitrust-rules-worlds-most-valuable-resource
3http://www.bbc.co.uk/news/science-environment-40741545
4I. J. Goodfellow, J. Shlens, and C. Szegedy. “Explaining and Harnessing Adversarial Examples”. In:

ArXiv e-prints (Dec. 2014). arXiv: 1412.6572 [stat.ML].

https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
https://www.economist.com/news/leaders/21721656-data-economy-demands-new-approach-antitrust-rules-worlds-most-valuable-resource
https://www.economist.com/news/leaders/21721656-data-economy-demands-new-approach-antitrust-rules-worlds-most-valuable-resource
http://www.bbc.co.uk/news/science-environment-40741545
http://arxiv.org/abs/1412.6572

2 0.2 ‘Field of study’: scientific modeling

0.2. ‘Field of study’: scienƟfic modeling
Given a crime and policing dataset5, here are some questions that spring to mind:

1. What is the typical crime rate in each neighbourhood?
Keywords: description, estimation.

2. How many police officers should we allocate to each neighbourhood this week?
Keywords: prediction accuracy, working system.

3. Do our policing strategies exacerbate racial tension?
Keywords: science, hypothesis, policy, counterfactual.

You’ll sometimes see machine learning used to mean “an operational engineering disci-
pline, for designing algorithms that predict outputs when fed with inputs, and are evaluated
according to the accuracy of their predictions”. This is the spirit, for example, of competi-
tions at kaggle.com, and it has led to some remarkably clever algorithms. It also leads to
offensive mistakes:

Google came under fire this week after its new Photos app categorized photos in
one of the most racist ways possible. On June 28th [2015], computer programmer
Jacky Alciné found that the feature kept tagging pictures of him and his girlfriend
as “gorillas.” He tweeted at Google asking what kind of sample images the company
had used that would allow such a terrible mistake to happen.

Google’s chief social architect Yonatan Zunger responded quickly, apologizing for
the feature.6

A machine learning system isn’t value neutral, it’s a reflection of the choices that
went into the training dataset. Data investigation is a required skill for responsible machine
learning. Conversely, whenever you analyse data, the tools you use to test your hypotheses
are estimation and prediction. So ‘data science’ and ‘machine learning’ are complementary
and intertwined.

This course is about data science, i.e. about building models and hypotheses and
understanding, using data. It’s not an introduction to the machine learning toolbox. The
range of algorithms out there is exciting and growing rapidly. There are courses in Part II
and III that will introduce you to some of them, and there are others that you will pick up in
your own reading. The goal of this course is to give you practice at asking the right questions
and finding the right tools, so that when you read about a new algorithm you can quickly
pick it up and decide where it is and isn’t appropriate.

What is data science modeling?

All models are wrong but some are useful [...] there is no need to ask the question
“Is the model true?”. If “truth” is to be the “whole truth” the answer must be
“No”. The only question of interest is “Is the model illuminating and useful?”.7

Since no model is to be believed in, no optimization for a single model can offer
more than distant guidance. What is needed, and is never more than approximately
at hand, is guidance about what to do in a sequence of ever more realistic situations.
The analyst of data is lucky if he has some insight into a few terms of this sequence,
particularly those not yet mathematized. [...] The main tasks of pictures are then:
to reveal the unexpected, to make the complex easier to perceive. Either may
be effective for that which is important above all: suggesting the next step in
analysis, or offering the next insight. In doing either of these there is much room
for mathematics and novelty.8

5e.g. https://data.police.uk/data/
6https://www.theverge.com/2015/7/1/8880363/google-apologizes-photos-app-tags-two-black-

people-gorillas
7G. E. P. Box. “Robustness in the Strategy of Scientific Model Building”. In: Robustness in Statistics.

Vol. 1. May 1979, p. 40. url: http://www.dtic.mil/docs/citations/ADA070213.
8John W Tukey. “Mathematics and the picturing of data”. In: Proceedings of the international congress

of mathematicians. Vol. 2. 1975, pp. 523–531. url: http://www.mathunion.org/ICM/ICM1974.2/Main/
icm1974.2.0523.0532.ocr.pdf.

kaggle.com
https://data.police.uk/data/
https://www.theverge.com/2015/7/1/8880363/google-apologizes-photos-app-tags-two-black-people-gorillas
https://www.theverge.com/2015/7/1/8880363/google-apologizes-photos-app-tags-two-black-people-gorillas
http://www.dtic.mil/docs/citations/ADA070213
http://www.mathunion.org/ICM/ICM1974.2/Main/icm1974.2.0523.0532.ocr.pdf
http://www.mathunion.org/ICM/ICM1974.2/Main/icm1974.2.0523.0532.ocr.pdf

0.3 The foundations 3

You’ve got to have models in your head. And you’ve got to array your experience—
both vicarious and direct—on this latticework of models. You may have noticed
students who just try to remember and pound back what is remembered. Well,
they fail in school and in life. You’ve got to hang experience on a latticework of
models in your head.
What are the models? Well, the first rule is that you’ve got to have multiple
models— because if you just have one or two that you’re using, the nature of
human psychology is such that you’ll torture reality so that it fits your models, or
at least you’ll think it does.9

0.3. The foundaƟons
The foundations of data science are probability, computing, and statistics.

You can learn enough probability theory in a term, though it takes practice practice
practice. You’ll pick up the relevant computing skills over the course of your degree: you
need to be able to think algorithmically and write fast code, and to understand databases
and distributed systems for big data. You can pick up some statistics ideas in a term, but
to really understand what it means to learn from data you will need a lifetime of experience,
including either a stint in a startup or a degree in philosophy.

Warren Buffet’s business partner says in colourful language how important it is to get
practice at working with probability:

If you don’t get this elementary, but mildly unnatural, mathematics of elementary
probability into your repertoire, then you go through a long life like a one-legged
man in an ass kicking contest. You’re giving a huge advantage to everybody else.
One of the advantages of a fellow like Buffett, whom I’ve worked with all these
years, is that he automatically thinks in terms of decision trees and the elementary
math of permutations and combinations.10

This course assumes you know the basic rules for manipulating probability, such as
Bayes’s rule. We’ll use probability for modelling, and we’ll ask what we can learn from data
via our models. Here’s a taster, the naïve Bayes classifier. Suppose we have the data

Emails labeled spam: “buy this viagra”, “cheap online pharma”, “cheap viagra today”.
Emails labeled genuine: “will you buy the present or will I”, “I will buy it online today”.
Test email 1: “buy viagra today”.
Test email 2: “buy viagra as a present”.

Here’s a simple model to start with: Each word in an email is chosen independently, with a
probability that depends on the label of the email. In mathematical notation, let θw be the
probability of word w in spam emails, and ϕw be the probability in genuine emails, and let

P(words w1w2 . . . wn|spam) =
∏
i

θwi ,

P(words w1w2 . . . wn|genuine) =
∏
i

ϕwi .

Based on the labeled data, the obvious parameter estimates are

w bu
y

thi
s

via
gra

che
ap

on
lin
e
ph
arm

a

tod
ay

wil
l

you the pre
sen
t

or I it
θw 1⁄9 1⁄9 2⁄9 2⁄9 1⁄9 1⁄9 1⁄9 0 0 0 0 0 0 0
ϕw

2⁄14 0 0 0 1⁄14 0 1⁄14 3⁄14 1⁄14 1⁄14 1⁄14 1⁄14 2⁄14 1⁄14

According to Bayes’s rule,

P(spam|words) = P(words|spam)P(spam)
P(words|spam)P(spam) + P(words|genuine)P(genuine)

9Charles Munger. A lesson on elementary, worldly wisdom as it relates to investment management
& business. Speech given at USC Business School. 1994. url: http : / / www . safalniveshak . com / wp -
content/uploads/2012/08/Lesson-on-Elementary-Worldly-Wisdom-Charlie-Munger.pdf.

10Ibid.

http://www.safalniveshak.com/wp-content/uploads/2012/08/Lesson-on-Elementary-Worldly-Wisdom-Charlie-Munger.pdf
http://www.safalniveshak.com/wp-content/uploads/2012/08/Lesson-on-Elementary-Worldly-Wisdom-Charlie-Munger.pdf

4 0.3 The foundations

where P(spam) and P(genuine) are prior beliefs about the label; prior beliefs might be chosen
based on the anticipated statistics of the test document collection, e.g. 50% and 50%. When
we evaluate the formula on the test documents,

P(spam|test email 1) = 1

P(spam|test email 2) = divide by zero error.

What does the divide by zero error mean? The simple naïve Bayes model might be inaccurate
but it’s not impossible, so something must have gone wrong with the way be applied it to
the data. The statistics component of this course will give you practice at debugging this
sort of ‘inference bug’.

5

1. ProbabilisƟc models

Goals. Refresh your memory of IA Maths for NST, where you were taught
some basic probability, and practice on some harder questions. Learn about
the four major types of probabilistic model, through examples.

ApplicaƟon. Suppose we wanted to write an app to detect if the user is cycling, running, or
driving, and which records or assists as appropriate. The GPS readings might look something
like this (showing one sample per second).

In [39]:

In []:

+
−

Leaflet (http://leafletjs.com)

map = folium.Map(location=wps[270].latlon, zoom_start=18, tiles='cartodbpositron')
folium.PolyLine([wp.latlon for wp in wps2], color='#DC2348', opacity=.4).add_to(map)
for wp in wps2[180:300]:
 folium.CircleMarker(location=wp.latlon, color='crimson', fill=True, radius=1.5).
display(map)

GPS readings are noisy, so the user’s exact location is unknown, but it probably doesn’t jerk
about as wildly as the GPS readings do. The user is probably cycling given the speed, which
suggests how smooth the trajectory is likely to be. If we had a large dataset of traces, we
should be able to learn typical GPS noisiness, as well as typical statistics about speed and
smoothness for different modes of transport.

We often face these generic issues in data science applications:

• observations are noisy;
• there is hidden state (true position and transport mode) that we’d like to reason about;
• it’s a dynamical system we’re observing, and if we know how it typically evolves then

this tells us something about the hidden state;
• we want to learn system parameters from a large dataset.

In this section we’ll look at four common types of model, which showcase these issues. The
actual GPS smoothing problem is too involved for lectures, so we’ll look at simpler idealized
models.

6 1.1 Random samples

1.1. Random samples
ApplicaƟon. I’ve developed a new load-balancing algorithm for my web server. I want to
test my algorithm, by means of simulation. My simulator needs a random number generator
(RNG) to generate file sizes, request times etc. The performance of my load balancer will
surely depend on the random number generator I use. How should I program this random
number generator?

We use RNGs in situations like this because the real world is too complicated to model in a
Newtonian cause-and-effect way. We use random numbers to say “There is variability, and
I can quantify the degree of variability, but I’m not going to look in excruciating detail for
causes for every little variation.” It’s up to the modeler to draw the line between ‘causes of
variation that it’s worth including explicitly’ and ‘residual variation that we’ll label noise’.

Typically we take real-world measurements, we look at the data, and we pick a RNG
that produces output consistent with the data. Many standard RNGs come with tuneable
parameters. Typically we look at the data to estimate what values to use for the tuning
parameters (and, in this application, to figure out how the parameters vary with time of day,
request type, etc.)

Working definiƟons. A random variable is a function that can give different answers, e.g. a
function that calls a random number routine. We say it takes values in S to mean that the
return value of the function is in the set S. A random sample is a random variable that
returns a list, in which the individual elements are chosen independently. A dataset is a
collection of numbers.

Example. Here is a random variable:
1 def rgeom(p) :
2 x = 1
3 while random.random() > p:
4 x = x + 1
5 return x
Let X be the output of rgeom(1/3). To find the distribution of X, we can use simple
probability calculation. To get X = 1 we need the random.random()>p test to fail on the
first pass, which has probability p. To get X = 2 we need the test to succeed on the first pass
then fail on the second, which has probability (1−p)p. Generalizing, P(X = k) = (1−p)k−1p.

Example. Let X be the set of birthdays of n people, assuming all days are equally likely, that
people are independent, and ignoring leap years. Then X is a random variable, and so is |X|.
As you saw in IA Maths for NST,

P(all n have different birthdays) = P(|X| = n) = 1× 364

365
× · · · × 365− n+ 1

365
.

Example. What’s the chance that two or more people present in the first lecture for this course
share a birthday?

This is badly put, since it’s describing a dataset not a random variable. Either there is
a shared birthday, or there isn’t, so the probability is either 1 or 0. So what on earth did the
example on page 1 mean by “panda, 57.7% confidence”? This is a hard question, and we’ll
come back to it in Section 3.

When we write for example “Let X be rgeom(1/3)”, remember that X doesn’t have any
particular value. It’s a stand-in for all the possible values that the random variable might
produce, weighted by their probabilities.

* * *

For a random variable that takes parameters, such as rgeom(p), the obvious question
is “How should I pick the value of the parameter so that the output of a random variable
matches my dataset?”. A very simple (and perfectly good) answer is the eyeball method:

1.1 Random samples 7

plot the histogram of your dataset, and superimpose the histogram of a random sample from
the RNG, and tune the parameter until they look close.

Example. I collected 31,078 lines from the request log of a web server, and extracted the size
in bytes of the contents. The sizes vary hugely, from 1 byte to 8,944,270 bytes, so to see
them on a sensible scale I computed log2(size) and rounded down. I then generated 31,078
random variables using rgeom(p) for different values of p. This plot shows the results, with
one panel for each value of p I tried.

0.04 0.089 0.15

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
0

2500

5000

7500

lg size

co
un

t

It looks like rgeom(p) is a bad choice for this dataset, for the three values of p we tried.
This prompts two questions: Is there a systematic way to pick the best p? and Is there a
systematic way to pick the best RNG? The answer to the former is Yes. The response to the
latter is That’s a fundamentally wrong-headed question, as we’ll discover in Section 2.

DefiniƟons. A random variable is discrete if it takes values in some countable space. The
density function for a discrete random variable X is f(x) = P(X = x). If the density function
depends on some parameter θ, then the likelihood of the parameter given a dataset x1, . . . , xn

is
lik(θ|x1, . . . , xn) = f(x1)f(x2) · · · f(xn).

A sensible way to estimate an unknown parameter, given a dataset, is to find the value of
the parameter that maximizes the likelihood. This is called maximum likelihood estimation.

Example. Suppose I have a dataset x1, . . . , xn, all integers, and my model is the rgeom(p)
random variable. The likelihood is

lik(p|x1, . . . , xn) = (1− p)x1−1p× · · · × (1− p)xn−1p

= (1− p)s−npn where s = x1 + · · ·+ xn.

It’s usually easier to maximize log lik() rather than lik(), because taking logs turns products
into sums. Thus

log lik(p|x1, . . . , xn) = (s− n) log(1− p) + n log p,
d

dp
log lik(p|x1, . . . , xn) = −s− n

1− p
+

n

p
.

To maximize this, we solve d/dp = 0, giving the maximum likelihood estimator p̂ = n/s. For
the dataset of web server content sizes shown above, it evaluates to p̂ = 0.089.

* * *

Maximum likelihood estimation is nearly universal. It’s simple to explain. It’s easy to
compute (or at least no harder than any other method). It’s got some nice properties:

• It’s intuitively plausible. For simple problems like “Toss n biased coins, get x heads,
estimate the the probability of heads” it gives the sensible answer x/n.

• If the RNG truly is the correct RNG for the dataset, then one can prove that as the size
of the dataset increases, the maximum likelihood estimator is guaranteed to approach
the true value of the parameter. We’ll learn more about the properties of big datasets
in Section 2.

8 1.1 Random samples

But there’s nothing necessarily ‘true’ about maximum likelihood estimation. You’ll learn
from exercises on the example sheet that the maximum likelihood estimator can be biased,
and that it performs poorly when there are lots of parameters to estimate.

Pay close attention to the style of reasoning behind the two bullet points. “Here’s a
method, M . How good is M? Let’s take an RNG, consider a random sample generated from
that RNG, and see how close M gets to the truth.” This is a good sanity check, and if the
method didn’t pass this test then we wouldn’t want to use it. But, as the quotes on page 2
remind us, any model we use is wrong. What we need to ask is “How robust is this method,
i.e. does it give a useful answer when my model is wrong?”. This is much harder to answer.
As you gain experience of data science, you will develop the skill to look at a method and
quickly see what sorts of modeling errors will trick it, and then measure by how much.

1.2 Markov models 9

1.2. Markov models
ApplicaƟon. Bitcoin11 is a decentralized electronic cash system, introduced by Satoshi Nakamoto
in 2008. It has been a wild success, arguably because of the ingenious way it balances incen-
tives12. An important part, and a focus of Nakamoto’s original paper, was how to solve the
‘double spend’ problem in a decentralized system. To understand what this problem is, and
how Bitcoin solves it, let’s start with some background.

n0, a nonce that solves hash(0, B0.records, n0) < threshold,
h0 = hash(0, B0.records),
n1, a nonce that solves hash(h0, B1.records, n1) < threshold,
h1 = hash(h0, B1.records),
...

Bitcoin is a system for storing and verify transaction records, which are depicted as stars in
the diagram. A transaction record might be e.g. Tx1 =“Alice transfers coin 314 to Bob”,
cryptographically signed. Transaction records are assembled into blocks B0, B1, . . . , and each
block additionally includes two values: the hash of the previous block, and a nonce which
solves a computationally demanding inequality.

In the simplest world, there might be a central bank which publishes blocks, say one
block every 10 minutes. If Alice wants to pay Bob, she asks the bank to record Tx1, the
bank checks that previous blocks confirm that Alice owns the coin, Bob waits until the bank
publishes a new block containg Tx1, and then he posts the widget to Alice. The nonces and
hashes are unnecessary, in a centralized system where the bank’s blocks are fully public.

Bitcoin is a decentralized system with roughly 9750 nodes13, each of which keeps a
copy of the entire blockchain. When Alice wants to record the transaction, she sends it to
one of these nodes, which broadcasts it to the rest of the network; it takes 1.5 seconds to
reach 50% of the nodes. Other machines work to mine blocks, i.e. to find a nonce with a
suitable hash. The time between blocks depends on the threshold; Nakamoto specified an
algorithm to dynamically adapt the threshold so that a new block is mined every 10 minutes
on average, regardless of the number of miners. Roughly 3.9 × 1021 hashes must be tested
to find a block, and each block contains around 2000 transactions. When a block has been
mined, the nodes broadcast it to each other, and it takes roughly 5 seconds to reach 50% of
the nodes.

11Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008. url: https://bitcoin.org/
bitcoin.pdf.

12Simon Barber et al. “Bitter to Better : How to Make Bitcoin a Better Currency”. In: Financial
Cryptography—FC 2012. Vol. 7397. Lecture Notes in Computer Science. 2012, pp. 399–414. url: http:
//www.cs.stanford.edu/~xb/fc12/.

13Bitcoin statistics are from September 2017. Current statistics can be found at bitnodes.21.co/nodes/
live-map, bitcoinstats.com/network/propagation, data.bitcoinity.org/bitcoin/block_time, statoshi.
info/dashboard/db/mining, www.bitcoinmining.com/bitcoin-mining-hardware, blockchain.info/charts/
n-transactions-per-block.

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://www.cs.stanford.edu/~xb/fc12/
http://www.cs.stanford.edu/~xb/fc12/
bitnodes.21.co/nodes/live-map
bitnodes.21.co/nodes/live-map
bitcoinstats.com/network/propagation
data.bitcoinity.org/bitcoin/block_time
statoshi.info/dashboard/db/mining
statoshi.info/dashboard/db/mining
www.bitcoinmining.com/bitcoin-mining-hardware
blockchain.info/charts/n-transactions-per-block
blockchain.info/charts/n-transactions-per-block

10 1.2 Markov models

What we’ve described so far allows money to be double-spent. Suppose Alice broadcasts
Tx1 “Alice transfers coin 314 to Bob”, Bob sees this, and sends Alice the widget. Suppose
Alice also creates a new transaction Tx2 “Alice transfers coin 314 to Alicia” (her alter-ego),
mines a block containing Tx2, and broadcasts it. Now Alice has the widget, and if Alice’s
block gets spread widely then everyone accepts that Alicia owns the money.

The Bitcoin strategy to prevent double-spend attacks is for nodes to use the rule “If
there are two possible chains, discard the shorter”, and for Bob to use the rule “Wait for 6
blocks (1 containing Tx1, then 5 more chained after it)” before sending Alice the widget. To
double-spend, Alice would need to create an alternative history with Tx2 rather than Tx1,
and get it accepted by the rest of the nodes. The chance of a successful double-spend attack
should be small, assuming Alice doesn’t own too much of the worldwide block mining power.
What is the chance of this? And why did Nakamoto come up with “wait for 6 blocks”?

Nakamoto’s calculation was as follows. Assume that Alice controls a fraction p of the
worldwide block mining power. Let At be the number of blocks that Alice has mined at time
t after her attempted double-spend, and let Nt be the number of blocks mined by everyone
else, so they start14 at A0 = N0 = 0. At any point in time, the probability that the next
block comes from Alice is p, and the probability it comes from someone else is 1−p. We want
to calculate the probability that, at any time after reaching Nt = 6, we later hit As > Ns.

The starting point is to split P(Alice double-spends) using conditional probability, con-
ditioning on how it might have happened.

P

(Alice
double-
spends

)
=
∑
a

P

(Alice
double-
spends

∣∣∣∣∣ At = a when
Bob delivers

)
P
(At = a when
Bob delivers

)
.

For the first term, with a flash of insight, we spot that all that matters is the gap Nt − At.
At the instant Bob delivers, this is equal to 6− a, and thereafter it may go up or down, and
if it ever hits −1 then Alice double-spends. Let

πx = P
(eventually hit
Ns −As = −1

∣∣∣ currently at
Nt −At = x

)
and split this using conditional probability, conditioning on who mines the next block:

πx =
∑

m∈{others,Alice}

P
(eventually hit
Ns −As = −1

∣∣∣ currently at Nt −At = x,
and next block mined by m

)
× P

(next block
mined by m

∣∣∣ currentlyat Nt −At = x

)
= P

(eventually hit
Ns −As = −1

∣∣∣ now at
Nt −At = x+ 1

)
(1− p)

+ P
(eventually hit
Ns −As = −1

∣∣∣ now at
Nt −At = x− 1

)
p (1)

= πx+1(1− p) + πx−1p

14What if Alice prepares some malicious blocks in advance, and only launches her attack when she has
enough blocks stored? This is a problem, called the selfish miner attack. See for example Yonatan Sompolin-
sky and Aviv Zohar. “Bitcoin’s Security Model Revisited”. In: CoRR (2016). url: http://arxiv.org/abs/
1605.09193.

http://arxiv.org/abs/1605.09193
http://arxiv.org/abs/1605.09193

1.2 Markov models 11

except for x ≤ −1 where πx = 1. This is now a pure maths recurrence equation, and we can
solve it and discover that, as long as p < 1/2,

πx =

{(
p

1−p

)x+1 if x ≥ 0,

1 if x ≤ −1.

(You should check that this does indeed solve the recurrence equation. We’ll see many
more calculations along these lines in Section 4, and we’ll discuss what happens when the
recurrence equation has more than one solution.)

We still have to work out P(At = a when Bob delivers). Call it ξa. By simply counting
up all the ways that we might reach Nt = 6, along the lines of Example 1, we find

ξ0 = (1− p)6

ξ1 = p(1− p)2 + (1− p)p(1− p)5 + · · ·+ (1− p)5p(1− p) =

(
6

1

)
p(1− p)6

ξa =

(
a+ 5

a

)
pa(1− p)6.

Putting everything together,

P

(Alice
double-
spends

)
=

∑
a∈{0,...,6}

(
a+ 5

a

)
pa(1− p)6

(p

1− p

)6−a+1
+
∑
a≥7

(
a+ 5

a

)
pa(1− p)6

=
∑

a∈{0,...,6}

(
a+ 5

a

)
pa(1− p)6

(p

1− p

)6−a+1
+

(
1−

∑
a∈{0,...,6}

(
a+ 5

a

)
pa(1− p)6

)
.

Here are some numbers, showing the probability that Alice successfully double-spends, de-
pending on the proportion p that of block mining power that she controls, and the number
of confirmations that Bob waits for. This is the data that Nakamoto used to choose the rule
“wait for 6 confirmations”.

* * *

In this problem, we studied a dynamical process (Nt, At), t ≥ 0. There were several
key steps in how we analysed it:

CondiƟoning. To find P(event), we conditioned on how the event happened. We chose the
conditioning strategically. We applied it in two ways: we conditioned on At at the instant that
Bob delivers the widget, and we conditioned on who mines the next block. This conditioning
is an application of the law of total probability, which states

P(A) =
∑
i

P(A|Bi)P(Bi)

where A is an event and B1, . . . , Bn are mutually exclusive events that cover all possible ways
that A can occur.

Conditioning might remind you of dynamic programming, the algorithmic strategy of
decomposing a problem into smaller sub-problems. There is a substantial difference, though.
We came up with the equation

πx = πx+1(1− p) + πx−1p

12 1.2 Markov models

which does not lend itself to a recursive algorithm because there is no base case. In dynamic
programming, on the other hand, the goal is to turn the problem into a recursive algorithm.
In Section 4 we’ll look at computational methods for solving equations like this.

Memorylessness. The most important step in the calculation was (1). It expresses the idea
“What happens in the future depends only on where you are now, not on how you got here.”
Why is this true for bitcoin? The way the bitcoin hash calculation works, finding a nonce is
like winning the lottery: if you haven’t won one so far, it doesn’t mean you’re more likely
to win next time. If we’re at state N − A = x + 1, it’s immaterial whether we reached
there from N − A = x or from N − A = x + 2, the future looks exactly the same either
way. This is called memorylessness, or alternatively the Markov property after the Russian
mathematician Andrey Markov, who invented the theory of memoryless processes, which we
will study in much more detail in Section 4.

There are very many non-Markov processes, but they’re often much harder to analyse.
Even in the bitcoin problem, we can question whether it truly is memoryless. If for example
the number of mining machines was slowly varying, then the fact “N − A used to be x + 2
before it became x + 1” gives a slight hint that Alice might have a slightly higher number
of miners than she started with, which would impact our estimate of what happens in the
future. To make the problem memoryless, we assumed that Alice controls precisely p of the
worldwide mining power, and that p doesn’t change.

Embedded chain. The process (Nt, At) evolves in continuous time, but all we chose to look
at is the instants where it jumps. This is called finding an embedded Markov chain. The
word chain here means “discrete sequence of events”.

1.3 Descriptive models 13

1.3. DescripƟve models
A group of four friends, A, B, C, and D, are deciding how to vote in the Brexit referendum. There
are 16 possible outcomes. Based on survey statistics for similar groups, the estimated chance of
each of the 16 possible outcomes for (A,B,C,D) is

(0, 0, 0, 0) 17.109%
(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0) 6.095%
(0, 0, 1, 1), (0, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 1) 7.821%
(0, 1, 0, 1), (1, 0, 1, 0) 0.295%
(1, 1, 1, 0), (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1) 3.069%
(1, 1, 1, 1) 14.361%

(2)

where 0 means remain and 1 means exit.

The voter model is called multivariate, meaning that the item of interest is a vector, in
this case of length four. It’s simple to simulate a random outcome in Python: How would you

implement
random.choices() if
your language
provides only simple
uniform random
numbers in [0, 1]?
There is an obvious
method, and a
clever trick called
the Alias Method.

1 def rvote () :
2 outcomes = [(0 ,0 ,0 ,0) , (0 ,0 ,0 ,1) , . . .]
3 probs = [0.17109 , 0.060905, . . .]
4 return random. choices (outcomes , weights=probs)
There are many other ways we could implement the simulator. For example, simply adding
up the probabilities we get

P(A = 0) = 54.4%
P(B = 0 |A = 0) = 68.2%,

P(B = 0 |A = 1) = 37.8%
P(C = 0 |A = 0, B = 0) = 62.5%,

P(C = 0 |A = 0, B = 1) = 37.0%, . . .

which suggests the code
1 def rvote2 () :
2 pA = 0.544
3 A = random. choices ([0 ,1] , weights=[pA, 1−pA])
4 pB = {0: 0.682, 1: 0.378}[A]
5 B = random. choices ([0 ,1] , weights=[pB, 1−pB])
6 pC = {(0 ,0): 0.625, (0 ,1): 0.370, . . . } [(A,B)]
7 C = random. choices ([0 ,1] , weights=[pC, 1−pC])
8 . . .
9 return (A, B, C, D)
These two random simulators are equivalent—they generate exactly the same distribution of
outcomes. If all we have is a descriptive model based on observed frequencies, it’s impossible
to tell how the components are generated. The ‘outrage media’ generates catchy headlines
when it muddles descriptive models and causal mechanisms. Here’s a headline15 describing
a study that was purely observational:

In Section 1.4 we’ll look harder at causal versus descriptive models.

15http://www.independent.co.uk/news/uk/politics/brexit-education-higher-university-study-
university-leave-eu-remain-voters-educated-a7881441.html

http://www.independent.co.uk/news/uk/politics/brexit-education-higher-university-study-university-leave-eu-remain-voters-educated-a7881441.html
http://www.independent.co.uk/news/uk/politics/brexit-education-higher-university-study-university-leave-eu-remain-voters-educated-a7881441.html

14 1.3 Descriptive models

DISCRIMINATIVE MODELS

When we’re presented with a multivariate dataset, we typically start by investigating how
one variable depends on the others, or on some summary of the others. This is called the
marginal distribution of the variable we’re investigating. For example, pick any one of the
four friends, and call their vote Y , and let X be the total vote of the other three. Then

P(Y = 0 |X = x) =

73.7%, if x = 0

53.4%, if x = 1

63.4%, if x = 2

17.6%, if x = 3.

(3)

We might write the model this way if we want to predict the behaviour of an individual
voter. The terms that we’re conditioning on are called features, and it’s an art to find useful
features. We’ll discuss this further in Section 5.

DefiniƟons. A descriptive or observational model specifies the distribution of the data, with-
out specifying the mechanism by which it was generated. A discriminative model is a type of
descriptive model, written as the marginal distribution of some variable of interest conditional
on features.

FACTOR DISTRIBUTIONS

A group of four friends are deciding how to vote in the Brexit referendum. For each of them, the
probability of voting Remain given the number of friends n who vote Leave is 73.7% (if n = 0),
or 53.4% (if n = 1), or 63.4% (if n = 2), or 17.6% (if n = 3).

Sometimes, we’re only told marginal distributions, as in this second model. This invites
questions:

• Is there a descriptive model that’s consistent with these marginals, i.e. is it possible
to define a random variable (A,B,C,D) that yields these marginals? In this case, yes,
because the marginal probabilities are exactly what’s specified in equation (3), which
we know were derived from the full descriptive model in equation (2).

• Is there always a consistent descriptive model? No. Suppose we wrote down a con-
trarian model, P(A = a | B = b) = 1a=b and P(B = b | A = a) = 1a̸=b. There’s no
distribution for (A,B) that has these two marginals.The notation 1Q is

shorthand for “1 if
Q is true, 0 if Q is
false”.

• But isn’t that contrarian case pathological? Yes, it is. We can always just define the
probability of a particular outcome to be the product or factor distribution, i.e.

P(A = a,B = b, C = c,D = d)

= κ P(A = a | . . .)P(B = b | . . .)P(C = c | . . .)P(D = d | . . .)

and pick κ so that the probabilities sum to 1. In the pathological case, all the proba-
bilities are zero so it’s impossible to pick κ. In all other cases, we can.

• Is there a unique descriptive model that’s consistent with a given set of marginal distri-
butions? No. In this case, the original descriptive model (2) turns out to be different
to the product distribution.

You often see factor distributions drawn as undirected graphs, with a node for each
variable and edges to indicate which variables depend on which other variables. They are
also called Markov random fields, where the word ‘Markov’ here means ‘depends only on
neighbours’. The original voter distribution in equation (2) was actually produced from a
factor distribution, with some extra hidden variables corresponding to pairs of friends.

1.3 Descriptive models 15

Graph behind the
first voter model:
A B

D C

Graph of the
second voter model:
A B

D C

Factor distributions are popular with physicists, e.g. the Ising model for magnetism.
They can also be used in computer graphics, for synthesizing texture. Take a source image
with a sample of the texture; pick a window size, e.g. 3 × 3 pixels; and find the marginal
distribution of the middle pixel conditional on its eight neighbours, using the source image to
learn the frequencies. Now consider the entire area we want to texturize to be a multivariate
random variable, with the factor distribution, and generate a single sample of this random
variable. (In Section 4 we’ll learn how to generate samples from factor distributions, using
Markov chains.) Here is an example16.

16Taken from lecture notes by Steven Seitz at the University of Washington, https://courses.cs.
washington.edu/courses/csep576/05wi/lectures/texture.pdf

https://courses.cs.washington.edu/courses/csep576/05wi/lectures/texture.pdf
https://courses.cs.washington.edu/courses/csep576/05wi/lectures/texture.pdf

16 1.4 Causal models

1.4. Causal models
The goal of data science is often to answer policy questions.

Should we cut tuition fees? What does the data tell us will happen?

This is a hypothetical question, about a situation that hasn’t yet been observed. Such
questions may be dressed up to look like descriptive questions

In places or times where tuition fees were cut, what happened?

but there’s an implicit claim

If we were to cut tuition fees now, the same would surely happen.

Sometimes it’s expressed as a counterfactual question:

If we had cut tuition fees, what state would we be in now?

DefiniƟon. A model is called causal or generative if the steps in the code represent mech-
anisms, such that if we intervene and alter some value or mechanism then the rest of the
mechanism still works as before. It’s convenient to draw causal models as directed acyclic
graphs, where the edges show which variables are used to generate which other variables. A
variable is called latent if it is not observed.

Descriptive models don’t tell you the order in which variables are generated. In Sec-
tion 1.3, for example, we saw two different mechanisms rvote() and rvote2() for simulating
votes, which both correspond to exactly the same descriptive model. But if we intervene and
force D to vote remain (by adding a line of code), then the two mechanisms will produce
different outcome distributions. So, if all we know are descriptive summaries, it’s generally
impossible to answer causal questions.

A (fictional) drug is taken by some members of the population, and it leads to better survival
outcomes. A zealous health minister wants to add the drug to drinking water. Just before this
is approved, a heroic scientist runs a controlled trial, which show the drug actually leads to
marginally worse outcomes. The health minister’s plan is scrapped, saving a small number of
lives and a large amount of money.

population trial
drug clean drug clean

P(death) .002 .028 .016 .014
P(survival) .998 .972 .984 .986

(4)

The numbers in this table are taken from Tian and Pearl17, who put them instead in a muchManufacturer says
the ‘drug may cause
only minor increase
in death rates’ i.e.
from 1.4% to 1.6%,
which is a tiny
change, so it’s very
unlikely that a
single death can be
definitively blamed
on the drug.
Plaintiff says ‘most
patients who chose
drug x would have
been alive’ i.e.
97.2% of them,
assuming the
population is
homogeneous.

more interesting legal counterfactual context:

A lawsuit is filed against the manufacturer of drug x, charging that the drug is
likely to have caused the death of Mr A, who took the drug to relieve symptom S
associated with disease D.

• The manufacturer claims that experimental data on patients with symptom S
show conclusively that drug x may cause only minor increase in death rates.

• The plaintiff argues, however, that the experimental study is of little relevance
to this case, because it represents the effect of the drug on all patients, not on
patients like Mr A who actually died while using drug x. Moreover, argues
the plaintiff, Mr A is unique in that he used the drug of his own volition,
unlike subjects in the experimental study who took the drug to comply with
experimental protocols. To support this argument, the plaintiff furnishes
non experimental data indicating that most patients who chose drug x would
have been alive if it were not for the drug.

17Jin Tian and Judea Pearl. “Probabilities of Causation: Bounds and Identification”. In: Proc. of the 16th
Conference on Uncertainty in Artificial Intelligence. 2000. url: https://arxiv.org/ftp/arxiv/papers/
1301/1301.3898.pdf.

https://arxiv.org/ftp/arxiv/papers/1301/1301.3898.pdf
https://arxiv.org/ftp/arxiv/papers/1301/1301.3898.pdf

1.4 Causal models 17

• The manufacturer counter-argues by stating that: (1) counterfactual specu-
lations regarding whether patients would or would not have died are purely
metaphysical and should be avoided, and (2) nonexperimental data should be
dismissed a priori, on the ground that such data may be highly biased; for
example, incurable terminal patients might be more inclined to use drug x if
it provides them greater symptomatic relief.

The court must now decide, based on both the experimental and non-experimental
studies, what the probability is that drug x was in fact the cause of Mr A’s death.

Let’s invent a probabilistic model that generates outcomes like those in the table. We’ll
invent one specific model and choose parameters for it to match table 4, and calculate the
probability of interest. The remarkable contribution of Tian and Pearl was to show that we
would get the same answer for any probabilistic model with any parameters, as long as the Outline of their

argument. In any
causal model, all
that matters are
four types of
patients: those who
would like to take
the drug and would
die on it, those who
wouldn’t like to
take it and who
would die on it, and
so on. First, extend
the code to have
four types of person,
not just regular and
terminal. Second,
use numerical
optimization to find
the lowest and
highest possible
values for the
probability of
interest, over all
parameter choices
consistent with
table 4.

model and parameters are consistent with table 4.
We’ll imagine there are two types of patient, regular and terminal, as the manufacturer’s

lawyer suggests. Greek letters indicate parameters of the model.

1 def population () :
2 person = random. choices ([’ regular ’ , ’ terminal ’] , weights=[π ,1− π])
3 p_drug = θ [person]
4 treat = random. choices ([’drug ’ , ’ clean ’] , weights=[p_drug, 1−p_drug])
5 p_death = ξ [(person , treat)]
6 return random. choices ([’ die ’ , ’ survive ’] , weights=[p_death, 1−p_death])
7
8 def t r i a l (treat) :
9 person = random. choices ([’ regular ’ , ’ terminal ’] , weights=[π ,1− π])
10 p_death = ξ [(person , treat)]
11 return random. choices ([’ die ’ , ’ survive ’] , weights=[p_death, 1−p_death])
12
13 π = 0.1183
14 θ = { ’ regular ’ : 0 , ’ terminal ’ : 0.125}
15 ξ = {(’ regular ’ , ’drug ’) : 0 , (’ terminal ’ , ’drug ’) : 0.0181,
16 (’ regular ’ , ’ clean ’) : 0.1184, (’ terminal ’ , ’ clean ’) : 0}

Drawn as directed acyclic graphs, with white boxes for latent random variables, shaded boxes
for observed random variables, and plain text for non-random variables,

Population model:

person

treat

outcome

Trial model:
person

treat

outcome

If we simply count up the probability of each outcome, we get the formulae in the table
below. In the population table all four probabilities sum to 1 (since the table describes the
characteristics of a random person), whereas in the trial table each column sums to 1 (since
the table describes the outcome for each type of patient in the trial). These equations are
what I used to verify that the parameter choices in lines 13–16 agree with table 4.

population: drug clean
P(death) πθξr,d + (1− π)ϕξt,d π(1− θ)ξr,c + (1− π)(1− ϕ)ξt,c
P(survival) πθ(1− ξr,d) + (1− π)ϕ(1− ξt,d) π(1− θ)(1− ξr,c) + (1− π)(1− ϕ)(1− ξt,c)

trial: drug clean
P(death) πξr,d + (1− π)ξr,d πξr,c + (1− π)ξr,c
P(survival) 1 - πξr,d + (1− π)ξr,d 1 - πξr,c + (1− π)ξr,c

18 1.4 Causal models

The legal counterfactual question is this: We know Mr A took the drug and died; given this,
what’s the probability he would have died if he hadn’t taken the drug? Let’s use Bayes’s rule
to first work out the probability that Mr A is regular or terminal given these facts.

P(regular | drug, dead)

=
P(drug, dead | regular)P(regular)

P(drug, dead | regular)P(regular) + P(drug, dead | terminal)P(terminal)

and this is 0 because regular people do not die on the drug, ξregular,drug = 0. Therefore Mr
A is terminal. But ξterminal,clean = 0, i.e. terminal people do not die when they’re not on the
drug, therefore Mr A’s death was caused by the drug.

* * *

You sometimes come across the glib remark ‘correlation does not imply causation’.
Causality theory goes far beyond this. It is a relatively new area, still barely developed,
and still contentious. Machine learning algorithms are getting very good at descriptive and
discriminative models, but I think it will be 15 years or more before AIs can manage general
causal reasoning. Even today, according to Pearl18, many human statisticians still find it
perplexing that we can draw a counterfactual conclusion about a single individual using
observational data. Here’s a last word from the inimitable Randall Munroe.19

* * *

What is modelling for?

• Sometimes we put forwards a model, even though we don’t really believe it’s accurate,
because it lets us make useful inferences about hidden variables. Any reasonably sensi-
ble model for human motion should let us infer walking / cycling / driving from GPS
traces, and probabilistic modeling is a convenient and interpretable tool that won’t
lead to crazy answers.

• Sometimes we have detailed observational data and we just want to find a reasonably
good and simple approximation, either for storage or speed reasons. Here we’re looking
for a reasonably good fit for the distribution, and we want to find useful features and
parameters.

• Sometimes we want to build a product that makes predictions, e.g. that classifies new
images. Probabilistic models are one way to build predictors, and they’re often useful
when we want to assess how well our product might perform on data of a type it hasn’t
seen before.

• Sometimes we’re interested in building a simulator of a system that we understand well.
It’s helpful to be familiar with a range of probability models, to be able to pull ‘off the
shelf’ whatever is appropriate and has good library support.

• Sometimes we want to answer policy questions, or to build our scientific understanding.
This, in my opinion, is the truest data science, and by far the most challenging.

18Judea Pearl. Causality: Models, Reasoning and Inference. 2nd ed. Cambridge University Press, 2009.
19https://xkcd.com/552/

https://xkcd.com/552/

1.5 Common random variables 19

1.5. Common random variables
It’s useful to have a range of common random variables at our fingertips.

DefiniƟon. A random variable X is discrete if it takes values in some countable space, such
as the integers. The density is f(x) = P(X = x). The density must be everywhere ≥ 0 and
must sum to 1.

DefiniƟon. A random variable X is continuous if it takes values in a continuous set, such as
the real numbers, or [0, 1]. A continuous random variable has a density function f(x) such
that

P(X ∈ A) =

∫
x∈A

f(x) dx for all sets A.

The density must be everywhere ≥ 0 and must integrate to 1.

VARIABLES ASSOCIATED WITH WAITING AND COUNTING

Geometric: If we’re playing a lottery, and each week the chance of winning is p, then our first
win happens on week X ∼ Geom(p). This random variable takes values in {1, 2, . . . , n}, and

P(X = r) = (1− p)r−1p, P(X ≥ r) = (1− p)r−1.

We came across it in Section 1.1. In Python, numpy.random.geometric(p).

ExponenƟal: The Exponential random variable is a continuous-time version of the Geometric.
It’s used to model the time until an event, for many natural processes: for example the time
until a lump of radioactive matter emits its next particle, or the time until a lightbulb blows,
or the time until the next web request arrives. If X ∼ Exp(λ) then it takes values in [0,∞),
and

f(x) = λe−λx, P(X ≥ x) = e−λx, EX =
1

λ
.

The parameter λ is called the rate. The chance of an event in a short interval of time [t, t+δ]
is

P(X ≤ t+ δ |X ≥ t) =
P(X ∈ [t, t+ δ])

P(X ≥ t)
=

∫ t+δ

t
λe−λx dx

e−λt
≈ δλ.

In Python, numpy.random.exponential(scale=1/λ).

Binomial: If we toss a biased coin n times, and each coin has chance p of heads, the total number
of heads is X ∼ Bin(n, p). This random variable takes values in {0, 1, . . . , n}, and

P(X = r) =

(
n

r

)
pr(1− p)n−r.

In Python, numpy.random.binomial(n,p). When n = 1, i.e. a single coin toss, it’s called a
Bernoulli random variable. There is a related random variable called the negative binomial,
which arose in Section 1.2 when we calculated P(At = a when Bob delivers).

MulƟnomial: If we have n individuals each of whom falls into one of k categories, and the
probability of falling into category i is pi, then the total number in each category is a
multivariate random variable X ∼ Multinom(n, p). We used it for counting outcomes in the
drug model in Section 1.4. It takes values in {0, 1, . . . , n}k, and

P(X = x) =
n!

x1!x2! · · ·xk!
px1
1 px2

2 · · · pxk

k .

In Python, numpy.random.multinomial(n,p). (The binomial distribution is the special case
when k = 2.)

20 1.5 Common random variables

Poisson: The random variable X ∼ Poisson(λ) takes values in {0, 1, . . . }, and

P(X = r) =
λre−λ

r!
.

In Python, numpy.random.poisson(λ). Suppose we’re counting the number of events in a fixed
interval of time, for example the number of buses passing a spot on the street, or the number
of web requests, or the number of particles emitted by a lump of radioactive matter. If the
time between events is Exp(λ), then the total number of events in time t is X ∼ Poisson(λt).

VARIABLES ASSOCIATED WITH SIZES

Normal / Gaussian: This distribution is a very popular choice for data analysis because it’s often
a good model for things that are the aggregate of many small pieces, for example height
which is the aggregate of many influences from genetics and the environment. It’s also easy
to do probability calculations with it. If X ∼ Normal(µ, σ2), also written X ∼ N(µ, σ2),
then X is a continuous random variable taking values in the entire real line, and

f(x) =
1√
2πσ2

e
−(x−µ)2

2σ2 , EX = µ, VarX = σ2.

In Python, numpy.random.normal(loc=µ, scale=σ) (and watch out for σ versus σ2). If X ∼
N(µ, σ2) and Y ∼ N(ν, ρ2) and they are independent, then

• aX + b ∼ N(aµ+ b, a2σ2)

• (X − µ)/σ ∼ N(0, 1)

• X + Y ∼ N(µ+ ν, σ2 + ρ2).

There is also a multivariate version, called the multivariate normal.

Pareto and lognormal: Some natural phenomena, like sizes of forest fires, or insurance claims,
or Internet traffic volumes, or stock market crashes, have the characteristic that there are
events of wildly different sizes. This tends to cause problems for simulations and forecasting,
since the entire outcome can hinge on one ‘black swan’ event20. A common random variable
with this characteristic is the Pareto distribution, X ∼ Pareto(α), named after the Italian
economist Vilfredo Pareto who studied extreme wealth inequality. It is a continuous random
variable taking values in [1,∞), and

f(x) = αx−(α+1), P(X ≥ x) = x−α, EX =

{
∞ if α ≤ 1

α/(α− 1) otherwise.

For α < 2 it tends to produce many small values (‘mice’) and very occasional huge values
(‘elephants’). To illustrate, here are some samples drawn from three different distributions,
all with mean value 1.

X ∼ Exp(1),
EX = 1

X ∼ α−1
α Pareto(α)

with α = 5,
EX = 1

X ∼ α−1
α Pareto(α)

with α = 1.1,
EX = 1

The lognormal distribution X ∼ eN(µ,σ2) has similar characteristics to the Pareto but
is not quite as extreme. It was invented by the Cambridge senior wrangler and medic Donald
MacAlister.

20Nassim Nicholas Taleb. The Black Swan: The Impact of the Highly Improbable. 2nd ed. Random House,
2010.

1.5 Common random variables 21

Zipf: The random variable X ∼ Zipf(n, s) takes values in {1, 2, . . . , n} and

P(X = r) =
r−s

1 + 2−s + · · ·+ n−s
.

It is named after the American linguist Goerge Zipf, who used it to describe frequencies of
words in texts21. Take a large piece of text, and count the number of occurrences of each
word, and rank the words from most common to least common. Say that the most common
word has rank 1, the next most common has rank 2, and so on. Zipf observed that the
number of occurrences of the rth ranked word is roughly const× r−s where s ≈ 1 in English
texts. Another way of putting this: if we pick a word at random from the entire body of text,
then the rank of that word is Zipf(n, s), where n is the size of the vocabulary. The same
phenomenon happens with cities: if we take a person at random from the entire population,
and look at which city they come from, and rank cities by size, then the rank of that person’s
city is Zipf(n, s) where n is the number of cities and s is roughly 1.07.

There is a direct link between the Pareto(α) and Zipf(n, 1/α) distributions. First,
create a ‘pseudo-random’ sample of n city sizes, to match the Pareto(α) distribution. Make
the largest city have size x(1) such that x−α

(1) = 1/N , make the second-largest city have size x(2)

such that x−α
(2) = 2/N , etc. This is a deterministic equivalent of the Pareto(α) distribution,

in which P(X ≥ x) = x−α. Then, the city of rank r has size const × r−1/α, which fits with
Zipf(n, 1/α).

21See the IA course Machine Learning and Real-World Data

22 1.6 Independence and joint distributions

1.6. Independence and joint distribuƟons
The concept of independent random variables is fundamental in modeling. Informally it
means “knowing the value of one of them gives no information about the other.” We’ve used
the word several times so far, but we haven’t defined it.

DefiniƟon. Two random variables X and Y are independent if

P(X ∈ A, Y ∈ B) = P(X ∈ A) P(Y ∈ B) for all A and B.

For discrete random variables it’s sufficient to check

P(X = x, Y = y) = P(X = x) P(Y = y) for all x and y,

and for continuous random variables with joint density function fX,Y (x, y), it’s sufficient to
check

fX,Y (x, y) = fX(x)fY (y) for all x and y.

We can also write the definition in terms of conditional probability:

P(X ∈ A | Y ∈ B) = P(X ∈ A) for all A and B such that P(Y ∈ B) > 0.

A collection of independent random variables drawn from the same distribution, such as we
investigated in Section 1.1, are said to be independent and identically distributed, abbreviated
IID.

Example. I throw a fair die. Let Z be the result. Let X = Z mod 2 and let Y = Z div 3, so
for example Z = 3 gives X = 1 and Y = 1. Are X and Y independent? The definition gives
a condition that has to be satisfied for all x and y. Let’s try some:

• Try x = 0, y = 0. For these, P(X = 0, Y = 0) = P(Z = 4) = 1/6, and P(X = 0) = 1/2
and P(Y = 0) = 1/3. So this pair passes the test.

• Try x = 0, y = 1. For these, P(X = 0, Y = 1) = P(Z = 4) = 1/6, and P(X = 0) = 1/2
and P(Y = 1) = 1/2. So the test fails.

Thus X and Y are not independent.

Exercise 1.1. I throw a fair die. Let Z be the result. Let X = (z − 1) mod 2 and Y =
(Z − 1) div 2. Show that X and Y are independent.

Example. In the voting example in Section 1.3, equation (2), are A and N = B + C + D
independent? No: when we added up the probabilities we saw P(A = 0 |N = 0) = 0.737 and
P(A = 0 |N = 1) = 0.534, so they can’t be independent.

Example. Let X and Y be independent Bin(1, p) random variables, so

P(X = x, Y = y) = px(1− p)1−x py(1− p)1−y,

and suppose p is fixed but unknown. Obviously, learning the value of X tells us something
about p (exercise: show that the maximum likelihood estimator for p given X is p̂ = X).
That doesn’t prevent X and Y from being independent: the joint probability still factorizes
into an x-part and a y-part, so the definition of independence is satisfied.

Whenever you hear “independent random variables”, it’s a good idea to whisper to
yourself the coda “given their parameters”, so you don’t confuse ‘unrelated’ and ‘independent’.

Exercise 1.2. In this code snippet,
1 def PXY() :
2 P = random.random() # g e n e r a t e s a random number i n [0 , 1]
3 X = numpy.random. binomial (1 , P)
4 Y = numpy.random. binomial (1 , P)
5 return (P,X,Y)

1.6 Independence and joint distributions 23

show that X and Y are not independent. Note however that

P(X = x, Y = y | P = p) = px(1− p)1−x py(1− p)1−y

which we describe as “X and Y are conditionally independent given P”.

* * *

If we ever try to compute a probability or expectation and we end up with a random variable
on the right hand side, we’ve made a mistake. Probabilities are numbers in [0, 1], and random
variables are functions, and we should be hyper-vigilant about which is which. In machine
learning we want to write things like

P(email is spam) = some function of email contents.

It’s usually intuitively clear what is meant, but when we come across such statements deep
in the middle of a problem with 15 other moving parts it’s sometimes befuddling. Are the
email contents random? If so, what are they doing on the right hand side of a probability
equation? If not, how can the spam-nature be a random variable yet the email’s contents be
non-random?

It often helps to draw out a belief graph, of the sort we drew in Section 1.4, and to
label all random variables with capital letters, and values with lower case letters. Here we
really mean

IsSpam

Contents

and the probability we want is

P(IsSpam = true | Contents = c) = function(c).

As a shorthand for this, we write

P(IsSpam = true | Contents) = function(Contents).

FOR MATHEMATICIANS ONLY

At the beginning of Section 1 we used the working definition “a random variable is a function
that can return different answers”. Now let’s give a better account, which lets us talk about
the joint distribution of two random variables X and Y . This will help clear up some
difficulties with continuous random variables. It’s usually intuitively clear what is needed, so
you should treat this section as background reading, for interest only.

A random variable is a function that can return different answers, in the following
sense:

1 ω = simulate_experiment(parameters)
2 def X() :
3 return some function of ω
4 def Y() :
5 return some other function of ω

Even for Markov chains, we should think of ω as a complete trace of the entire process, run
forever. (Mathematicians don’t worry about simple things like finite memory or keeping
variables out of the global scope.) A joint distribution like P(X = x, Y = y) really means
P({ω : X(ω) = x, Y (ω) = y}). Most of the time we don’t have to worry about this level of
detail, but it’s useful in some tricky cases.

24 1.6 Independence and joint distributions

DefiniƟons. A pair of continuous random variables X and Y has a joint density function
fX,Y (x, y) such that

P
(
(X,Y) ∈ A

)
=

∫
(x,y)∈A

fX,Y (x, y) dx dy

for all sets A in the real number line squared. The density must be everywhere ≥ 0 and must
integrate to 1. The marginal density of one of them is

fY (y) =

∫
x

fX,Y (x, y) dy

and the conditional density is

fY |X(y |X = x) =
fX,Y (x, y)

fX(x)
, assuming fX(x) > 0.

25

2. DistribuƟons of random variables

Goals. Get practice at generating and reasoning about random variables.
Understand what the empirical distribution is, and what it is for. See how
limit theorems are used, in the context of Monte Carlo estimation. Form an
intuitive understanding of how random samples behave.

2.1. Working with random variables
ApplicaƟon. For most traffic flows on the Internet, the rate at which the server sends data
is controlled by the TCP algorithm. It aims to detect Internet congestion, and it adjusts the
data rate to strike a balance between ‘use all available capacity’ and ‘don’t cause overload’.
It does this by steadily increasing the sending rate (increasing it by 1 packet per round trip
time, every round trip time) until a packet is dropped, which signifies congestion, whereupon
it cuts the sending rate in half. This produces the characteristic “TCP sawtooth”.

Suppose a network operator wants to build in enough capacity to support 1000 users
each running at 30 kB/sec. How much capacity is needed? In the worst case the sawteeth
might all be aligned, giving a peak rate of 40 MB/sec. (To find this, let xpeak be the peak
rate, note that the trough is xtrough = xpeak/2 because of TCP’s congestion rule. The average
is (xtrough + xpeak)/2 and this is 30 kB/sec. Solving for xpeak gives 40 kB/sec.) Intuitively
we might guess that perfect alignment is unlikely, and that the troughs on one sawtooth are
likely to cancel out the troughs on another. This is called statistical multiplexing. How much
statistical multiplexing should we expect?

RULES FOR EXPECTATION AND VARIANCE

This section of the course is all about numerical random variables. What makes them partic-
ularly useful is that they can be summed and averaged, which lets us define their expectation.
They’re so useful that we often write ‘random variable’ to mean ‘numerical random variable’,
and use other wording when it’s not numerical.

EX =
∑
x

xP(X = x) for a discrete random variable,

EX =

∫
x

xf(x) dx for a continuous random variable with density f.

For a function of a random variable Y = f(X), there are two equivalent ways to compute This equality is
called the law of
the unconscious
statistician,
because it’s easy to
interchange them
without even
realizing one is
doing so.

the expectation:
Ef(X) =

∑
y

y P(f(X) = y) =
∑
x

f(x)P(X = x)

and similarly for continuous random variables. Now, some handy results about expectation.
For any random variable X, the variance and standard deviation are

VarX = E
(
(X − EX)2

)
, std. dev(X) =

√
VarX.

26 2.1 Working with random variables

For all constants a and b,

E(aX + b) = a(EX) + b

Var(aX + b) = a2 VarX
std.dev(aX + b) = a std. dev(X).

For any two random variables X and Y ,

E(X + Y) = (EX) + (EY).

For any two independent random variables X and Y ,

E(XY) = (EX)(EY)

Var(X + Y) = VarX +VarY
std.dev(X + Y) =

√
std. dev(X)2 + std. dev(Y)2.

The covariance of two random variables X and Y is

Cov(X,Y) = E
(
(X − EX) (Y − EY)

)
.

The conditional expectation E(X | Y = y), for a discrete random variable Y , is

E(X | Y = y) =
∑
x

xP(X = x | Y = y) =
∑
x

x
P(X = x, Y = y)

P(Y = y)
.

We write E(X | Y) to mean “Define f(y) = E(X | Y = y), and return f(Y)”. This is a
random variable (because it’s a function of Y which is itself a random variable). When Y is
a continuous random variable, P(Y = y) = 0 so the conditioning doesn’t make sense—it’s a
divide-by-zero error—so we just replace probabilities by densities and sums by integrals.

CONFIDENCE INTERVALS

Here are two facts about the normal distribution: if X has a normal distribution then so
does aX+ b for any constants a ̸= 0 and b; and the interval [−1.96, 1.96] is a 95% confidence
interval for Normal(0, 1) i.e.

P
(
−1.96 ≤ Normal(0, 1) ≤ 1.96

)
≈ 0.95.

Example. What is a 95% confidence interval for Normal(µ, σ2), the normal distribution with
mean µ and variance σ2?

Let X ∼ Normal(µ, σ2). Using the rules for expectation and variance, E(X − µ) =
(EX) − µ = 0, and Var(X − µ) = VarX = σ2, thus Var

(
(X − µ)/σ

)
= 1. So (X − µ)/σ ∼

N(0, 1), thus

P
(
−1.96 ≤ X − µ

σ
≤ 1.96

)
≈ 0.95.

Rearranging the expression inside the brackets,

P
(
µ− 1.96σ ≤ Normal(µ, σ2) ≤ µ+ 1.96σ

)
≈ 0.95. (5)

* * *

Here’s a general purpose rule of thumb:

A random variable X can be approximated by Normal(EX,VarX).

This is so useful and simple that it can’t possibly be true—but what’s surprising is that it’s
often nearly true. We’ll see circumstantial evidence for why the approximation is so good in
Section 2.3, and in the example sheet you’ll investigate cases where it doesn’t work.

2.1 Working with random variables 27

Example. I throw a die 100 times and compute the total score. What range of values should
I expect?

Let X be the outcome of a single throw. We can explicitly calculate its mean and
variance:

EX = 1× 1/6 + 2× 1/6 + · · ·+ 6× 1/6 = 7/2,

VarX = (1− 7/2)2 × 1/6 + · · ·+ (6− 7/2)2 × 1/6 = 35/12.

Let Y be the sum of 100 independent copies of X. By the rules for mean and variance of
sums of independent random variables,

EY = 100× 7/2, VarY = 100× 35/12.

Using the normal approximation, Y ≈ Normal(700/2, 3500/12). Applying the approximation(5),
we are 95% confident that Y lies in the range [316, 384].

Example (staƟsƟcal mulƟplexing). Returning to the TCP example, consider an arbitrary instant
in time. Let X1,…,Xn be the sending rate of each of n = 1000 flows at this time, and let
Y = X1 + · · ·+Xn be the total.

We might have caught a flow at any point in its sawtooth, so each Xi might take any value
between the trough and the peak i.e. in the range [2x/3, 4x/3] where x = 30 kB/sec is the
average rate we want to support. Furthermore, because of the shape of the sawtooth, each
value in this range is equally likely. The appropriate distribution is thus

Xi ∼ Uniform(2x/3, 4x/3)

After looking up the formulae for mean and variance on Wikipedia,

EXi =
2x/3 + 4x/3

2
= x

VarXi =
(4x/3 − 2x/3)2

12
=

x2

27
.

Using the rule for expectation of sums,

EY = EX1 + · · ·+ EXn = nx

and assuming the Xi are all independent then

VarY = VarX1 + · · ·+VarXn =
nx2

27

std. dev(Y) =
√
VarY =

√
n

x√
27

.

With probability 95%, Y will lie in the range[
EY − 1.96 std. dev(Y), EY + 1.96 std. dev(Y)

]
which evaluates to [29.8, 30.2] MB/sec. This is much less than the worst-case value 40
MB/sec.

28 2.2 Custom distributions

2.2. Custom distribuƟons
ApplicaƟon. I’ve collected logs from my web server, n = 68, 506 records, and I want to
program a random number generator that mimics the file sizes I see in these logs. I start by
plotting a histogram of file size, shown as (a) below. This is useless, because nearly all sizes
are tiny and a handful are gigantic, and the binning of the histogram hides all the detail. A
good way to see more detail is to plot what is known as the empirical distribution,Warning: there is

also the empirical
cumulative
distribution
function, which
counts the number
of datapoints that
are ≤ xi. When you
read ‘distribution
function’, you need
to work out from
the context whether
the writer means a
cumulative
distribution
function or a tail
distribution
function.

F̂ (x) =
1

n

(
how many items there are ≥ x

)
.

which is easy to plot by sorting the data and putting it on the x axis. The empirical
distribution of web server file sizes is shown in (b). It’s still not showing very much detail
because of the scale, so I’ll apply the golden rule of engineering: “if you don’t like what you
see, take logs”. In (c) I’ve taken logs of the x axis and in (d) I’ve also taken logs of the y axis,
and that makes my data looks nice and regular. The dotted reference line is at log10(10/n)
— this way I can see that the precipitous drop at the right hand size of (d) isn’t just a single
outlier, but it’s not much more than 10 datapoints.

0

20000

40000

60000

0 250000050000007500000

size [Bytes]

(a)

0.00

0.25

0.50

0.75

1.00

0 250000050000007500000

size [Bytes]

(b)

0.00

0.25

0.50

0.75

1.00

10 15 20

log2 size [Bytes]

(c)

−5

−4

−3

−2

−1

0

10 15 20

log2 size [Bytes]

(d)
How do I know which standard random variable to use, to match this dataset? Or, even
better, can I construct a custom random number generator to match? It looks like the data
is trying to tell me there are two straight lines (plus a handful of huge files, which I’ll ignore
for now), i.e. that for some parameters α, β, γ and θ which I can fit from the data,

log F̂ (x) ≈ α− β logx− γmax(logx− θ, 0).

−5

−4

−3

−2

−1

0

5 10 15 20 25

log2 size [Bytes]

THE DISTRIBUTION FUNCTION AND THE INVERSION METHOD

The distribution function of a random variable X is

F (x) = P(X ≥ x).

Sometimes it’s easier to work with the distribution function rather than the density:

2.2 Custom distributions 29

Example. What is the density function of the continuous random variable X generated by
this code?
1 def rx () :
2 u = random.random()
3 return u*u

Let’s work out its distribution function first.

P(X ≥ x) = P(U2 ≥ x) = P(U ≥
√
x).

Since U is a simple uniform random variable on [0, 1], P(U < u) = u, and so P(X ≥ x) =
1−

√
x. For continuous random variables, the distribution function and the density function

are related to each other by integration, P(X ≥ x) =
∫∞
x

f(y) dy, so f(x) = −F ′(x). In this
case, we end up with f(x) = 1/(2

√
x).

There is a universal way to generate a random variable given its distribution function,
called the inversion method. (1) Generate a simple random variable U ∼ Uniform[0, 1]. (2)
Solve F (X) = U . (3) That’s it, X has distribution function F . This plot shows why the
method works:

it ensures that for every x the event {X ≥ x} is precisely the event {U ≤ F (x)}, which has
probability F (x). Intuitively, in regions where the density f is high then the distribution F
will be steep, and so X is more likely to hit those regions.

The inversion method requires us to solve F (X) = U , which is easy to do algebraically
for simple continuous functions like the two-straight-line fit we found earlier. The method is
also correct for discrete random variables, whose step functions are staircases, but here we
usually want an algorithmic method for solving F (X) = U rather than algebra. Section 2.5
looks at one special case. For a discrete distribution over a finite set of n outcomes, there is an
obvious brute force algorithm that preprocesses the list of outcomes and then takes O(logn)
to generate a random value; there is also an elegant algorithm called the alias method which
takes O(1) to generate a random value.

* * *

It’s worth mentioning some terminology for describing distribution functions. The

first quartile is a number x such that P(X ≤ x) = 25%
median ... P(X ≤ x) = 50%
third quartile ... P(X ≤ x) = 75%
p-percentile ... P(X ≤ x) = p%

For discrete random variables it may not be possible to get exact percentiles, and there is no
convention about rounding.

The range [x1, x2] is called a 95% confidence interval if P(x1 ≤ X ≤ x2) = 95%. Often
we choose a two-sided confidence interval with P(X < x1) = P(X > x2) = 2.5%. In some
contexts it may be more useful to report a one-sided confidence interval, either [x1,∞) or
(−∞, x2].

The cumulative distribution function is CDF(x) = P(X ≤ x). What we’ve been calling
the distribution is also called the tail distribution function, to disambiguate the two.

30 2.3 Limit theorems

2.3. Limit theorems
ApplicaƟon. In computer graphics rendering and shading, we can compute the colour of a
pixel on the screen by reasoning about light rays. First figure out the surface point Q that
is to be shown at pixel P , by casting a ray from the camera through P and finding what
surface it hits. Then figure out the colour and shading of Q by adding up all the light rays
that might be illuminating it and reflecting out through P .

The surface might be perfectly reflective, or perfectly diffuse, or more generally we can model
it with a specular lobe function BRDF(θ, ϕ), which measures how much light is emitted at
angle ϕ when it comes in at angle θ.

When we take into account the intensity of light glancing the surface as a function of angle
θ, the total light reflected at angle ϕ, from a point light source of intensity I, is

I cos(θ)BRDF(θ, ϕ).

If illumination comes from an area light source, then we treat it as a though the total intensity
I is smeared across a set of point light sources:

∫ y1

y=y0

I

y1 − y0
cos
(
tan−1(x/y)

)
BRDF

(
tan−1(x/y), ϕ

)
dy.

* * *

In a more abstract setting, suppose we want to compute∫ b

y=a

g(y)
1

b− a
dy.

The obvious method is to split the y range into n equally sized pieces, and approximate the
function by a series of rectangles, e.g. taking the height of the rectangle to be the value of g
at the midpoint.

≈ 1

n

n∑
i=1

xi, where xi = g
(
a+

b− a

n

(
i− 1/2

))
.

2.3 Limit theorems 31

But there’s actually nothing special about sampling g at grid points. Why not just pick
the sampling points at random? In other words, pick n independent Uniform[a, b] random
variables Y1, . . . , Yn, and approximate

≈ 1

n

n∑
i=1

Xi, where Xi = g(Yi).

This is called Monte Carlo integration. Is it any good, and if so why?

EXPECTATION

Let’s calculate the expected value of the Monte Carlo approximation.

E
(1
n

n∑
i=1

Xi

)
=

1

n

n∑
i=1

EXi by linearity of expectation

=
1

n
nEX1 since they are IID

= Eg(Y1) =

∫ b

y=a

1

b− a
g(y) dy by definition of expectation.

So, the expected value is exactly the integral we want to compute. But this is just punting
the question. What does the expected value have to do with anything?

WEAK LAW OF LARGE NUMBERS

Let’s calculate the probability of error. Let µ = EX1 be the integral we want to compute,
and let ε > 0. Then

P
(∣∣∣ 1

n

n∑
i=1

Xi − µ
∣∣∣ > ε

)
= P

((
n−1

∑
Xi − µ

)2
ε2

> 1

)
by simple algebra (6)

= E
(
1
[(n−1

∑
Xi − µ

)2
ε2

> 1
])

since E1A = P(A)

≤ E
((n−1

∑
Xi − µ

)2
ε2

)
since 1x≥1 ≤ x

=
1

ε2
Var

(1
n

∑
Xi

)
by linearity of E and definition of Var

=
1

n2ε2
n VarX1 by linearity of Var, and independence

=
1

n

VarX1

ε2

→ 0 as n → ∞.

So, the more samples we use the better accuracy we get. This result is known as the weak law
of large numbers. Another way to state it is in terms of the limit behaviour of the distribution Why is it called

weak? The weak
law, equation (6),
says
P(errn > ε) → 0.
There is also a
strong law,
P(errn → 0) = 1.
The strong law
implies the weak
law, but is harder
to prove.

function: for all x ̸= µ,

P
(1
n

n∑
i=1

Xi ≥ x
)
→

{
1 if x < µ

0 if x > µ
as n → ∞.

It’s useful to know not only that there is convergence, but also how fast convergence
happens. We just derived an upper bound on the probability of error, and it suggests that
the accuracy depends on the variance of an individual sample. Is the bound tight?

THE CENTRAL LIMIT THEOREM

In Section 2.1 we saw a general purpose approximation:

X1 ≈ Normal(µ, σ2) where µ = EX1 and σ2 = VarX1.

32 2.3 Limit theorems

If we apply this approximation to all the Xi,
n∑

i=1

Xi ≈ Normal(nµ, nσ2)

1

n

∑
Xi ≈ Normal

(
µ,

σ2

n

)
1

n

∑
Xi − µ ≈ Normal

(
0,

σ2

n

)
n−1

∑
Xi − µ√

σ2/n
≈ Normal(0, 1).

It is a mathematical theorem that this approximation becomes increasingly accurate (assum-
Another result, the
Berry-Esseen
theorem, gives a
bound on the error
in this limit
statement.

ing the Xi are independent and that µ and σ2 are finite). The central limit theorem makes
this precise, as a statement about convergence of the distribution function:

P
(√

n
(n−1

∑n
i=1 Xi − µ

σ

)
≥ x

)
→ P

(
Normal(0, 1) ≥ x

)
as n → ∞, for all x.

I find it more helpful to remember the central limit theorem when it’s written as an approx-
imation,

1

n

n∑
i=1

Xi ≈ Normal
(
µ,

σ2

n

)
.

We could use this to estimate how many samples we need for the Monte Carlo integration
to reach a target level of accuracy, if we knew σ. It tells us that, with probability 95%,
n−1

∑
Xi is within ±1.96σ of µ. We don’t know the true σ, but we can just estimate it with

Monte Carlo approximation!

σ2 = E(X1 − µ)2 ≈ 1

n

n∑
i=1

(Xi − µ)2

and also plug in the Monte Carlo approximation for µ. Our computer graphics code could
keep generating more and more samples until it decides the error is small enough as to be
imperceptible.

This should make us uneasy! How come it’s OK to say “Plug in the Monte Carlo
approximations to get a point estimate for σ”, and at the same time “Don’t just use the
plain Monte Carlo approximation for µ, use the central limit theorem to work out how
accurate it is”? We will revisit this question in Section 3.

2.4 Importance sampling 33

2.4. Importance sampling
In the computer graphics problem of Section 2.3, we studied how to use Monte Carlo inte-
gration to calculate the light intensity at a pixel.

The answer we want is ∫ y1

y=y0

1

y1 − y0
g(y) dy (7)

where g(y) is some complicated formula involving the specular characteristics of the surface
and the angle of illumination. We approximated (7) by

1

n

n∑
i=1

g(Yi)

where Y1, . . . , Yn are independent random variables drawn uniformly from the range [y0, y1].
In words,

reflected light
at angle ϕ

≈ 1

n

n∑
i=1

light due to a simulated ray coming from
a random point Yi on the light source.

We found that the approximation error is of the order of σ/
√
n, where σ is the standard

deviation of the answer from a single light ray, σ = std.dev(g(Y1)). This suggests two
questions. First, is there a way to change the simulation to reduce σ? Second, if it’s a highly
reflective surface, then there isn’t any need to simulate the entire light source, since only a
few pieces of it will end up reflected at angle ϕ: how can we change the simulation to achieve
this? It turns out that these two questions are asking exactly the same thing.

Let’s try tweaking the simulated light rays. Physics tells us that the BRDF function
is symmetrical. Consider picking a random point Y on the light source, but not uniformly
at random: pick it instead so that angles closer to the center of the specular lobe are more
likely. Let’s also define X = g(Y)f0/f(Y), where f(·) is the density function for Y and See Section 2.2 for

how to generate a
random variable
from an arbitrary
distribution.

f0 = 1/(y1 − y0) is the density function for Uniform[y0, y1]. This has expected value exactly
equal to the integral (7) that we’re after:

EX =

∫ y1

y=y0

(g(y)f0
f(y)

)
f(y) dy =

∫ y1

y=y0

1

y1 − y0
g(y) dy

Where did the magic formula X = g(Y)f0/f(Y) come from? Previously we had used g(Y).
When Y is not uniformly distributed, Eg(Y) isn’t equal to (7)—it has an extra f(y) term.
We picked X = g(Y)f0/f(Y) simply to cancel out that extra f(y).

We have designed a random variable X with EX equal to (7). So we can use the Monte
Carlo method, i.e. approximate (7) by the average of a random sample from distribution X.
In words,

reflected light
at angle ϕ

≈ 1

n

n∑
i=1

(
light due to a simulated ray coming from
a random point Yi drawn from density f

/ (
f(Yi)/f0

))
.

34 2.4 Importance sampling

This is called importance sampling. Whatever distribution we choose for the Yi, Monte Carlo
integration will give us the right answer, and we have a whole design space of sampling
distributions to choose from. Our aim is to choose a density function f to reduce σ2 =
f2
0 Var

(
g(Y)/f(Y)

)
.

* * *

It’s surprisingly easy to design the optimal sampling distribution. From the definition of
variance,

Var g(Y)

f(Y)
= E

[(g(Y)

f(Y)
− µ

)2]
= E

[(g(Y)

f(Y)

)2]
− µ2 where µ = E

g(Y)

f(Y)
.

The whole point of importance sampling is that µ doesn’t depend on how we choose f . The
only term we have left to minimize is

E
[(g(Y)

f(Y)

)2]
=

∫ (g(y)
f(y)

)2
f(y) dy =

∫
g(y)2

f(y)
dy

and it turns out (using some standard tools from optimization theory) that to minimize this
we should pick a density function f such that f(y) is proportional to g(y).

Unfortunately, if we try to sample a random variable from const × g(y) using the
inversion method, we have to integrate g(y), which defeats the whole purpose of Monte
Carlo integration!

Importance sampling is nonetheless useful as a heuristic. The full distributed ray
tracing algorithm, taking account of indirect illumination, is “To work out the shading at
a point Q, sample light rays by following them backwards; pick a random incoming angle
at each bounce, and heuristically try to pick an angle in proportion to how much light is
expected from that angle.” No matter how bad the heuristic, importance sampling will give
the right answer for large enough n. If the heuristic is good, it will give the right answer for
small n.

This is why specular-to-diffuse lighting is tricky: the question “which angle is likely to
give most illumination?” can’t be answered with only local knowledge at the diffuse surface.22

76

Handing indirect illumination: 2

light

light

ª diffuse to diffuse
u handled by radiosity

n covered in the Part II
Advanced Graphics
course

ª specular to diffuse
u handled by no usable

algorithm
u some research work has

been done on this but
uses enormous amounts
of CPU time

22Slide from IA Introduction to Graphics.

2.5 The empirical distribution 35

2.5. The empirical distribuƟon
The empirical distribution function of a dataset x1, . . . , xn is

F̂ (x) =
1

n

(
how many items there are ≥ x

)
.

In Section 2.2 we looked at fitting: we started with a family of distribution functions Fθ(x)

with some parameter or list of parameters θ, we picked specific parameter values θ̂ so that
F̂ (x) ≈ Fθ̂(x), and then we used the inversion method to generate random variables from
this fitted distribution. We were implicitly assuming that the empirical distribution function
of a random sample should be close to the true distribution function from which the random
sample was generated. Now, having learnt about limit theorems in Section 2.3, we can
investigate this assumption.

Consider a random sample X1, . . . , Xn, independent random variables with common
distribution function F (x) = P(Xi ≥ x). Let F̂n(x) be the empirical distribution function.
Then

EF̂n(x) = E
(∑n

i=1 1Xi≥x

n

)
= E1X1≥x = P(X1 ≥ x) = F (x).

By the weak law of large numbers,

P
(
|F̂n(x)− F (x)| > ε) → 0 as n → ∞

for any ε > 0. By the central limit theorem,

F̂n(x) ≈ Normal
(
F (x),

σ2

n

)
where σ2 = Var 1X1≥x = F (x)

(
1− F (x)

)
and so a 95% confidence interval for F̂n(x) is

P
(
F̂n(x) is in the range F (x)± 1.96

√
F (x)(1− F (x))

n

)
≈ 0.95.

Here is an illustration, 20 random samples of size 50 drawn from the Beta(10, 5) distribution. The Beta
distribution arises
in Bayesian
inference about
binary outcomes. It
takes values in [0, 1].
For the density etc.,
look it up on
Wikipedia.

RESAMPLING

When all we have is a dataset, how do we choose which family of distributions Fθ(x) to fit?
Sometimes there are sound scientific reasons for choosing a particular family, and our goal
is to integrate this background scientific knowledge with the dataset at hand. If there is no
background science, then it’s daft to use the data to fit a parameterized distribution function
as we did in Section 2.2 when a perfect fit is staring us in the face, namely the empirical
distribution itself! This is a perfectly valid distribution function: it starts at 1, and ends at
0, and is decreasing.

We can sample from the empirical distribution function using the inversion method—
and a moment’s thought tells us that this is exactly the same as picking a value at random
from the dataset, each item in the dataset equally likely. The overall concept, that the best-
fitting distribution for a dataset is nothing other than its empirical distribution, is called
resampling. Conventionally, a superscript ∗ denotes a random variable drawn in this way
from the empirical distribution.

36 2.5 The empirical distribution

Example 2.1 (Exact resampling). Given a dataset x1, . . . , xn, what are EX∗ and VarX∗? From
the definition of expectation,

EX∗ =
∑

x∈{x1,...,xn}

xP(X∗ = x) =
∑
i

xi
1

n

i.e. the sample mean, often written x̄. From the definition of variance,

VarX∗ =
∑

x∈{x1,...,xn}

(x− x̄)2 P(X∗ = x) =
∑
i

(xi − x̄)2
1

n

i.e. the sample variance.

Example 2.2 (Monte Carlo resampling). I collected a dataset x1, . . . , xn and I found the sample
mean x̄. If I repeat the exercise and collect further datasets, how much variability should I
expect to see in the sample mean?

The best-fitting distribution is the dataset itself, and the best we can do is assume that
subsequent datasets will be drawn from the same distribution. In other words, the next time
I collect data, I’ll expect to see something like X̄∗

n, the sample mean of n random values
drawn from the empirical distribution. This is a random variable. It’s impractical to do an
exact calculations about the distribution of X̄∗

n as we did in Example 2.1 because there are
so many possible values that X̄∗

n might take—but it’s straightforward to use Monte Carlo
approximation instead, to find e.g. P(X̄∗

n ≥ x) or to draw a histogram.

1 x = [13 , 5 , 2 , . . .] # the d a t a s e t
2 def sim_mean() :
3 n = len (x)
4 X = random. choices (x , k=n) # k = number o f samples to draw
5 return sum(X)/n
6
7 mc_samples = [sim_mean() for i in range(100000)]
8 matplotlib . pyplot . h ist (mc_samples)

Example 2.3 (Parametric resampling). I collected a dataset x1, . . . , xn, and I found that the max-
imum value was m. If I repeat the exercise and collect further datasets, how much variability
should I expect to see in the maximum? Resampling from the empirical distribution is unable
to give an answer > m, but intuitively I feel that a new dataset might have larger values.

The real question here is: where does my intuition ‘larger values are possible’ come
from, and how can I translate it into maths? Perhaps my intuition comes from seeing a
straight line on a log-plot of the empirical distribution, as in Section 2.2. If this is the case,
then I might construct a new semi-parametric distribution function, which starts with the
empirical data and switches over at some point to a straight line, whose slope and intercept
parameters are fitted from the data. Sampling from this semi-empirical distribution could
potentially produce values > m.

2.5 The empirical distribution 37

* * *

When should we use parametric models and when should we use the dataset itself, in
the form of the empirical distribution? There are no general rules.

• A dataset cannot tell us about values beyond the dataset. This has to come from our
background knowledge or intuition. Integrating datasets and background knowledge is
an art.

• A parametric distribution saves space: it only needs us to store a handful of parameters,
rather than the full dataset. But this is often a premature optimization. For a small
dataset of a few tens of thousands of values, on a modern computer, you should spend
your time thinking about modeling and not about optimizing storage. For a large
dataset, a model with a handful of parameters cannot hope to capture the richess of
the data.

• Neural networks are parametric models. A neural network trained for simple image
classification might take 140 million parameters, one for each connection in the network.
The human brain has roughly 1015 connections, and a human lifetime is roughly 2.5×109

seconds. It seems that making sense of data is more about what you do with it than
how you can compress it.

• High-dimensional modeling, i.e. modeling with more parameters than there are samples
in the dataset, is an area of active research.

PARTICLE FILTERS

ApplicaƟon. Suppose we’re trying to pinpoint a person’s location, based on noisy GPS read-
ings. First, imagine that the person is not moving, and that we simply want to draw a shape
on a map to indicate where the person is likely to be. We could represent our uncertainty
about the person’s location by a probability density function, with f0(x) our initial belief
(spread widely over a map region), and ft(x) our belief after t GPS readings. Using Bayes’
rule,

ft(x) =
P(rt | x) ft−1(x)∫

y
P(rt | y) ft−1(y) dy

(8)

where rt is the reading at time t. We could implement this for example by storing an array
with the value of ft(x) at at every location x on a fine enough mesh, and updating the entire
array every timestep, replacing the integral by a sum over all points on the mesh.

To take account of motion, we could add dimensions to x for current velocity and
current mode (walking, running, cycling); and we could change (8) to include the system
dynamics—i.e. include terms describing how likely a new location is given the old location
and velocity, and how likely a new velocity is given the old velocity and mode. The ft(·)
array would be gigantic.

If more sensors are available, e.g. the gyroscope and compass and accelerometer on a
mobile phone, we could change (8) to include terms describing the chance of each of those
readings given the present state. This is known as sensor fusion.

Instead of storing the density function ft(·) as an array of values over mesh, why not
approximate it by a random sample drawn from the distribution? This approach works, and
it is called the particle filter. It involves finding an empirical equivalent of (8), i.e. an efficient
way to generate a sample from ft(·) given a sample from ft−1(·) and an observation rt.

38 2.5 The empirical distribution

Here is an illustration23. It shows a cluster of particles representing the current belief
about a person’s position inside a building, and a line showing the path that the person
actually followed. The readings are gyroscope and compass and accelerometer.

* * *

The message of this section is that samples and distributions are two sides of the same coin.
In resampling, when we’re faced with the problem that the true distribution is unknown, we
can use the dataset instead. In the particle filter, when we’re faced with the problem that
the true distribution is intractable, we can use a sample instead.

23Julian Straub. “Pedestrian Indoor Localization And Tracking Using A Particle Filter Combined with
a Learning Accessibility Map”. Bachelor thesis. Technische Universität München, 2010. url: http : / /
people.csail.mit.edu/jstraub/pub/Pedestrian-Indoor-Localization-and-Tracking-using-a-Particle-
Filter-combined-with-a-learning-Accessibility-Map/. The author now works at Oculus.

http://people.csail.mit.edu/jstraub/pub/Pedestrian-Indoor-Localization-and-Tracking-using-a-Particle-Filter-combined-with-a-learning-Accessibility-Map/
http://people.csail.mit.edu/jstraub/pub/Pedestrian-Indoor-Localization-and-Tracking-using-a-Particle-Filter-combined-with-a-learning-Accessibility-Map/
http://people.csail.mit.edu/jstraub/pub/Pedestrian-Indoor-Localization-and-Tracking-using-a-Particle-Filter-combined-with-a-learning-Accessibility-Map/

39

3. Inference

Get experience of formulating questions about a dataset. Be able to assess
the accuracy of your inferences, using Bayesian and frequentist methods.
Be able to apply these methods for finding confidence intervals, conducting
hypothesis tests, and making predictions.

Inference means reaching conclusions on the basis of data and reasoning. For example, if
someone rolls a die and gets 6,4,6,6, what can we conclude about the chance that the next
roll is a 6? Do we believe it’s 1⁄6 because that’s how dice work? Do we conclude that this die
is biased? Do we estimate from the data that the chance of a 6 is 3⁄4, and are we confident
enough to make a bet on odds of 3 to 1? How much more confident would we be if we saw
the same frequences from a million rolls of the die?

Inference is part science, part philosophy, part craft. The science is computation and prob-
ability theory; the philosophy is understanding what questions it is meaningful to ask, and
thinking about what you want the answers for; the craft is being able to formulate questions
in a way that makes the computing and maths tractable.

3.1. QuanƟfying a quesƟon
The UK Home Office makes available several datasets of police records, at data.police.uk. Here
is a sample of rows from the stop-and-search dataset.

police force operation date-time lat lng gender age ethnicity
object of search outcome

Hampshire NA 2014-07-31T23:20:00 50.93 -1.38 Male 25–34 Asian
controlled drugs nothing found

Hampshire NA 2014-07-31T23:30:00 50.91 -1.43 Male 34+ White
controlled drugs suspect summonsed

Hampshire NA 2014-07-31T23:45:00 51.00 -1.49 Male 10–17 White
controlled drugs nothing found

Hampshire NA 2014-08-01T00:40:00 59.91 -1.40 Male 34+ White
stolen goods nothing found

Hampshire NA 2014-08-01T02:05:00 50.88 -1.32 Male 10–17 White
article for use in theft nothing found

Suppose we want to investigate possible racial bias in policing. Are the police more likely to
stop members of certain ethnic groups? The total number of stops in this dataset is

Asian Black Mixed Other White
num. stops 79,492 163,856 350 18,480 483,472

Without knowing context, e.g. population breakdowns in the UK, or typical demographics
of people in public spaces, this table is useless. Instead, let’s look at the success rates for
stop-and-searches. Label each row either find or nothing depending on the outcome of the
search. The percentage of stop-and-searches that result in find is

Asian Black Mixed Other White
% find 30.0 31.8 60.6 33.1 32.6

The probability of finding criminal activity is lower among Asian suspects, which means that
the police are stopping relatively more non-criminals, which is an indicator of racial bias.
But is this a significant difference, or is it within the bounds of random variation?

The starting point for quantifying uncertainty is a probabilistic model. Let Yi be the
outcome for row i of the dataset, either find or nothing, and let ei be the ethnicity of the
suspect. The simplest possible model is

P(Yi = find) = βei

data.police.uk

40 3.1 Quantifying a question

where β is a vector of probabilities, one per ethnic group. The maximum likelihood estimator
is easy to calculate and reassuringly it turns out to be exactly what we would expect from
the table: βAsian = 0.300, βBlack = 0.318, etc.

IncorporaƟng features It’s extremely unlikely that police behaviour is governed by only one
feature in the data. For example, what if the police decision to stop someone is influenced by
the suspect’s gender as well as ethnicity, and the gender breakdown is different in different
ethnic groups?

Asian Black Mixed Other White
% Male 96.9 95.2 93.7 93.5 89.4

If a police officer’s decision whether or not to stop someone is largely down to the suspect’s
gender, and if police are relatively more likely to stop male suspects, might this be sufficient
to account for the lower P(find) among Asian suspects? To disentangle the two features, we
can propose a model that takes account of both features simultaneously, e.g.

P(Yi = find) = βei + γgi (9)
where gi is the gender in row i of the dataset. This model allows the probability of find to
depend on both ethnicity and gender. If it is indeed gender that is the dominant influence,
and if different ethnic groups experience different P(find) only because of their different gender
breakdowns, then the model can accomodate this via βe = const for all e.

Natural parameters The model (9) has two problems. First, it has too many parameters: we
could add 0.1 to every β coefficient and subtract 0.1 from both γ coefficients, and this change
would leave absolutely every probability unchanged, and so it is impossible to identify the
‘correct’ values of the parameters. This issue is known as non-identifiability. A common trick
is to rewrite the model as

P(Yi = find) = α+ βei + γgi , and require βAsian = γfemale = 0.

It doesn’t make any difference which reference levels we choose to set to 0; here I chose them
alphabetically. We can unwrap this model:

P(Y = find for Asian female) = α

P(Y = find for Asian male) = α+ γmale

P(Y = find for Black female) = α+ βBlack

P(Y = find for Black male) = α+ βBlack + γmale

. . .

The second problem with (9) is that it allows probabilities that are outside the range [0, 1].
We might fix this by changing to a model with explicit truncation,

P(Yi = find) = max
(
0,min(1, α+ βei + γgi)

)
.

This truncation turns out to be computationally awkward,24 when we try to find maximum
likelihood parameter estimates. A much better behaved model is

P(Yi = find) = eξi

1 + eξi
where ξi = α+ βei + γgi . (10)

This is just an algebraic gimmick25 that maps any real number ξ ∈ (−∞,∞) to a value
eξ/(1+eξ) in the range [0, 1]. We can just plug the probability formula into a general-purpose

24 What makes a model computationally awkward? Maximum likelihood estimation is based on optimiza-
tion. Commonly, optimization libraries work best for functions that are differentiable, and where the partial
derivatives are only zero at local optima, and where each argument is unconstrained i.e. permitted to take
any floating point value. The model with explicit truncation has partial derivates equal to zero over large
parts of the parameter space.

25We often see medical results like “a Mediterranean diet halves your risk of heart attack”. There is usually a
model behind this of the form P(heart attack) = eξ+µd/(1+eξ+µd) where ξ is made up of coefficients relating
to other features such as age and gender and weight, µ is a coefficient for the feature “on Mediterranean diet”,
and d = 1 if you follow that diet and 0 otherwise. This sort of study is usually done in populations where
the risk of heart attack is fairly small, so the denominator is ≈ 1. For those on the Mediterranean diet
P(heart attack) ≈ eµeξ and for those not on it the probability is ≈ eξ. So we can deduce from the headline
that the study found the maximum likelihood estimator to be µ̂ = log 1/2. The study won’t report what the
risk of heart attack was cut from or what it was cut to, since those numbers depend on ξ which depends on
a person’s age and gender and weight and so on. The model says “Whatever your underlying risk, your risk
would be roughly 50% lower if you were on a Mediterranean diet”.

3.1 Quantifying a question 41

unconstrained optimization routine, it finds the parameters that maximize the likelihood, and
whatever parameters it finds we are guaranteed to end up with probabilities in [0, 1]. When
we unwrap it,

P(Y = find for Asian female) = eα / (1 + eα)

P(Y = find for Asian male) = eα+γmale / (1 + eα+γmale)

P(Y = find for Black female) = eα+βBlack / (1 + eα+βBlack)

. . .

If for example γmale > 0, then P(Y = find) will be higher for male suspects than female
suspects, across all ethnic groups. If we compute the maximum likelihood estimates and
then unwrap them, we obtain

Asian Black Mixed Other White
Pfemale(find) % 29.7 31.5 46.0 33.2 32.6
Pmale(find) % 30.2 32.0 46.5 33.7 33.1

The model (10) is called a logistic regression. Logistic regression models are in widespread
use, for example for estimating the probability that a web user will click on a certain ad. It’s
up to the data scientist to find good features to put into ξ, for example age and browsing
history and purchase history and keywords in emails and location and everything else that
a tech company might know about you, plus flashiness and screen size and keywords and
everything else that distinguishes the ad.

* * *

We have studiously avoided the question of which model is true. The dataset almost
certainly has so much richness that any simple parametric model we invent is wrong—but a
wrong model can still be useful.

We formulated the logistic regression (10) to answer the question “What is the impact
of the suspect’s ethnicity on police behaviour, taking account of gender?” The β that we
estimate from the model lets us compare ethic groups. If police behaviour is mainly deter-
mined by gender, then the β coefficients will be nearly all the same. If police behaviour is
mainly determined by some other feature F that we haven’t included in the model, then the
β coefficients will reflect the breakdown of F in each ethnic group. If ethnicity truly is an
influence on police behaviour, then the β coefficients will tell us which ethnic groups have
higher P(find).

Parametric models are a way to ask questions about a dataset. They are one of the best
tools we have for asking questions about the dataset, far more subtle than simply tabulating
outcomes. But if you give them useless features, they will give useless answers. Garbage in,
garbage out.

CONSTRUCTS / LATENT VARIABLES

A latent variable is a variable whose value is unobserved (latent means ‘hidden’). A latent What’s the
difference between a
parameter and a
latent variable? If
the number of
unknown quantities
grows with the size
of your dataset, call
them latent
variables, otherwise
call them
parameters.

variable can be something that must exist but we just don’t have data for, e.g. the true
location of a smartphone user with a noisy GPS. It can also be a construct, i.e. a concept
constructed in the mind of the data scientist. Latent variables are often useful for linking
together different pieces of data, and for explaining our findings in intuitive language. Here
is an application, a richer way to investigate possible racial bias in stop-and-search.

We set out to investigate whether a suspect’s ethnicity influences a police officer’s
decision to conduct a stop-and-search. Our thought process was this:

Build a model for the probability of finding criminal activity, among suspects who
were stopped. If the probability of finding criminal activity is lower for suspects
in one particular ethnic group, this means that police are stopping more non-
criminals in that ethnic group, which is an indicator of racial bias.

This is a weird model, because it is ‘causally backwards’. A person either is or isn’t engaged
in criminal activity, and this is not an outcome of the police officer’s decision to conduct a
stop-and-search, so it’s weird to build a model for P(find) for suspects who were stopped.

42 3.1 Quantifying a question

Seeing as we set out to investigate possible police, how might we use constructs to build
a model that explicitly describes the police officer’s action and includes a term for bias? Let’s
invent the construct ‘shiftiness’. Let every person in a public space have a shiftiness latent
variable s, a floating point number. Suppose it affects two things:

• The higher your shiftiness, the more likely you are to be engaged in criminal activity,
e.g. P(criminal) = es/(1 + es).

• A police officer will stop you if your shiftiness is above a threshold, say if s > α +
βethnicity + γgender.

This is an invention. It’s not trying to be a true measure of some objective feature in criminal
psychology. It’s just trying to summarize in a variable ‘the aggregate of all the various factors
and propensities that together affect a police officer’s decision to stop-and-search a suspect’
so that we can reason more naturally about police behaviour.

Microsoft’s Xbox Live uses an invented construct for ‘skill of a gamer’26. There is a
simple probability model: the probability that Player 1 wins against Player 2 in a game
is a certain function of the difference in their skill levels. Given a dataset of (player1_id,
player2_id, winner) with one record for every game, we can write out

P(dataset of all games and winners) = f
(
skills of every gamer

)
and make inferences about each gamer’s skill. The results are used to make sure that players
are matched with other players of comparable ability.

It can be tricky to design a model with constructs, because of identifiability issues. In
the Xbox system, we could add a constant to every single gamer’s skill, and it would make
no difference to the outcome probabilities. In the police example, we could add a constant
to every shiftiness score, and add it to α also, and the distribution would be unchanged. In
order to get useful answers out of models with constructs, we need to ‘anchor’ the values.
Bayesian reasoning, described in the next section, is a good way to do this.

26TrueSkill, described at https://www.microsoft.com/en-us/research/project/trueskill-ranking-
system and the subject of an engaging and programmer-friendly blog post http://www.moserware.com/
2010/03/computing-your-skill.html. The original paper: Ralf Herbrich, Tom Minka, and Thore Graepel.
“TrueSkill™: A Bayesian Skill Rating System”. In: NIPS. 2006. url: http://papers.nips.cc/paper/3079-
trueskilltm-a-bayesian-skill-rating-system.pdf.

https://www.microsoft.com/en-us/research/project/trueskill-ranking-system
https://www.microsoft.com/en-us/research/project/trueskill-ranking-system
http://www.moserware.com/2010/03/computing-your-skill.html
http://www.moserware.com/2010/03/computing-your-skill.html
http://papers.nips.cc/paper/3079-trueskilltm-a-bayesian-skill-rating-system.pdf
http://papers.nips.cc/paper/3079-trueskilltm-a-bayesian-skill-rating-system.pdf

3.2 Bayesianism 43

3.2. Bayesianism
Data science is the process by which we change our beliefs about the world, in
the light of data. There’s no such thing as objective truth, there’s only subjective
degree of belief. One should represent belief by using a probability distribution,
and one should update it using Bayes’ rule.

From the policing data in Section 3.1 we used maximum likelihood estimation to estimate
the difference in stop-and-search outcomes between different groups. The difference between
male and female suspects was around 0.5% (to be precise, the maximum likelihood estimator
was γ̂male = 0.020711). How confident should we be in this number? Intuitively, when there
are many datapoints (673,541 male suspects, 60,600 female suspects in this case) we should
be very confident. If we’re looking at a narrower question, e.g. changes in gender bias in
stop-and-search incidents in Cambridge city center from week to week, then there will be
fewer datapoints and we should be less confident.

In this section we’ll study one technique for quantifying confidence. We’ll work with a
toy dataset:

I have a coin, which might be biased. I toss it n = 10 times, and get k = 9 heads and n− k = 1

tails.

Let’s model the data as

num. heads ∼ Binom(n, p), i.e. P(num. heads = k) =

(
n

k

)
pk(1− p)n−k

Prior belief. The probability p of heads is unknown, and Bayesianism requires us to set down
a prior belief for it. If we can’t quantify our prior belief, Bayesianism says, then there are
no grounds for us to draw conclusions. Let’s invent, out of thin air, a prior belief that
P ∼ Uniform[0, 1], which has density function f(p) = 1.

In what follows, we’ll write Pr(P = p) for the density function of P . It’s not a
probability—since P is a continuous random variable, P(P = p) = 0 for every p. The
benefit of this notation rather than f(p) is that Bayesian data science formulae often refer
to many different random variables, and it’s best to be explicit about which random variable
a given density refers to. We’ll use the same notation for discrete random variables, where
Pr(X = x) genuinely is P(X = x). It’s convenient to use the same notation for discrete and
continuous random variables, because Bayes’s rule applies the same to both of them.

Bayesian update. Bayes’ rule tells us the density of p, conditional on the observed data. Let
K be the random variable ‘number of heads’. Then

Pr(P = p |K = k) =
P(K = k | P = p) Pr(P = p)∫ 1

q=0
P(K = k | P = q) Pr(P = q) dq

.

This is called the posterior distribution for P . It’s a density function, a function of p, so it
must integrate to 1, and so it’s convenient to gather up all the terms that don’t involve p
into a constant and then say “this constant must be whatever it takes to make the posterior
density integrate to 1”.

Pr(P = p |K = k) = κP(K = k | P = p) Pr(P = p)

= κ

(
n

k

)
pk(1− p)n−k

= κ′pk(1− p)n−k

where

κ′ = 1
/ (∫ 1

q=0

qk(1− q)n−k dq

)
.

This particular density function is the density function of the Beta(k+1, n−k+1) distribution
(look it up on Wikipedia). We don’t even need to work out κ′, all we need to do is recognize
the terms involving p.

44 3.2 Bayesianism

Draw conclusions. We posed the question “What is the probability of heads?” A Bayesianist
says that there’s no such thing as the objective bias of the coin, there’s only our belief,
expressed by the posterior distribution (P |K = k) ∼ Beta(k + 1, n− k + 1). So let’s report
a 95% confidence interval for (P |K = k). A computer can work out the relevant points on
the distribution function: run

lo,hi = scipy.stats.beta.ppf([0.025, 0.975], a=k+1, b=n-k+1)

and then
P(P ∈ [lo, hi] |K = k) = 95%.

We can report all sorts of quantities about the probability of heads. For example, our
subjective belief that the coin is biased is

P(P > 0.5 |K = k) = 1− scipy.stats.beta.cdf(0.5, a=k + 1, b=n− k + 1).

Nuisance parameters. If the problem has many parameters and we only want to report con-
clusions about one of them, we simply use Bayes’s rule to get a joint posterior distribution
for all the parameters e.g. Pr(P = p,Q = q |K = k), and then use the law of total probability
to find the marginal distribution of the parameter of interest, e.g. Pr(P = p | K = k) =∫
q
Pr(P = p,Q = q |K = k) dq.

3.3 Frequentism 45

3.3. FrequenƟsm
There is an objective world out there, with fixed but unknown parameters. By
observing random phenomena, the data scientist can make inferences about those
parameters

Given k = 9 heads out of n = 10 tosses of a coin, what is the probability of heads?

Worst-case procedures. The probability of heads, call it p, is fixed and unknown. We can’t
answer the question directly, and any range we propose for p might be right or wrong, we
can’t be sure. (Except for the range [0, 1], which is always right and completely useless.) But
whatever the value of p, simulations of K ∼ Binom(n, p) suggest we’re likely to see K in the
range np± 2.

The pivot. An exhaustive computation of P(|K−10p| ≤ 2) over all possible p shows that the
lowest value it ever takes is 89%, at p = 1/2. We can pivot this probability statement:

P
(
|K − 10p| ≤ 2

)
≥ 89% for all p (11)

⇒ P
(
−2 ≤ K − 10p ≤ 2

)
≥ 89% for all p

⇒ P
(
K + 2 ≥ 10p ≥ K − 2

)
≥ 89% for all p

⇒ P
(
p ∈

[K − 2

10
,
K + 2

10

])
≥ 89% for all p.

So, given that we saw 9 heads, can we conclude

P
(
p ∈ [0.7, 1]

)
≥ 89% ?

No. The parameter p is fixed and unknown, and it may be inside this range or it may be
outside, and we don’t know which. What we should really say is that the procedure

def confint(k): print(f”p is in [{max(k-2,0)/10}, {min(k+2,10)/10}]”)

will print a true statement in at least 89% of coin-tossing trials, whatever the value of p, and
in this particular trial it happens to print the range [0.7, 1]. This is usually abbreviated “An
89% confidence interval for p is [0.7, 1]”.

Bootstrap resampling. Here is a general-purpose computational method, which removes any
need for cleverness or exhaustive optimization for coming up with bounds like (11).

1. Start by writing out the probability you’re interested in. Make sure it’s a genuine
probability, i.e. that there is a random variable inside.

2. Replace any unknown parameters by their maximum likelihood estimates given the
data. Replace any random variables by their equivalents drawn from the empirical
distribution. This rewritten expression is approximately equal to the probability from
step 1.

3. Use the Monte Carlo method to estimate the probability of the expression in step 2.

This is called bootstrap resampling. ‘Bootstrap’ refers to the phrase ‘pull yourself up by
your bootstraps’, in the sense that this method can give us probability answers without our
having to even think up a model. ‘Resampling’ means drawing samples from the empirical
distribution, the subject of Section 2.5.

46 3.3 Frequentism

Let’s apply it to the problem at hand, 9 heads out of 10 tosses and we want to know
the probability of heads. Step 1 says to write out a probability, and it takes some creativity
to write down something useful. We’ll see more examples in the rest of Section 3 and the
example sheet. In this case, we want to make a confidence statement about p, the probability
of heads, and a careful look at the pivot from equation (11) suggests that a statement about
the maximum likelihood estimator p̂ is a useful starting point. Let’s try

P
(
p̂ ∈ [p− δ, p+ δ]

)
, where δ = 0.1. (12)

Remember that p̂ is a function of the data, p̂ = K/n in this case if we assume K ∼
Binom(n, p), and so the expression (12) is a genuine probability, as required by Step 1.

The next step is to replace terms. The maximum likelihood estimator (given the data)
is p̂ = k/n = 0.9, so replace p by 0.9 in (12). The p̂ term is a random variable, p̂ = K/n,
so replace it by its equivalent drawn from the empirical distribution, K∗/n. There are no
definitive rules about how to do this; in Section 2.5 we saw three different approaches to
resampling. The best way to resample is to ask ourselves “If this trial were run again, what
is a good way to use the data at hand to synthesize a result that I might plausibly see?” A
reasonable approach in this case is to let K∗ be the number of heads in 10 values drawn at
random from the observed sample, i.e. from 9 heads and 1 tail, which is K∗ ∼ Binom(n, k/n).
Putting all this together, we have obtained the expression

P
(K∗

n
∈
[
k/n − δ, k/n + δ

])
, where K∗ ∼ Binom(n, k/n). (13)

The third step is to use the Monte Carlo method to estimate the probability (13). For
n = 10, k = 9, δ = 0.1, using 10,000 samples, I obtained the answer 92.8%.

1 n ,k ,δ = 10, 9 , 0.1
2 Kstar = np.random. binomial(n , k/n , s ize=10000)
3 np.mean(np. logical_and(Kstar/n>= k/n−δ , Kstar/n<= k/n+δ))

Putting all these steps together, and pivoting expression (12) to emphasize p, we get

P
(
p ∈ [p̂− 0.1, p̂+ 0.1]

)
≈ 92.8%, [p̂− 0.1, p̂+ 0.1] = [0.8, 1].

I have separated this into two separate statements. The probability statement on the left is
about a procedure that we could run on any hypothetical dataset, and it uses p̂ to signify
a random variable. The equality on the right is based on the actual value of p̂ that we get
from the actual dataset.

Caveat programmator. Bootstrap resampling is a universal approximation technique. If you
invent an unhelpful probability statement in step 1, or if you use a dodgy resampling method
for step 2, you might end up with a useless answer. You always need to do a sanity check in
your head and ask yourself “For the dataset and question at hand, is there any step in the
approach I’ve taken that will likely give me nonsensical answers?” A data scientist keeps this
question at the back of her mind, always. Meanwhile, it’s a matter of research in theoretical
statistics to find out which probability statements and resampling methods work robustly for
which types of question.

3.4 Model selection 47

3.4. Model selecƟon
This is the topic of Example Sheet 2 questions 3 and 5, and also of Example Sheet 1 question
2.

48 3.5 Pragmatic inference

3.5. PragmaƟc inference
I hope this section leaves you uneasy. On one hand, a Bayesianist won’t draw any conclusions
at all without a prior—but where do we get prior beliefs from, if not data? On the other
hand, a frequentist takes a straightforward question and produces such a contorted answer
that you feel you need a hot shower to clean your mind afterwards. Is data science a house
built on sand?27

The pragmatic answer is that both approaches are different ways to account for uncer-
tainty, and often in data science there are several different sources of uncertainty, and it’s
useful to be able to mix them.

Example (Bayesian hyperparameters). In the Bayesian approach to the coin question, I pick as
my prior belief P ∼ Beta(δ, δ). This has the neat feature that the posterior belongs to the
same family as the prior, (P |K = k) ∼ Beta(k+δ, n−k+δ). If δ = 1 then the prior is uniform.
But honestly I have no idea what δ should be. I declare δ to be a hyperparameter, which
is a fancy way of saying “parameter that I don’t have a prior for”, and I use non-Bayesian
criteria to pick a value for it.

Example (Probability as an API). In the frequentist approach to the coin question, I work out
that [0, .8] is a 34% confidence interval, and [0, .9] is a 74% confidence interval. I pass this in-
formation on to a Bayesian data scientist, who treats it like a distribution function, and uses
it as a prior distribution for her next analysis. This doesn’t make sense, but it gets the job
done: I’ve expressed my uncertainty about the parameter, and she has incorporated uncer-
tainty into her model. We are in effect using the language of probability as a communications
API.

Sometimes there is prior data, e.g. someone has conducted a study of “typical bias in
coins used in data science textbook illustrations”. A Bayesian data scientist might translate
those observed frequencies directly into a prior distribution.

Example (Mixed effects modeling). I am analyzing data from a randomized controlled clinical
trial, with some subjects taking active medication and some subjects on placebo. In this
trial, each subject was assessed on ten visits to the clinic; the condition of patient i on visit
j is Xi,j . I wish to know if there is a systematic difference between the two types of subject.

It’s common that the measurements from a single individual are clustered together,
so it’s not useful to model all the Xi,j as independent. Instead, I’ll model them using a
per-subject construct. Let patient i have a ‘wellness score’ Θi ∼ Normal(µti , ρ

2) where ti ∈
{active, placebo}, and let Xi,j ∼ Normal(Θi, σ

2) be independent given Θi. This model allows
an individual subjects’s measurements to be clustered tightly together (if σ is small), and it
also allows for a systematic difference between the two types of subject (if µactive ̸= µplacebo).

In this model, Θi is a parameter for Xi,j , and we are treating Θi as a random variable,
which is what Bayesians do. But we can at the same time use maximum likelihood estimation
and bootstrap resampling for µ and ρ and σ, like a frequentist. This is called mixed effects
modelling. The Θi are called random effects and the other parameters are called fixed effects.

The final example is from work by Alan Turing and Irving Good on the Enigma ma-

27Some great minds have gone down fruitless paths trying to understand inference. For an account of
the history: Donald Gillies. Philosophical theories of probability. Routledge, 2000. And Ian Hacking. The
Emergence of Probability: A Philosophical Study of Early Ideas About Probability Induction and Statistical
Inference. 2nd ed. CUP, 2006.

3.5 Pragmatic inference 49

chine28. For each message, the German operator would choose a trigraph (sequences of three
letters) from a book, the Kenngruppenbuch, which contained all possible trigraphs. The
trigraph was used to initialize the wheel positions of the machine, after which the message
could be encrypted. Each operator had his own copy of the Kenngruppenbuch, and marked
every trigraph that he used and did not re-use it, though it might still be used by other
operators. In order to tell the receiver which trigraph was being used, the operator encoded
the trigraph using one of nine secret ‘digraph tables’, with a rule for which table to use on
which day; the digraph tables were refreshed once a year or so. The operator would transmit
this encoded version of the trigraph, and the receiver would use the digraph table to recover
the trigraph. Every day, Bletchley Park had to guess which digraph table was in use that
day. Turing devised a method for this, which relied on knowing the distribution of trigraphs.
He found, for example, that trigraphs at the top of a page were more likely to be chosen. One
step in the calculation was to estimate the probability that a previously unseen trigraph had
been chosen. Turing never published his statistical work; it was left to Good to develop the
ideas and publish them. Their estimation method is an example of what is now known as
empirical Bayesianism. Extensions of this method are in use in linguistics (e.g. to estimate
Shakespeare’s total vocabulary, based on the texts we have of his) and in ecology (to estimate
species diversity, based on a sample).

Example (Empirical Bayesianism). I am catching butterflies. Each butterfly species i has fre-
quency θi, so the probability that the next butterfly I catch belongs to species i is θi/

∑
j θj .

What is the probability that the next butterfly I catch is of a species I haven’t seen before?
Let Xi be the number of butterflies I have seen so far of species i. Let’s model Xi ∼

Poisson(θi). The Poisson random variable is a common modeling choice for discrete counts;
its mean is EXi = θi and its density is P(Xi = x) = θxi e

−θi/x!. If we knew the θi, and we
knew the total number of species n, then it would be easy to work out the probability of
interest:

P
(
next butterfly
is new species

)
=

n∑
i=1

θi1Xi=0

/ n∑
i=1

θi. (14)

But if we don’t know the θi and we don’t know n, what can we do?
Let’s adopt a Bayesian approach and treat the θi as random variables drawn indepen-

dently from some common distribution, say with density function g(θ), and let Θ be a typical
value, Pr(Θ = θ) = g(θ), and let X ∼ Poisson(Θ) be a typical count. Then the numerator
of (14) is

E
(n∑

i=1

θi1Xi=0

)
= nE

(
Θ1X=0

)
= nE

[
E
(
Θ1X=0 |Θ

)]
by the law of total expectation

= nE
(
Θe−Θ

)
= n

∫ ∞

θ=0

θe−θg(θ) dθ.

This integral involves g and n, which we still don’t know. But there is a very clever trick:

E
(n∑

i=1

1Xi=1

)
= nE

(
1X=1

)
= nE

[
E(1X=1 |Θ)

]
= nE

(
P(X = 1 |Θ)

)
= nE

(
Θe−Θ

)
which suggests we approximate the numerator in (14) by

∑
i 1Xi=1, i.e. the number of species

for which we have seen exactly one butterfly. Using similar maths, we can approximate the
denominator in (14) by the total number of samples we’ve seen,

∑
i Xi. Therefore,

P
(
next butterfly
is new species

)
≈ number of species we’ve seen once

total number of butterflies seen so far .

What is remarkable in this example is that we used a genuine Bayesian model but with-
out knowing the prior—and we don’t actually need to know the prior, because we can extract
everything that matters about it from observed frequencies in the data. Large datasets of
parallel situations ‘describe their own priors’.

28I.J. Good. “Turing’s anticipation of empirical Bayes in connection with the cryptanalysis of the naval
Enigma”. In: Journal of Statistical Computation and Simulation (2000). url: http://dx.doi.org/10.1080/
00949650008812016.

http://dx.doi.org/10.1080/00949650008812016
http://dx.doi.org/10.1080/00949650008812016

50 3.5 Pragmatic inference

* * *

For a grand survey of how data science has been shaped by the interaction of Bayesian and
frequentist thinking and by computing resources, see Efron and Hastie29. They say

A good definition of a statistical argument is one in which many small pieces of
evidence, often contradictory, are combined to produce an overall conclusion. In
the clinical trial of a new drug, for instance, we don’t expect the drug to cure
every patient, or the placebo to always fail, but eventually perhaps we will obtain
convincing evidence of the new drug’s efficacy. The clinical trial is collecting
direct statistical evidence, in which each subject’s success or failure bears directly
upon the question of interest. Direct evidence, interpreted by frequentist methods,
was the dominant mode of statistical application in the twentieth century, being
strongly connected to the idea of scientific objectivity.
Bayesian inference provides a theoretical basis for incorporating indirect evidence
[...] The assertion of a prior density g(θ) amounts to a claim for the relevance
of past data to the case at hand.
Empirical Bayes removes the Bayes scaffolding. In place of a reassuring prior
g(θ), the statistician must put his or her faith in the relevance of the “other” cases
in a large data set to the case of direct interest. [...]
The changes in twenty-first-century statistics have largely been demand driven, re-
sponding to the massive data sets enabled by modern scientific equipment. Philo-
sophically, as opposed to methodologically, the biggest change has been the in-
creased acceptance of indirect evidence, especially as seen in empirical Bayes and
objective (“uninformative”) Bayes applications.

Donald Rumsfeld, the former US Secretary of Defense, famously said30

Reports that say that something hasn’t happened are always interesting to me,
because as we know, there are known knowns; there are things we know we know.
We also know there are known unknowns; that is to say we know there are some
things we do not know. But there are also unknown unknowns—the ones we don’t
know we don’t know.

Bayesian calculations quantify uncertainty about parameters, and frequentist calculations
quantify uncertainty about samples, which are both ‘known unknowns’. Wrong models are
the ‘unknown unknowns’.

29Bradley Efron and Trevor Hastie. Computer age statistical inference: algorithms, evidence, and data
science. CUP, 2016. url: https://web.stanford.edu/~hastie/CASI/.

30U.S. Department of Defense news briefing, 12 February 2002, about the failure to find weapons of mass
destruction in Iraq

https://web.stanford.edu/~hastie/CASI/

51

4. StochasƟc processes

Goals. Be able to formulate models for stochastic processes, and understand
how they can be used for estimation and prediction. Be familiar with cal-
culation techniques for memoryless stochastic processes. Understand the
classification of discrete state space Markov chains, and be able to calculate
the stationary distribution, and recognise limit theorems.

Science is often concerned with the laws that describe how a system changes over time, such
as Newton’s laws of motion. When we use probabilistic laws to describe how the system
changes, the system is called a stochastic process. We used a stochastic process model in
Section 1.2 to analyse Bitcoin; the probabilistic part of our model was the randomness of
who generates the next Bitcoin block, be it the attacker or the rest of the peer-to-peer network.
In Part II, you will come across stochastic process models in several courses:

• in Computer Systems Modelling they are used to describe discrete event simulations of
communications networks

• in Machine Learning and Bayesian Inference they are used for computing posterior
distributions

• in Information Theory they are used to describe noisy communications channels, and
also the data streams sent over such channels.

4.1. Markov chains
Example 4.1. The Russian mathematician Andrei Markov (1856–1922) invented a new type
of probabilistic model, now given his name, and his first application was to model Pushkin’s
poem Eugeny Onegin. He suggested the following method for generating a stream of text
C = (C0, C1, C2, . . .) where each Cn is an alphabetic character:

As usual, we write
C for the random
variable and c for
an actual value.
Technically
speaking, C is a
function that
returns an infinite
sequence, and we
ought to define it as
a lazy list rather
than writing out a
non-terminating
while loop.

1 alphabet = [’a ’ , ’b ’ , . . .] # a l l p o s s i b l e c h a r a c t e r s i n c l . punc tua t i on
2 next_char_prob = {(’a ’ , ’a ’) : [0 ,0 , .1 , . . .] , (’a ’ , ’b ’) : [. 5 ,0 , . . .] }
3 c = [’o ’ , ’n ’] # a r b i t r a r y s t a r t i n g s t r i n g o f l e n g t h 2
4
5 while True :
6 p = next_char_prob [(c[−2],c[−1])] # the l a s t two e l ements
7 c .append(random. choice(alphabet , weights=p))

In this code, next_char_prob is a dictionary where each value p=next_char_prob[...] is a
vector of probabilities, and where p[i] is the probability that the next character is alphabet[i].

We can measure next_char_prob for a piece of literature by looking at all trigrams
i.e. sequences of three characters. Markov tabulated m-grams for several works by famous
Russian authors, and suggested that the next_char_prob table might be used to identify an
author.

Here is some Shakespeare generated in this method. The source is all of Shakespear’s
plays, with stage directions omitted, and converted to lowercase.

once. sen thery lost like kin ancry on; at froan, is ther page: good haves have
emst upp’d ne kining, whows th lostruck-ace. ’llycur wer; hat behit mord. misbur
greake, weave o’er, thousing i se to; ang shal spird

Here is some text generated with 5-grams rather than trigrams.

once is pleasurely. though the the with them with comes in hand. good. give and
she story tongue. what it light, would in him much, behold of busin! how of ever
to yearling with then, for he more riots annot know well.

DefiniƟon. A Markov chain is a sequence (X0, X1, X2, . . .) where each Xn is a discrete
random variable and

P(Xn+1 = xn+1 |X0 = x0, X1 = x1, . . . , Xn = xn) = P(Xn+1 = xn+1 |Xn = xn)

for all x0, . . . , xn+1. (15)

52 4.1 Markov chains

(To be precise, the equation must hold for all x0, . . . , xn+1 such that P(X0 = x0, . . . , Xn =
xn) > 0, since otherwise the conditional probability isn’t defined.) If equation (15) holds and
furthermore the probability does not depend on n, i.e. if there is some matrix P such that

P(Xn+1 = y |Xn = x) = Pxy

then the process is called a time-homogeneous Markov chain with transition matrix P .

In IA Discrete Mathematics you learnt about finite automata. What is the relationship
to Markov chains?

• Finite automata and Markov chains both have a set of possible states, and a lookup
table / transition relation that describes progression from one state to the next.

• Finite automata are for describing algorithms that accept input, so the lookup table
specifies ‘what happens next, based on the current state and the given input symbol?’
Markov chains are for describing systems that evolve by themselves, without input.

• Non-deterministic finite automata allow there to be several transitions out of a state,
but they do not specify the probability of each transition, since they are intended to
model ‘what are all the things that might happen?’ Markov chains do specify the
transition probabilities, since they are intended to model ‘what are the things that
typically happen?’

• Markov chains are allowed to have an infinite state space, e.g. the space of all integers.
(They can even be defined with uncountable state spaces in which case Xn is a contin-
uous random variable; the definition needs to be modified to refer to transition density
functions rather than transition probabilities.)

The word chain means that the sequence (Xn)n≥0 is indexed by an integer n. There are
related definitions for continuous-time processes, and these will be used in Part II Computer
Systems Modelling, but we will not study them further in this course.

In the Shakespeare example, the next character was chosen based on the previous two
characters, which at first glance looks like it doesn’t satisfy equation (15). The trick is to
define X appropriately: in this case we should define Xn = (Cn, Cn+1). Then, the text
generation rule can be rewritten as

1 x = [(’o ’ , ’n ’)] # a r b i t r a r y v a l u e f o r x [0]
2 c = x [0]
3
4 while True :
5 lastx = x[−1]
6 nextchar = random. choice(alphabet , next_char_prob [lastx])
7 nextx = (lastx [−1], nextchar)
8 x .append(nextx)
9 c .append(nextchar)

This way of writing the code makes it clear that X is a time-homogeneous Markov chain.
The actual text C is a byproduct of X.

LAWS FOR CONDITIONAL PROBABIL ITY

All calculations with Markov chains make heavy use of conditional probability, so it’s worth
gathering together some results. Every law for plain probability still works if you just attach
‘given C’ to every probability statement. For the laws in the following table, A and B and
C are events, and X and Y are discrete random variables.

4.1 Markov chains 53

Definition of conditional probability
P(A ∩B) = P(A |B)P(B) P(A ∩B | C) = P(A |B ∩ C)P(B | C)

Densities sum to 1∑
x P(X = x) = 1

∑
x P(X = x | C) = 1

Law of total probability
P(A) =

∑
x P(A |X = x)P(X = x) P(A | C) =

∑
x P(A |X = x, C)P(X = x | C)

Definition of independence / conditional independence
P(X = x, Y = y)

= P(X = x)P(Y = y)
P(X = x, Y = y | C)

= P(X = x | C)P(Y = y | C)

CALCULATIONS BASED ON MEMORYLESSNESS

Equation (15) says that if we know the present state Xn, then the past gives us no extra
information about what will happen next. This is known as memorylessness, or as the Markov
property. Most calculations with Markov chains revolve around conditioning on a previous
step and then applying memorylessness. The general strategy for Markov problems (and
indeed for almost any probability calculation) is

Draw the causal diagram that underlies the model. Write out a probability ex-
pression that you want to calculate, and identify the random variables whose
distributions you want to derive. Add in values for any random variables that are
their direct antecedents in the causal graph. Rewrite probabilites to have the form
‘probability of a value at one node of the causal diagram, given its immediate
antecedents’.

Here are some examples where we apply this strategy. Look back at Section 1.2 to see how
we applied it to the Bitcoin example.

Example 4.2 (MulƟstep transiƟon probabiliƟes). The winter weather in Cambridge varies from
grey (g) to drizzle (d) to rain (r). Suppose that the weather changes from day to day
according to the Markov chain drawn below. If it is grey today, what’s the chance that it
will be grey three days from today?

r

d g

0.2

0.6
0.20.3

0.7

0.5
0.5

P =

r d g

r 0.2 0.6 0.2
d 0.3 0 0.7
g 0 0.5 0.5

The state transition diagram can also be written as a matrix P of transition probabilities.
When you write out a Markov transition diagram or matrix, double-check that every row
sums to 1, i.e. that all the total probability of all edges out of a node is equal to 1.

The question is asking us to calculate
P(X3 = g |X0 = g).

The underlying mechanism of a Markov chain is ‘choose the next state based on the current There are two quite
separate diagrams
involved here: the
state space diagram
which shows
transition
probabilities
between states; and
the causal diagram
which shows which
random variables
depend on which
other random
variables.

state’, which we can draw as a causal diagram
X0 → X1 → X2 → X3 → . . .

We want to calculate something about the distribution of X3, and X3 depends on X2, so we
should introduce a value for X2. But X2 depends on X1, so we should also introduce a value
for X1. Finally, X1 depends on X0, and the question tells us what X0 is. Putting in all these
extra values, via the law of total probability (conditional form),

P(X3 = g |X0 = g) =∑
x1, x2

P(X3 = g |X2 = x2, X1 = x1, X0 = g)P(X2 = x2, X1 = x1 |X0 = g).

54 4.1 Markov chains

The first term has achieved exactly what we want: it’s about X3, and it conditions on the
antecedent X2, and the Markov property tells us that it simplifies:

P(X3 = g |X0 = g) =
∑
x1,x2

Px2 g P(X2 = x2, X1 = x1 |X0 = g).

The general strategy says we should rewrite the second term so that it has a random variable
on the left and its immediate causal antecedents on the right. We can achieve this using the
definition of conditional probability (conditional form),

P(X3 = g |X0 = g) =
∑
x1,x2

Px2 g P(X2 = x2 |X1 = x1, X0 = g)P(X1 = x1 |X0 = g).

Another application of the Markov property, and then rearranging terms, gives us an explicit
formula for the probability we want,

P(X3 = g |X0 = g) =
∑
x1,x2

Px2 gPx1 x2Pg x1 =
∑
x1,x2

Pg x1Px1 x2Px2 g

which may be written in matrix form as [P 3]gg. To compute it in Python,

1 P = np. array ([[0 .2 , 0.6 , 0.2] , [0.3 , 0 , 0.7] , [0 , 0.5 , 0 .5]])
2 assert a l l (P.sum(axis=1) == 1) # check row sums are a l l equa l to 1
3 (P @ P @ P)[2 ,2] # compute P^3 then p i c k out e lement at [2 , 2]
4 np. l ina lg .matrix_power(P, 3)[2 ,2] # another way to compute P^3
5 # r e t u r n s the answer : 0 .505

Exercise 4.3 (Extended Markov property). Let X be a Markov chain. The Markov property,
equation (15) says that if we know the present state Xn, then the past (X0, . . . , Xn−1) gives
us no extra information about the next step Xn+1. Prove that the same holds true further
into the future, i.e. for any (x0, . . . , xn+m),

P(Xn+m = xn+m, . . . , Xn+1 = xn+1 |Xn = xn, . . . , X0 = x0)

= P(Xn+m = xn+m, . . . , Xn+1 = xn+1 |Xn = xn).

Example 4.4 (Hiƫng probabiliƟes). A web surfer starts at page α, and from each page picks an
outgoing link at random from that page. What is the chance they hit ω before returning to
α?

ϵ

α

β

δ

ω

γ

Let Xn be the page that the web surfer is on after n clicks, X0 = α, and write X for the
entire process X = (Xn)n≥0. We want to calculate

P
(
X hits ω at some n ≥ 1
before hitting α

∣∣∣∣ X0 = α

)
.

This is open-ended—X could first hit those two destinations at any n ≥ 1—so there’s no
clean way for us to condition on the entire path, as we did in Example 4.2. Instead, let’s
condition just on X1. Using the law of total probability (conditional form),

P
(
X hits ω at some n ≥ 1
before hitting α

∣∣∣∣ X0 = α

)
=
∑
x1

P
(
X hits ω at some n ≥ 1
before hitting α

∣∣∣∣ X1 = x1, X0 = α

)
P
(
X1 = x1 |X0 = α

)
.

4.1 Markov chains 55

The first term involves conditioning on both X0 and X1, and the extended Markov property
(Example 4.3) says that conditional on X1 the future is independent of X0. Thus

P
(
X hits ω at some n ≥ 1
before hitting α

∣∣∣∣ X0 = α

)
=
∑
x1

Pαx1
P
(
X hits ω at some n ≥ 1
before hitting α

∣∣∣∣ X1 = x1

)
.

The final trick is to ‘reset the clock’. Let’s define

πx = P
(
X hits ω at some n ≥ 0
before hitting α

∣∣∣∣ X0 = x

)
.

It doesn’t make any difference whether we start measuring time from n = 0 or from n = 1,
since the process follows the same dynamics regardless, thus

P
(
X hits ω at some n ≥ 1
before hitting α

∣∣∣∣ X0 = α

)
=
∑
x

Pαxπx (16)

and furthermore (by repeating the entire conditioning argument we have just been through)

πx =
∑
y

Pxyπy (17)

and clearly πα = 0 and πω = 1. Rewriting equations (16) and (17) as matrix equations, π is
a 6-dimensional vector with elements in [0, 1] and

P
(
X hits ω at some n ≥ 1
before hitting α

∣∣∣∣ X0 = α

)
=
[
Pπ
]
α
, π = Pπ.

In Python,

1 # S t a t e s a re i n the o r d e r [α ,β ,γ ,δ ,ϵ ,ω]
2 # Set up an ad jacency mat r i x f o r the graph ,
3 # then s c a l e i t so rows sum to 1 (and a s s e r t they do)
4 P = np. array ([[0 ,1 ,1 ,0 ,0 ,0] , [0 ,0 ,0 ,1 ,1 ,0] , [1 ,0 ,0 ,0 ,0 ,1] ,
5 [0 ,1 ,0 ,0 ,0 ,1] , [1 ,0 ,0 ,0 ,0 ,0] , [0 ,0 ,1 ,0 ,1 ,0]])
6 P = P / P.sum(axis=1)[: , np. newaxis]
7 assert a l l (P.sum(axis=1) == 1)
8 # We want to s o l v e P .π=π i . e . (P−I) .π=0, and a l s o π [0]=0 and π [5]=1
9 # Bundle a l l the e q u a t i o n s t o g e t h e r i n a matr ix , and s o l v e with np . l i n a l g . l s t s q
10 A = np. concatenate((P − np. eye(6) , [[1 ,0 ,0 ,0 ,0 ,0] , [0 ,0 ,0 ,0 ,0 ,1]]))
11 π = np. l ina lg . l stsq (A, [0 ,0 ,0 ,0 ,0 ,0 , 0 ,1])[0]
12 # Return the h i t t i n g p r o b a b i l i t y we wanted to c a l c u l a t e
13 (P @ π) [0]
14 # r e t u r n s the answer : 0 .4300

MEMORY LENGTH

The rule we used to generate pseudo-Shakespeare, “pick the next charactacter based on the
preceding m”, produces better-looking results for larger m—but the larger m is, the more
storage space we need for the lookup table, and the fewer (m + 1)-grams we have with
which to estimate frequencies. If m gets even larger, the algorithm can’t do much more than
regurgitate the input text on which it was trained.

Neural networks can be used to get around these limitations: they can learn how much
information from preceding elements in the sequence should be incorporated into the state
of the Markov chain, and they’re not limited to fixed-m state descriptor. Here is an example
of Shakespeare generated using a neural network rather than trigram frequencies31.

31Andrej Karpathy, The unreasonable effectiveness of recurrent neural networks, May 2015, http:
//karpathy.github.io/2015/05/21/rnn-effectiveness/. He writes “There’s something magical about Re-
current Neural Networks (RNNs) ... We’ll train RNNs to generate text character by character and ponder
the question ‘how is that even possible?’ ”

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

56 4.1 Markov chains

PANDARUS:
Alas, I think he shall be come approached and the day When little srain would be
attain’d into being never fed, And who is but a chain and subjects of his death, I
should not sleep.
Second Senator:
They are away this miseries, produced upon my soul, Breaking and strongly should
be buried, when I perish The earth and thoughts of many states.
DUKE VINCENTIO:
Well, your wit is in the care of side and that.

4.2 Estimation in a hidden Markov model 57

4.2. EsƟmaƟon in a hidden Markov model
Example. A person is moving about. At each timestep, we receive a noisy GPS reading of
their current location. How can we estimate their current location?

This is the topic of Example Sheet 3.

58 4.3 Limit theorems

4.3. Limit theorems
When analysing Markov chains, it’s often useful to be able to ask about their long-run
average behaviour. We asked the same question in Section 2 about sums of independent
random variables. Markov chains however have a richer range of possible behaviours, and
it turns out there are three separate ways to ask ‘what is average behaviour?’ To reduce
the mathematical overhead we will restrict attention in this section to time-homogeneous
Markov chains with a finite state space (though most of the results also hold for infinite state
spaces). We will illustrate with two examples, the Markov chain for Cambridge weather from
Section 4.1, and a pathological case.

r

d g

0.2

0.6
0.20.3

0.7

0.5
0.5

α

βγ δ

ϵ

ζ

0.4

1

1

0.6

1 1
0.5

0.5

4.3.1. STATIONARY BEHAVIOUR

DefiniƟon. A Markov chain is said to be stationary if its distribution does not change over
time, i.e. if there is a vector π such that P(Xn = x) = πx for all n. Conversely, if π is a
probability distribution such that

P(X0 = x) = πx for all x =⇒ P(Xn = x) = πx for all x and n

then π is called a stationary distribution or equilibrium distribution.
The word ‘stationary’ does not mean that the Markov chain has somehow stopped—a

Markov chain is defined to go on forever, always stepping randomly from state to state. It is
the distribution that is stationary i.e. unchanging.

If π is a stationary distribution, and we pick the Markov chain’s initial state X0 ran-
domly according to π, then X1 will have distribution π and so will X2 and so on, i.e. the
chain itself will be stationary. If we pick the initial state in some other way, it’s typically not
the case that X1, X2 etc. have distribution π— but it turns out that stationary distributions
are still useful for understanding the long-run behaviour of the chain, as we will see in the
rest of Section 4.3

We can find a stationary distribution using the same sort of calculations based on
memorylessness that we used in Section 4.1. If X is a stationary Markov chain then

P(Xn = x) =
∑
y

P(Xn = x |Xn−1 = y)P(Xn−1 = y) for all x, n

hence a stationary distribution π must satisfy

πx =
∑
y

πyPyx for all x (18)

where P is the transition matrix. For the Cambridge weather Markov chain, writing out in
longhand the equations from (18),

πr = 0.2πr + 0.3πd

πd = 0.6πr + 0.5πg

πg = 0.2πr + 0.7πd + 0.5πg.

Although there are three equations and three unknowns, when we try to solve them we find
there is not a unique solution: if the vector π is a solution then so is κπ for any constant κ.
To pin π down we need an extra equation, an equation that comes from the fact that π is a
probability distribution: ∑

x

πx = 1.

4.3 Limit theorems 59

Rather than solve all these simultaneous equations with algebra, we can turn them into
matrix notation and then ask the computer to solve them. Equation (18) becomes π = πP ,
or equivalently (P − I)⊤π = 0. The normalizing equation is 1⊤π = 1. In Python, In numpy, if π is a

one-dimensional
array then it can be
used either as a row
vector or a column
vector. In πP it is
treated as a row
vector, and in
(P − I)⊤π it is
treated as a column
vector.

1 P = np. array ([[0 .2 , 0.6 , 0.2] , [0.3 , 0 , 0.7] , [0 , 0.5 , 0 .5]])
2 A = np. concatenate (((P − np. eye (3)). transpose () , [[1 ,1 ,1]]))
3 π = np. l ina lg . l stsq (A, [0 ,0 ,0 , 1]) [0]

We can compute a stationary distribution for the pathological Markov chain using
exactly the same method, but there is a problem: equation (18) has multiple solutions, even
after imposing the extra equation

∑
x πx = 1. If we just write out all the equations longhand,

πα = 0

πβ = 0.4πα + πγ

πγ = πβ

πδ = 0.6πα + 0.5πζ

πϵ = πδ + 0.5πζ

πζ = πϵ

πα + πβ + πγ + πδ + πϵ + πζ = 1

and solve these equations simultaneously, we discover that the general solution is

[πα, πβ , πγ , πδ, πϵ, πζ] = a
[
0, 1/2, 1/2, 0, 0, 0

]
+ (1− a)

[
0, 0, 0, 1/5, 2/5, 2/5

]
(19)

for any real value a (though only a ∈ [0, 1] will yield a legitimate probability distribution).
In Python, if we look carefully at the output of np.linalg.lstsq() and read the documentation,
we see it telling us that the linear equation does not have a unique solution; there are further
np.linalg tools that can extract the general form of the solution.

Equation (19) actually has a nice intuitive explanation. The Markov chain could be
spending all its time in states {β, γ} with stationary distribution [1/2, 1/2], or it could be
spending all its time in states {δ, ϵ, ζ} with stationary distribution [1/5, 2/5, 2/5].

Theorem (uniqueness of staƟonary distribuƟon). Consider a Markov chain with transition ma-
trix P and a finite state space. The Markov chain is called irreducible if it is possible to
get from any state to any other. If the Markov chain is irreducible, then there is a unique
stationary distribution, and it is the unique solution π to

π = πP, π⊤1 = 1. (20)

Example. The Cambridge weather Markov chain can get from any state to any other state;
to get from g to r takes two steps, and all the others can be achieved in one step. Therefore
it is irreducible, therefore it has a unique stationary distribution.

The pathological Markov chain is not irreducible, because it is impossible to get from
β to α.

4.3.2. DETAILED BALANCE

Often, when we want to find the stationary distribution, there’s nothing for it but to use
np.linalg and solve a matrix equation. In some special cases the Markov chain has a form that
lets us find the stationary distribution with very little algebra. This seems like a curiosity, not
worth mentioning in a data science course—except that there is a clever trick for generating
random variables from general Bayesian posterior distributions that relies on exactly this
special case. The clever trick is called Gibbs sampling, and it is taught in Part II Machine
Learning and Bayesian Inference.

Theorem (detailed balance). Let X be a Markov chain with transition matrix P . If there is a
vector π such that

πxPx y = πyPy x for all states x and y (21)
then π solves π = πP . Equation (21) is called the detailed balance condition. This theorem
is trivial to prove: just write out (18) and substitute in (21).

60 4.3 Limit theorems

If the chain is irreducible, then the theorem of Section 4.3.1 tells us that there is a
unique stationary distribution. If we have found a distribution π that solves the detailed
balance condition, then π must be that unique stationary distribution.

Exercise 4.5. Calculate the stationary distribution of the following Markov chain.

a b c
α α

1− α1− α

1− α α

Is it irreducible? Actually, if α = 0 or α = 1 then the chain is not irreducible: if α = 0 then
it gets stuck in state a, so the stationary distribution is πa = 1, πb = πc = 0. If α = 1 then
it gets stuck in state c, so the stationary distribution is πa = πb = 0, πc = 1.

In the case 0 < α < 1, it’s easy to see that it’s possible to get from any state to any
other. Therefore the theorem of Section 4.3.1 applies, and so there is a unique stationary
distribution. It never hurts to try to solve the detailed balance equations; either we find the
stationary distribution without much work, or we quickly discover that they can’t be solved
and we have to solve the full equations (20). In this case, the detailed balance equations are

for (a, b) and (b, a): πaα = πb(1− α)

for (a, c) and (c, a): πa0 = πc0

for (b, c) and (c, b): πbα = πc(1− α)

for (a, a) etc.: πa(1− α) = πa(1− α) etc.

and they have the solution

πb = πa
α

1− α
, πc = πa

(α

1− α

)2
.

Putting in the constraint πa + πb + πc = 1, we get

[
πa, πb, πc

]
=

1

1 + α/(1− α) + α2/(1− α)2

[
1,

α

1− α
,
(α

1− α

)2]
.

Exercise 4.6 (Random walk on an undirected graph). A knight moves on an otherwise empty chess-
board, each timestep picking one of its legal moves at random (out of 8 legal moves if it is
in the center of the board, and 2 legal moves if it is in a corner). Show that the stationary
probability of being in position x is mx/336, where mx is the number of legal moves out of
position x.

We should first check whether the Markov chain described in the question is irreducible,
since otherwise there isn’t even a unique stationary distribution. This is just a matter of
sketching a chessboard and persuading ourselves that a knight can indeed get from any
position to any other position, given enough moves.

The question tells us the stationary distribution and asks us to verify it. We could plug
it into the full equations (20), but if it happens to solve the detailed balance equations then
that is sufficient and our work will be simpler. The detailed balance equations are

mx

336
× 1

mx
=

my

336
× 1

my
if x ↔ y is legal,

mx

336
× 0 =

my

336
× 0 if x ↔ y is illegal.

These equations are certainly true, and they are the only equations that need to be satisfied,
since x → y is legal if and only if y → x is legal. Therefore the suggested distribution solves
detailed balance.

Finally, we need to verify that the suggested distribution is indeed a distribution, i.e.
that it sums to 1. Counting the number of possible moves from every position on the
chessboard gives a total of 336, thus

∑
x mx/336 = 1.

It’s easy to check that the result described here can be generalised to a random walk
on any undirected graph.

4.3 Limit theorems 61

4.3.3. ERGODIC THEOREM

Theorem (ergodicity). Let X be an irreducible Markov chain with stationary distribution π.
Then the long-run average of time spent in each state converges to π. Mathematically,

E
(1
n

n∑
i=1

1Xi=x

)
→ πx as n → ∞, for all states x. (22)

If the Markov chain’s initial state X0 were chosen from distribution π, then we know from
Section 4.3.1 that Xn would have distribution π for every n, thus E1Xi=x = P(Xi = x) = πx

for all i, and so (22) would be true exactly, no need for a limit. What’s remarkable is that
the theorem holds regardless of how the initial state is chosen.

Example. Consider the pathological Markov chain, starting at X0 = α. This chain is not
irreducible, so the ergodic theorem doesn’t apply directly. But we can still say how the
chain behaves: with probability 0.4 it jumps to X1 = β, and thereafter it behaves just like
an irreducible chain on {β, γ} and spends half its time in each of those two states; or with
probability 0.6 it jumps to X1 = δ, and thereafter it behaves just like an irreducible chain
on {δ, ϵ, ζ} and spends roughly 20% of its time in δ, 40% in ε, and 40% in ζ.

4.3.4. L IMITING BEHAVIOUR

In the Cambridge weather Markov chain, the ergodic theorem tells us that the long-run
fraction of rainy days is equal to πr, where π is the stationary distribution. So we’d expect
that, if we pick a day arbitrarily, the probability of rain is πr. This works for the Cambridge
weather example, but it doesn’t always work... the caveat is illustrated by states β and γ in
the pathological Markov chain: if the chain starts in X0 = β then Xn = β for even n and
Xn = γ for odd n, and so we can’t make a blanket claim about ‘typical Xn’. The following
theorem gives a general condition under which time-averages correspond to typical values.

Theorem. Let X be a Markov chain. A state x is said to be aperiodic if there exists an n0

such that P(Xn = x | X0 = x) > 0 for all n ≥ n0. If the chain is irreducible and has an
aperiodic state, then all its states are aperiodic, and furthermore

P(Xn = x |X0 = y) → πx as n → ∞, for all states x and y.

Note that P(Xn = x |X0 = y) = [Pn]x y where P is the transition matrix, according to our
calculations in Example 4.2.

This is most useful as a tool for generating a random variable from distribution π.
In many applications, from statistical physics to Bayesian inference, we want to be able to
generate a random variable from a distribution π that we can’t even write out explicitly.
Suppose we can cunningly devise transition probabilities of a Markov chain to ensure that it
has stationary distribution π. Then we can generate a random variable from distribution π
just by starting the Markov chain in an arbitrary state, and running it for a large number of
steps n, and returning the state Xn.

Exercise. Consider the three-state Markov chain consisting of states δ, ϵ, and ζ from the
pathological Markov chain. Show that all three states are aperiodic.

First we verify that it is irreducible. We can get from any state to any other by following
links δ → ϵ → ζ → δ → . . . , so yes it is irreducible.

For aperiodicity, let’s pick one state arbitrarily, say δ, and work out if that state is
aperiodic. The theorem says that if one state is aperiodic then all states are aperiodic. Can
we get from δ to δ in n steps?

62 4.3 Limit theorems

n can get from δ to δ in n steps?
1 no
2 no
3 yes, δ → ϵ → ζ → δ
4 no
5 yes, going around the loop ϵ → ζ → ϵ once
6 yes, going around the loop δ → ϵ → ζ → δ twice
7 yes, using two loops ϵ → ζ → ϵ
8 yes, since 8 = 5 + 3 and 5 and 3 are possible
9 yes, 3+3+3
n ≥ 8 yes, by mixing loops of length 5 and length 3

(This is related to IA Discrete Mathematics. We can go from δ to δ in 3 steps, and in 5 steps.
The greatest common divisor of 3 and 5 is 1, therefore there is an integer linear combination
equal to 1, in this case 2 × 3 − 1 × 5 = 1. We can achieve any n = 5m by m copies of the
5-step loop, and we can achieve n = 5m+ l by adding l copies of the 2× 3− 1× 5 widget.)

63

5. Feature spaces

Goals. Refresh your memory of IA Maths for NST, where you were taught
about linear spaces, bases, inner products, and projections. Understand the
link between linear regression and inner products. Get experience of feature
engineering.

In data science, a feature is any measurable property of the objects being studied. A linear
model is a model with unknown parameters in which the parameters are weighted by features
and combined linearly. Here’s a very simple example.

The Iris dataset was collected by the botanist Edgar Anderson and popularized32 by Ronald
Fisher in 1936. Fisher has been described as a “genius who almost single-handedly created the
foundations for modern statistical science”. The dataset consists of 50 samples from each of three
species of iris, each with four measurements.

Petal length Petal width Sepal length Sepal width species
1.0 0.2 4.6 3.6 setosa
5.0 1.9 6.3 2.5 virginica
5.8 1.6 7.2 3.0 virginica
1.7 0.5 5.1 3.3 setosa
4.2 1.2 5.7 3.0 versicolor
...

Suppose we’re interested in how petal length depends on sepal length. Here is a plot:

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Sepal.Length

0

1

2

3

4

5

6

7

Pe
ta

l.L
en

gt
h

setosa
versicolor
virginica

The plot also shows a smooth curve for the fitted model

Petal.Length ≈ α+ β Sepal.Length+ γ (Sepal.Length)2.

By fitted model we mean that the parameters α, β and γ have been chosen so as to make the
approximation as good as possible.

What does “make the approximation as good as possible” mean? In Section 5.4 we will
see how to formulate linear models probabilistically. This will let us be precise about what
the best fit is—namely, the maximum likelihood fit.

* * *

In this model, we would say there are two features, Sepal.Length and (Sepal.Length)2.
Rows in the dataset have other attributes, and they can be transformed to create an infinite

32It’s tempting for computer scientists and mathematicians to think that data science is about algorithms
and calculating with distributions and so on, but shared datasets are arguably more important. C.P. Scott,
the former editor of The Guardian, said “Comment is free, but facts are sacred”.

Modern advances in neural networks and deep learning were propelled by two shared datasets: the MNIST
database of handwritten digits, and the ImageNet database of labelled photos. The story of ImageNet
and of Fei-Fei Li, the researcher who collected it, is told in The data that transformed AI research—
and possibly the world, https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-
and-possibly-the-world/.

In addition to shared datasets, it’s also useful to have a shared challenge, what David Donoho calls a
common task framework. See David Donoho. 50 years of Data Science. Presentation at the Tukey centennial
workshop. 2015. url: http://courses.csail.mit.edu/18.337/2015/docs/50YearsDataScience.pdf

https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-and-possibly-the-world/
https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-and-possibly-the-world/
http://courses.csail.mit.edu/18.337/2015/docs/50YearsDataScience.pdf

64

variety of features, but we’ll only use the word feature for data attributes that are being used
in a model. We call Petal.Length the outcome or label of this model, not a feature.

Why two features, and not one, or three? From the perspective of the person preparing
the dataset, there is only one feature, Sepal.Length. From the perspective of the person
computing α, β, and γ, there are two data features that have to be accounted for, and it’s
irrelevant that they came from the same column in the dataset. From the perspective of
a stickler for definitions, the definition of ‘linear model’ says that parameters are weighted
by features, so there is really a third feature, the constant feature 1 that is being used as a
weight for the α parameter. Don’t get uptight about defining the word ‘feature’, just write
out your models explicitly, and there will be no confusion.

* * *

The model is linear because it combines the unknown parameters α, β and γ in a linear
formula. There’s no reason to think this is in any way a ‘true’ model, and we could equally
well have proposed a non-linear model e.g.

Petal.Length ≈ α− βe−γSepal.Length.

Linear models are especially convenient to work with. They lend themselves to efficient
algorithms; linear models strained the computing capabilities of a desktop PC in the late
1980s, and non-linear models in the form of neural networks strain the computing capabilities
of clusters of GPUs in server farms today.

Linear models are also an easy way to explore aspects of the dataset, and they are
the building block for many other models, some of which you will study in Part II Machine
Learning and Bayesian Inference: support vector machines, perceptrons, and deep neural
networks.

The intuition behind linear modelling comes from the mathematics of linear spaces.
We’ll revise this maths first, before returning to linear modelling.

5.1 Linear mathematics 65

5.1. Linear mathemaƟcs
This picture illustrates all the concepts from vector spaces and linear mathematics that we’ll
need for this data science course:

• Linearly independent basis vectors e1 and e2
• The linear subspace spanned by those vectors, S =

{
λ1e1+λ2e2 : −∞ < λ1, λ2 < ∞

}
• Another vector x can be projected onto the subspace, by finding the point x̃ = λ̂1e1 +

λ̂2e2 in S that is closest to x

• The residual x− x̃ is orthogonal to the basis vectors

We’ll now define some these concepts abstractly and mathematically (leaving projections to
Section 5.4). It’s good to get intuition from three dimensional Euclidean space—but it’s
also useful to have abstract definitions so that the concepts can be applied to more general
settings, as you will see in Part II Digital Signal Processing and Computer Vision (Fourier
transforms and wavelets) and Quantum Computing.

5.1.1. ABSTRACT DEFINITIONS

• Let V be a set whose elements are called vectors, denoted by Roman letters u, v, w,
etc.

• Let F be a field whose elements are called scalars, denoted by Greek letters λ, µ, etc.
For our purposes, take F to be either the real numbers or the complex numbers.

• Let there be a binary operation V × V → V , called addition, written v + w.
• Let there be a binary operation F × V → V , called scalar multiplication, written λv.
• Let there be a binary operation V × V → F , called inner product, written v · w.

Vector space. V is called a vector space over F if the following properties hold: In introductory
geometry it’s
common to use bold
symbols for vectors,
e.g. v + 0 = v and
1v = v. This
notation makes it
clear that 0 is a
vector and 1 is a
scalar. The bold
notation is less
common in more
advanced
applications, so you
have to rely on type
inference to spot
that 0 is a vector
and 1 is a scalar.

1. Associativity: (u+ v) + w = u+ (v + w) for all vectors u, v, w.
2. Commutativity: u+ v = v + u for all vectors u, v
3. Zero vector: there is a vector 0 such that v + 0 = v for all vectors v
4. Inverse: for every vector v there is a vector denoted −v such that v + (−v) = 0

5. λ(v + w) = λv + λw for every scalar λ and vectors v, w
6. (λ+ µ)v = λv + µv and (λµ)v = λ(µv) for all scalars λ, µ and vector v
7. 1v = v for every vector v, where 1 is the unit scalar (i.e. 1λ = λ for every scalar λ).

Linear combinaƟons and bases. Let v1, . . . , vn be vectors in a vector space and λ1, . . . , λn be
scalars. Then the vector λ1v1 + · · ·+ λnvn is called a linear combination of v1, . . . , vn. The
set of all linear combinations

S =
{
λ1v1 + · · ·+ λnvn : λi ∈ F for all i

}
is called the span of {v1, . . . , vn}, and the vectors vi are said to span S. Clearly S ⊆ V , and
it is not hard to check that S is also a vector space. It is called a subspace of V .

66 5.1 Linear mathematics

Vectors v1, . . . , vn in a vector space are said to be linearly independent if

λ1v1 + · · ·+ λnvn = 0 =⇒ λ1 = · · · = λn = 0.

If this is not the case, then they are said to be linearly dependent.
If there is a finite set of vectors e1, . . . , en that span a vector space V , and they are

linearly independent, then they are called a basis for V . It can be shown that any two
bases for a vector space must have the same number of elements; this number is called the
dimension of the vector space.

Given a basis {e1, . . . , en} of a vector space, it can be proved that any vector x can be
uniquely written as

x = λ1e1 + · · ·+ λnen for some scalars λ1, . . . , λn.

The n-tuple (λ1, . . . , λn) is called the coordinates of x with respect to the given basis. If we
pick a different basis we’ll get different coordinates, but of course the vector x itself is still
the same regardless of the basis.

Inner products and orthogonality. Consider a vector space V over the field of real numbers. It
is said to be an inner product space if the inner product satisfies these properties:

8. v · v ≥ 0 for all vectors v, and v · v = 0 if and only if v = 0

9. (λu+ µv) · w = λ(u · w) + µ(v · w) for all vectors u, v, w and scalars λ, µ
10. v · w = w · v for all vectors v and w

An inner product space over the field of complex numbers is defined similarly, except that
condition 10 is replaced by v · w = w · v where λ is the complex conjugate of the complex
number λ. Also, the first part of condition 8 should be interpreted as Im(v · v) = 0 and
Re(v · v) ≥ 0.

Two vectors v and w in an inner product space are said to be orthogonal if v · w = 0.
A set of vectors (which may be finite or infinite) is said to be an orthogonal system if none
of them is equal to 0 and in addition every pair of vectors in the set is orthogonal.

The Euclidean norm for an inner product space is

∥v∥ =
√
v · v.

A vector v with ∥v∥ = 1 is called a unit vector. An orthogonal system is said to be an
orthonormal system if every vector in it is a unit vector.

5.1.2. USEFUL PROPERTIES

Here are some useful properties that can be proved from the abstract definitions.

11. 0v = 0, for every vector v in a vector space.
12. (−λ)v = −(λv), for every vector v in a vector space and every scalar λ.
13. (λv) · w = λ(v · w), for all scalars λ and vectors v, w in an inner product space.
14. 0 · v = 0, for every vector v in an inner product space.
15. For all n and all scalars λ1, . . . , λn and vectors v1, . . . , vn, w in an inner product space,(n∑

i=1

λivi

)
· w =

n∑
i=1

λi(vi · w).

16. If {e1, . . . , en} is an orthonormal system in an inner product space, then for every vector
x in the span of {e1, . . . , en}, the coordinates of x are given by

x =

n∑
i=1

(x · ei) ei.

17. ∥u+ v∥ ≤ ∥u∥+ ∥v∥ for all vectors u, v; this is known as the triangle inequality.

These properties are mostly obvious when we’re working with finite dimensional Eu-
clidean space. For abstract vector spaces, they must be proved directly from the defining
properties 1–10. The proofs are dull definition-pushing, but it’s reassuring to know that it
can be done. Here are some examples.

5.1 Linear mathematics 67

Exercise (Prove useful property 11). In this equation, the left hand side must be referring to the
scalar 0 ∈ F and the right hand side to the vector 0 ∈ V , where V is the vector space over
field F , because otherwise the equation doesn’t make sense—the abstract definitions don’t
define multiplication of vectors, and scalar multiplication yields a vector.

In both the real numbers and the complex numbers (and indeed in any field F), 0 = 0+0.
So, by property 6,

0v = (0 + 0)v = 0v + 0v.

By property 4, there is some vector −(0v) such that 0v +
(
−(0v)

)
= 0. Adding this to each

side of the equation,
0v +

(
−(0v)

)
=
(
0v + 0v

)
+
(
−(0v)

)
and so, using property 1,

0 = 0v +
(
0v + (−(0v))

)
= 0v + 0.

Finally, by property 3,
0 = 0v.

Exercise (Prove useful property 12). Property 6 says that

λv + (−λ)v =
(
λ+ (−λ)

)
v.

In both the real numbers and the complex numbers (and indeed in any field F), λ+ (−λ) =
0 ∈ F , thus

λv + (−λ)v = 0v

which we showed in the previous exercise to be equal to 0 ∈ V . So (−λ)v satisfies property 4
and it is therefore −(λv).

Exercise (Prove useful property 13).

(λv) · w =
(
(λ+ 0)v

)
· w since λ = λ+ 0 ∈ F

= (λv + 0v) · w by property 6
= λ(v · w) + 0(v · w) by property 9
= λ(v · w) since 0µ = 0 ∈ F.

5.1.3. ADVANCED APPLICATION: FOURIER ANALYSIS

In this course on data science, the only vector space we’re interested in is a simple finite-
dimensional Euclidean space over the real numbers. Section 5.2 will go into detail. But first,
to illustrate that there’s some merit in defining vector spaces abstractly, here’s an advanced
application, a step on the way to Fourier analysis.

Inner product space. Let V consist of all continuous complex-valued functions on the interval
[−π, π]. Define addition of functions in the obvious way, define multiplication by a complex
number in the obvious way, and define the inner product to be

f · g =
1

π

∫ π

−π

f(τ)g(τ) dτ.

It is easy to check that properties 1–7 are satisfied, i.e. that this is a vector space over the
field of complex numbers. Using some standard results about integration one can also show
that properties 8–10 are also satisfied, therefore this is an inner product space. (A typical
result: if f is a continuous function, then it is integrable over a finite interval.)

Orthonormal system. Every vector in V is a continuous function. Consider the vectors

{e1, e2, . . . } =

{
1√
2
, cos(τ), sin(τ), cos(2τ), sin(2τ), cos(3τ), . . .

}
.

(The first element 1/
√
2 is a way of writing the constant function f(τ) = 1/

√
2.) With some

A-level trigonometry and calculus, it can be shown that ei · ej = 0 if i ̸= j, and ei · ei = 1 for
every i, i.e. that this set is an orthonormal system.

68 5.1 Linear mathematics

Fourier series. This orthonormal system spans the subspace of V consisting of ‘well-behaved’
functions, and such functions can be written in coordinate form as

f =

∞∑
i=1

(f · ei) ei (23)

or equivalently

f(τ) =
a0
2

+
∞∑
i=1

(
ai cos(iτ) + bi sin(iτ)

)
where

a0 =
1

π

∫ π

−π

f(τ) dτ,

ai =
1

π

∫ π

−π

f(τ) cos(iτ) dτ for i ≥ 1

bi =
1

π

∫ π

−π

f(τ) sin(iτ) dτ for i ≥ 1.

This is known as the Fourier series for f . There are however some technical caveats associated
with infinite series—Useful Property 16 only applies to finite bases, but equation (23) is an
infinite series corresponding to an infinite orthornormal system, and this is why we need the
restriction ‘well-behaved functions’. In Part II Computer Vision and Digital Signal Processing
you will learn more about Fourier analysis and other related ways to decompose functions.

5.2 Features in data 69

5.2. Features in data

Key idea. A numerical feature can be seen as a vector, with one real number
per object in the dataset. A linear model can be seen as a linear combination
of feature vectors, in which the model’s parameters act as scalar multipliers.

Feature vectors are a fundamental concept in machine learning. You will see them again in
Part II Machine Learning and Bayesian Inference, Natural Language Processing, Information
Retrieval, and anything at all to do with neural networks.

In this section we’ll showcase several different ways to use feature vectors to model
data.

5.2.1. POLYNOMIAL FUNCTIONS

For the Iris dataset on page 63, we proposed the model

Petal.Length ≈ α+ β Sepal.Length+ γ (Sepal.Length)2.

Interpret this as a vector equation, where Petal.Length and Sepal.Length refer to entire
columns from the dataset, and the square (Sepal.Length)2 is applied pointwise. All these
vectors are n-dimensional, where n is the number of rows in the dataset. There is an implied
constant vector One in this equation, consisting of n entries all of them 1, and the equation
should really be

Petal.Length ≈ αOne+ β Sepal.Length+ γ (Sepal.Length)2.

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Sepal.Length

0

1

2

3

4

5

6

7

Pe
ta

l.L
en

gt
h

setosa
versicolor
virginica

The code to fit this model is

1 # columns from the d a t a s e t
2 one ,x , y = np. ones(len (data)) , data [’Sepal .Length ’] , data [’Petal .Length ’]
3 # F i t the model : t ake s a f e a t u r e matr ix , and a c o l . v e c t o r o f outcomes
4 model = sklearn . linear_model . LinearRegression(fit_intercept=False)
5 model . f i t (np. column_stack([one , x , x**2]) , y [: , np. newaxis])
6 α ,β ,γ = model . coef_ . squeeze()
7 # p l o t a curve to d e p i c t the f i t t e d v a l u e s from the model
8 newx = np. linspace (4.2 , 8.2 , 200)
9 plt . plot (newx, α + β*newx + γ*newx**2)

In fact the model fitting function always includes a One vector, unless we explicitly tell it
otherwise with fit_intercept=False. Another way to write this code, using the default One
vector and also using model.predict() to relieve us from repeating the model formula, is

4 model = sklearn . linear_model . LinearRegression ()
5 model . f i t (np. column_stack([x , x**2]) , y [: , np. newaxis])
6 newx = np. linspace (4.2 , 8.2 , 200)
7 plt . plot (newx, model . predict (np.column_stack([newx, newx**2]))))

70 5.2 Features in data

5.2.2. DISENTANGLING PERIODIC AND SECULAR EFFECTS

The UK Met Office makes available historic data33 from 37 stations around the UK. Each station
has monthly records for mean daily maximum temperature tmax, mean daily minimum tempera-
ture tmin, days of air frost af, total rainfall rain, and total sunshine duration sun. Coverage varies;
the longest records are from Oxford and from Armagh, going back to 1853.

month tmax tmin af rain sun station lat lng alt_m
1963 Sep 14.7 5.9 0 126.4 127.7 Eskdalemuir 55.311 -3.206 242
1955 Aug – – – 35.1 194.7 Shawbury 52.794 -2.663 72
1937 May 15.3 8.4 0 59.8 184.8 Lowestoft 52.483 1.727 18
2007 Aug 20.6 11.8 0 40.3 204.6 Waddington 53.175 -0.522 68
1925 July 21.8 12.6 0 23.2 – Sheffield 53.381 -1.490 131

...

Here are two stations, Cambridge (measured at the National Institute of Agricultural Botany,
between Churchill and Girton colleges), and Braemar in the Scottish highlands. The plot
shows the mean temperature temp = (tmin+ tmax)/2 as a function of date.

1985 1990 1995 2000 2005 2010 2015 2020

0

10

20

m
ea

n
te

m
p Cambridge
Braemar

Are temperatures increasing? It’s tricky to read this directly off the plot, because of
the annual cycle and because of noise. A crude solution is to simply average over the 12
months of each year, and plot this average over time. This isn’t ideal, because averaging is
lossy i.e. we’d be throwing away data; and because a missing value for one month will cause
the entire year to be missing.

A cleverer solution is to use features to model the effects we’re trying to capture. There
are two effects, an annual cycle, and a (hypothetical) increasing trend, which we can describe
by the model

temp ≈ α+ β sin(2πt+ θ) + γt
where t is the date in years, and α, β, γ, and θ are unknown parameters. (The plot suggests
that α is different for different stations, and the other parameters might also be different, so
let’s concentrate on a single station for now.)

Linear models are much easier to fit than non-linear models. The model we’ve proposed
for tmean is linear in α and β and γ and not in θ—but there is a cunning trick from A-level
trigonometry that lets us rewrite it as a linear model. The trick is

sin(A+B) = sinA cosB + cosA sinB

and so our model can be rewritten

temp ≈ α+ β1 sin(2πt) + β2 cos(2πt) + γt.

This model has three feature vectors: the vector s whose ith element is si = sin(2πti); the
vector c whose ith element is ci = cos(2πti); and the vector t. There is also one outcome
vector tmean. Here is the fitted model for Cambridge:Why is α so

extreme? It is the
temperature in the
year 1 BC (there
was no year 0 AD),
based on linearly
extrapolating the
rate γ. It’s daft to
trust that the
model will predict
well for such a wild
extrapolation!

1985 1990 1995 2000 2005 2010 2015 2020

0

10

20
Cambridge station

The parameters of the fitted model are α = −63.9℃, β1 = −1.07℃, β2 = −6.52℃, and
γ = 0.0372℃/year. The code is

33https://www.metoffice.gov.uk/public/weather/climate-historic

https://www.metoffice.gov.uk/public/weather/climate-historic

5.2 Features in data 71

1 # The data columns and f e a t u r e s we ’ l l use
2 t = data [’yyyy ’] + (data [’mm’]−1)/12
3 temp = (data [’tmin ’]+data [’tmax ’])/2
4 s , c = np. sin(2*π*t) , np. cos(2*π*t)
5 # We ’ l l r e s t r i c t a t t e n t i o n to a su b se t o f rows
6 i = np. logical_and(data [’ station ’] == ’Cambridge ’ , t >= 1985)
7 # F i t a l i n e a r model
8 model = sklearn . linear_model . LinearRegression ()
9 model . f i t (np. column_stack([s , c , t]) [i , :] , temp[i , np. newaxis])
10 print (model . intercept_ , model . coef_)
11 # output : [−63.89684304] [[−1.06641763 −6.5198444 0 .03720952]]

5.2.3. ONE-HOT CODING, TIME SERIES, L INEARITY OF TRENDS

Example sheet 3b shows you how features can be used for a variety of other modeling tasks.

72 5.3 Orthogonal projection

5.3. Orthogonal projecƟon
Let’s return to the key picture that illustrates linear mathematics.

• Linearly independent basis vectors e1 and e2
• The linear subspace spanned by those vectors, S =

{
λ1e1+λ2e2 : −∞ < λ1, λ2 < ∞

}
• Another vector x can be projected onto the subspace, by finding the point x̃ = λ̂1e1 +

λ̂2e2 in S that is closest to x

• The residual x− x̃ is orthogonal to the basis vectors

In Section 5.1 we reviewed vector spaces and bases. We’ll now define projection in inner
product spaces.

The ProjecƟon Theorem. Let V be an inner product space, let {e1, . . . , en} be a finite collec-
tion of vectors, and let S be the subspace spanned by these vectors. Given a vector x ∈ V ,
there is a unique vector x̃ that is closest to x, i.e. that achievesMathematicians

prefer to write inf
rather than min in
equations like this,
where the minimum
is being taken over
an infinite set and
it hasn’t yet been
established that the
minimum is
attained.

∥x− x̃∥ = min
x′∈S

∥x− x′∥.

Furthermore, x− x̃ is orthogonal to S, i.e.

(x− x̃) · y = 0 for all y ∈ S.

The element x̃ is called the orthogonal projection of x onto S, and x− x̃ is called the residual.
Let’s illustrate this theorem in three-dimensional Euclidean space. Let e1 = [1, 1, 0],

let e2 = [1, 0,−1], and let x = [1, 2, 3].

FINDING THE CLOSEST POINT

What is the closest point to x in the span of {e1, e2}? Just write out the optimization problem
we want to solve:

min
λ1,λ2

∥∥x− (λ1e1 + λ2e2)
∥∥.

We can compute the solution directly:

1 e1 ,e2 ,x = np. array ([1 ,1 ,0]) , np. array ([1 ,0 ,−1]) , np. array ([1 ,2 ,3])
2 λ1 ,λ2 = scipy . optimize . fmin(lambda λ : np. l ina lg .norm(x−λ[0]*e1−λ[1]*e2) , [0 ,0])
3 λ1*e1 + λ2*e2 # outputs : a r r a y ([0 .33332018 , 2.66666169 , 2 .33334151])

Or we can try algebra. Expanding the definition of ∥·∥, we want to minimize

x·x− 2
(
λ1 x·e1 + λ2 x·e2

)
+
(
λ2
1 e1 ·e1 + 2λ1λ2 e1 ·e2 + λ2

2 e2 ·e2
)
.

Differentiating with respect to λ1 and λ2 and setting the derivatives equal to 0,
∂

∂λ1
= 0 : − 2x·e1 + 2λ1 e1 ·e1 + 2λ2 e1 ·e2 = 0

∂

∂λ2
= 0 : − 2x·e2 + 2λ1 e1 ·e2 + 2λ2 e2 ·e2 = 0

(24)

or equivalently

λ1 e1 ·e1 + λ2 e1 ·e2 = x·e1
λ1 e1 ·e2 + λ2 e2 ·e2 = x·e2.

We can compute the solution to these equations:

5.3 Orthogonal projection 73

1 λ1 ,λ2 = np. l ina lg . solve ([[e1 @ e1 , e1 @ e2] , [e1 @ e2 , e2 @ e2]] ,
2 [x @ e1 , x @ e2])
3 λ1*e1 + λ2*e2 # outputs : a r r a y ([0 .33333333 , 2.66666667 , 2 .33333333])

Or, for geometrical insight, we can rearrange equations (24) to get(
x− (λ1e1 + λ2e2)

)
· e1 = 0(

x− (λ1e1 + λ2e2)
)
· e2 = 0

In other words, the residual is orthogonal to e1 and to e2, and hence it’s orthogonal to every
linear combination of e1 and e2.

EXPLICIT PROJECTION VIA AN ORTHONORMAL BASIS

Another way to find x̃ is by creating an orthonormal basis out of {e1, e2} and then applying
Useful Property 16 on page 66 to get the coordinates of x̃. Let’s create an orthonormal basis
first. Start by setting f1 to be a unit vector in the same direction as e1:

f1 =
e1
∥e1∥

.

Next, construct f2 by subtracting the part that’s parallel to f1:

f ′
2 = e2 − (e2 ·f1)f1, f2 =

f ′
2

∥f ′
2∥

.

This construction ensures that f ′
2 · f1 = 0 therefore f2 · f1 = 0, and it also ensures that both

f1 and f2 are unit vectors. We’ve written f1 and f2 as linear combinations of e1 and e2, and
it’s easy to check that e1 and e2 can be written as linear combinations of f1 and f2, thus
span{e1, e2} = span{f1, f2} = S.

Useful Property 16 now tells us exactly what the coordinates are for x̃:

x̃ = (x̃·f1)f1 + (x̃·f2)f2.

Furthermore, the Projection Theorem tells us that the residual is orthogonal to S = span{f1, f2},
which means (x− x̃) · f1 = (x− x̃) · f2 = 0, thus

x̃ = (x·f1)f1 + (x·f2)f2.

In numpy,

1 f1 = e1 / np. l ina lg .norm(e1)
2 f ′2 = e2 − (e2 @ f1) * f1
3 f2 = f ′2 / np. l ina lg .norm(f ′2)
4 (x@f1)* f1 + (x@f2)* f2 # outputs : a r r a y ([0 .33333333 , 2 .66666667 , 2 .33333333])

COLINEARITY

In this example, we projected onto linearly independent basis vectors e1 and e2. What
happens if we want to project onto a collection of linearly dependent vectors, e.g. if e2 = αe1?

The Projection Theorem doesn’t assume linear independence, so the overall result still
holds: there is still a unique projection x̃. The explicit projection method would still work,
but it would give f ′

2 = 0, so we’d just discard that vector from the orthonormal basis.
Equations (24) would still be correct, but they would have multiple solutions for λ1 and λ2.

In summary, we can always project x onto a subspace S = span({e1, . . . , en}). If the
ei are linearly independent, i.e. if they form a basis for S, then we can find the coordinates
of x̃ with respect to the ei, and the coordinates are unique. If the ei are linearly dependent,
then there are multiple ways to write x̃ as a linear combination of the ei.

74 5.4 Linear regression and least squares

5.4. Linear regression and least squares

Key idea. Suppose we want to fit a linear model to a dataset. If we model the
outcome as a normal random variable, then maximum likelihood estimation
of the unknown parameters is exactly the same as an orthogonal projection
of the outcome vector onto feature vectors.

In the Iris dataset on page 63, we investigated how petal length depends on sepal length, and
we proposed the model

Petal.Length ≈ α+ β Sepal.Length+ γ (Sepal.Length)2.

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Sepal.Length

0

1

2

3

4

5

6

7

Pe
ta

l.L
en

gt
h

setosa
versicolor
virginica

Let’s be explicit and propose a full probabilistic model:

Petal.Lengthi ∼ Normal
(
α+ β Sepal.Lengthi + γ (Sepal.Lengthi)2, σ2

)
(25)

where i ∈ {1, . . . , n} indexes the rows of the dataset, and each Petal.Lengthi is an independent
random variable, and Sepal.Lengthi is being treated as a non-random value.

A full probabilistic model lets us be precise about how to estimate parameters—we
should simply look for maximum likelihood estimators. For brevity, let yi = Petal.Lengthi,
let ei = Sepal.Lengthi, and let fi = (Sepal.Lengthi)2. Then the density function for a single
observation is

f(yi) =
1√
2πσ2

e−
(
yi−(α+βei+γfi)

)2/
2σ2

and the log likelihood is

log lik(α, β, γ, σ | y) = −n

2
log
(
2πσ2

)
− 1

2σ2

n∑
i=1

(
yi − (α+ βei + γfi)

)2
.

We can maximize the log likelihood in two steps. The first step is to maximize the last term,
i.e. find α̂, β̂, and γ̂ that solve

min
α,β,γ

∥∥y − (α1 + βe+ γf)
∥∥2.

In this equation we have switched to vector notation, and 1 means the vector [1, 1, . . . , 1].
This is nothing other than finding the orthogonal projection of the outcome vector y onto
the space spanned by the feature vectors {1, e, f}. Another name for this procedure is the
method of least squares, invented by Gauss.

The second step is to find σ to maximize what’s left, i.e. to solve

min
σ>0

{
n

2
log
(
2πσ2

)
+

1

2σ2

∥∥y − (α̂1 + β̂e+ γ̂f)
∥∥2}.

This is a trivial one-parameter optimization problem, once we know α̂, β̂, and γ̂.

CONFOUNDED FEATURES

When is there a unique solution for the maximum likelihood estimators of the parameters in
a linear model?

The Projection Theorem says that there is always a unique projection of y onto the
feature space. The remark about colinearity at the end of Section 5.3 says that if the
features are linearly independent, then the feature coefficients i.e. the maximum likelihood
estimators are unique. If the features are linearly dependent, then the maximum likelihood

5.4 Linear regression and least squares 75

estimators are not unique, and we say the features are confounded. Sometimes, geometrical
intuition about colinearity can help us debug what’s going wrong with a probabilistic model
fit. Example sheet 3b asks you to look at examples of confounding.

But data science is all about noise and uncertainty, whereas linear independence is
a strict clean mathematical definition, so we shouldn’t entirely trust it. An example can
be found on example sheet 2 question 5, which highlights the challenges of inference when
features are ‘linearly independent, but only just’. Here is another example.

Example (Correlated features). Let the ground truth be as follows: let e and f be two features of
length 20 differing only in one coordinate, e = [1, 1, . . . , 1] and f = [0, 1, 1, . . . , 1], and suppose
we generate a vector y consisting of 20 values from Normal(0.5ei + 1.5fi, 1), i = 1, . . . , 20.
Can we recover the coefficients 0.5 and 1.5?

Pretend we don’t know the ground truth, and fit the model Yi ∼ Normal(αei+βfi, σ
2).

Since e and f are linearly independent, we will get a unique solution when we solve for the
maximum likelihood estimators α̂ and β̂. To see some context, let’s plot the log likelihood
after optimizing out the nuisance parameter σ. (When we maximize out nuisance parameters,
what’s left is called the profile log likelihood.)

profile log lik(α, β | y) = max
σ>0

log lik(α, β, σ | y).

10.0
7.5

5.0
2.5

0.0
2.5

5.0
7.5

10.0 10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

pr
of

ile
lo

gl
ik

The maximum likelihood estimators in this case are α̂ = 0.70, β̂ = 1.50. The plot shows a
peak at this value, and it also shows a long ‘ridge’ where α+β is roughly constant. The plot
is telling us that we can be very confident about the value of α + β, but not very confident
about either of them individually.

INFERENCE

An explicit probabilistic model like equation (25) lets us make inferences, using the techniques
from Section 3 and Example Sheet 2.

• We can use Bayesian reasoning: invent prior distributions for the unknown parameters,
and calculate their posterior distributions.

• We can use frequentist reasoning: compute confidence intervals for the unknown pa-
rameters, using bootstrap resampling. Resampling means generating synthetic datasets
based on the data we actually saw; the natural resampling method here is to compute
the maximum likelihood estimates for the parameters, and then to plug these estimates
into the model (25) and generate new random variables. This is known as parametric
resampling.

• We can conduct hypothesis tests, along the lines of example sheet 2 question 3.

Example sheet 3b asks you to look at these types of inference.

76 5.5 Feature engineering

5.5. Feature engineering
In Section 5.2, we cleverly designed features to allow us to extract an underlying linear trend
from climate data, taking account of the annual cycle. In general, we design features for
several purposes:

• features to extract a particular summary from the data, e.g. the linear trend in the
climate data;

• features that correspond to a causal model for which we want to estimate parameters,
e.g. the transition probabilities for a Markov chain;

• ‘black box’ features that capture enough detail for us to be able to make good predic-
tions or extrapolations—we don’t have to understand such features, we just want them
to work well;

• features that turn arbitrary objects like tweets or sentence fragments into numbers that
can be put into quantitative models, e.g. distributional semantics which you will study
in Part II Natural Language Processing, and term frequency models for documents
which you will study in Part II Information Retrieval.

* * *

The more features we add, the better the fit i.e. the smaller the residual we can achieve.
But models with too many features tend to be bad at generalizing to new data (see example
sheet 2 question 5). It’s an art to design sets of features that are expressive enough to
capture the meaningul variation in the data, while being parsimonious enough to generalize
well. Here are two strategies that are sometimes helpful. You will learn more about them in
futher courses on machine learning and data science.

Feature selecƟon. Start with a long list of possible features. Pick m, a number of features
to use, and find the best fitting model subject to the constraint that it’s only allowed to use
m of the possible features. This is called feature selection.

Dimension reducƟon. Start with a long list of possible features {e1, . . . , en}. Pick m, a
number of features to use, and construct a set of m vectors {f1, . . . , fm} that capture the
features as well as possible. For example, we might set m = 2 and pick {f1, f2} to minimize∑n

i=1∥ei − ẽi∥, where ẽi is the projection of vector ei onto the span of {f1, f2}. This would
be called a two-dimensional embedding of the features, and it is an example of dimension
reduction.

	What is data science?
	`Surprised by data': reasoning about uncertainty
	`Field of study': scientific modeling
	The foundations

	Probabilistic models
	Random samples
	Markov models
	Descriptive models
	Causal models
	Common random variables
	Independence and joint distributions

	Distributions of random variables
	Working with random variables
	Custom distributions
	Limit theorems
	Importance sampling
	The empirical distribution

	Inference
	Quantifying a question
	Bayesianism
	Frequentism
	Model selection
	Pragmatic inference

	Stochastic processes
	Markov chains
	Estimation in a hidden Markov model
	Limit theorems
	Stationary behaviour
	Detailed balance
	Ergodic theorem
	Limiting behaviour

	Feature spaces
	Linear mathematics
	Abstract definitions
	Useful properties
	Advanced application: Fourier analysis

	Features in data
	Polynomial functions
	Disentangling periodic and secular effects
	One-hot coding, time series, linearity of trends

	Orthogonal projection
	Linear regression and least squares
	Feature engineering

