
Example sheet 3a
Stochastic processes

Foundations of Data Science—DJW—2017/2018

• You are not meant to answer every question—but you are expected to spend around 4 solid hours on this
sheet, including the practical class. You should spend around 2 hours on example sheet 3b.

• There is an accompanying Python notebook ex3a.ipynb with useful code snippets. You can find the link
on the course webpage. You are not required to program in Python; you should answer the questions first in
pseudocode; then, if you have time, implement them in any programming language you like.

• In a Jupyter Notebooks, you can run your code cells in any order. For the sanity of your supervisor, before
saving your work, please use Kernel | Restart & Clear Output and re-run your code in the order it appears in
the notebook. This will uncover bugs that arise from assigning a variable in one place and using it earlier in
the notebook.

For supervisors: This is half an example sheet. It may be supervised after 10 November. The second half may be
supervised after the final lecture, 24 November. Model answers can be found on the course webpage.

In the first 6 questions you will make inferences about the location of a moving object, given noisy observations of
its location. To keep the maths and the code simple, we will start with the following very simple model:
• Let Xn be the location at timestep n, Xn ∈ {0,1, . . . ,9}, and let X0 be uniformly distributed in {0,1, . . . ,9}
• Given Xn = x, let Xn+1 = next state(x) where

def next state (x) :
d = random. choice([−1,1])
return max(0 , min(9 , x+d))

The max and min ensure that Xn+1 stays in {0,1, . . . ,9}. The random.choice() function returns one of the
values provided, both of them equally likely.

• Let Yn be the observation at timestep n, Yn = noisy obs(Xn) where

def noisy obs(x) :
e = random. choice([−1,0 ,1])
return max(0 , min(9 , x+e))

This is called a hidden Markov model. The underlying process X is a Markov chain, but we don’t observe it
directly, we only get noisy observations, and the noise in each timestep is independent.

Question 1. Let δ0(x) = P(X0 = x) = 1/10, and let π0(x) = P(X0 = x |Y0 = y0). (This depends on y0, so π0 is really
a function of x and y0, but for the sake of brevity we won’t write out this dependency.) Use Bayes’ rule to find a
formula for π0 in terms of δ0 and the matrix Qxy = P(Yn = y |Xn = x).

Question 2. Let δn(x) = P(Xn = x |Y0 = y0, . . . ,Yn−1 = yn−1). Use the law of total probability to find a formula
for δ1 in terms of π0 and the transition matrix Pxz = P(Xn+1 = z |Xn = x).

Question 3. Let πn = P(Xn = x |Y0 = y0, . . . ,Yn = yn). Find a formula for πn in terms of δn and Q.

Question 4. Write pseudocode for a function that accepts δ0 and a list of readings y = [y0, . . . ,yn−1] and produces
a list [π0, . . . ,πn−1]. Your pseudocode should include defining P and Q. You can see a Python version of this
code, and a routine to plot the output, in ex3a.ipynb. To answer this question, you may either produce your own
psuedocode from scratch, or you may annotate the Python code with comments explaining what it does.

Question 5. If your code is given the input y = [3,3,4,9], it should fail with a divide-by-zero error. Give an
interpretation of this failure.

1

It is undesirable for production code to fail with divide-by-zero errors. One way to fix the problem is to mod-
ify the Markov model to include a ‘random teleport’—to express the idea ‘OK, our inference has gone wrong
somewhere; let’s allow our location estimate to reset itself’. We can achieve this mathematically with the follow-
ing model: with probability 1− ε let Xn+1 = next state(Xn), and otherwise let Xn+1 be chosen uniformly from
{0,1, . . . ,9}. Modify your code to reflect this new model, with ε = 0.01.

Alternatively, we could fix the problem by changing the model to express ‘OK, this reading is glitchy; let’s
allow the code to discard an impossible reading’. How might you change the Markov model to achieve this?

Question 6. The Markov model for motion that we are using is called a random walk (with boundaries); it chooses
a direction of travel independently at every timestep. This is not a good model for human movement, since people
tend to head in the same direction for a while before changing direction.
(a) Let Vn ∈ {−1,0,1} be a Markov chain: let Vn+1 =Vn with probability 0.9, and let Vn+1 be chosen uniformly

at random from {−1,0,1} with probability 0.1. Draw a state space diagram for this Markov chain.
(b) Interpret Vn as the velocity of our moving object at timestep n, and let Xn+1 =max(0,min(9,Xn+Vn)). Update

your code to reflect this model.

Question 7 (stationary distribution). A two-arm bandit is a gambling machine with two levers. It costs 10p to
pull a lever, and each lever pays out 20p on a win. The chance of a win is α for lever A and β for lever B, and we
don’t know α or β, but we do know they are both in the range 0 < α,β < 1. Here is a gambling strategy: if my last
pull resulted in a win then I’ll stick with the lever I just pulled, otherwise I’ll switch.

Draw a state space diagram with two states, for the Markov chain where Xn ∈ {A,B} is the nth lever I pulled.
Calculate its stationary distribution.

Question 8 (stationary distribution, limit theorems). In the setting of Question 7, let Yn = (Xn,Xn+1). Explain
why Yn is a Markov chain, and draw its state space diagram, and calculate its stationary distribution.

Using the Markov chain Y , or otherwise, find the long-run fraction of lever pulls that result in a payout. Explain
your reasoning carefully.

Question 9 (stationary distribution). Consider a directed acyclic graph representing the web, with one vertex
per webpage, and an edge v → w if page v links to page w. Consider a random web surfer who goes from page to
page according to the algorithm

d = 0.85
def next page(v) :

neighbours = l i s t of pages w such that v → w
random.random() generates a Uniform[0 ,1] random variable
i f len (neighbours) > 0 and random.random() ≤ d :

return random. choice(neighbours)
else :

V = l i s t of a l l web pages
return random. choice(V)

[ATTENTION: the exercise sheet as handed out had the wrong condition on line 5.] This defines a Markov
chain. Explain why the chain is irreducible and aperiodic. Show that the stationary distribution π solves

πv =
1−d
|V |

+d ∑
u:u→v

πu

|Γu|
(1)

where |V | is the total number of web pages in the graph, and |Γu| is the number of outgoing edges from u.
Compute the stationary distribution for this random web surfer model, for the graph in lecture notes Exam-

ple 4.4. Repeat with d = 0.05. What do you expect as d → 0? What do you expect if d = 1?
Equation (1) defines PageRank, Google’s original method for ranking websites. Google said that in 2013 it

was indexing more than 30 trillion webpages.

Question 10 (limit theorems). In Example 4.1 in lecture notes, Markov’s model for text generation, we picked
an arbitrary starting string c=[’o’,’n’]. Suppose instead that we want a random starting string drawn from the
stationary distribution, but that the state space is too large for us to be able to compute the stationary distribution
explicitly. How can we generate a suitable random starting string?

2

