
Example sheet 2
Inference

Foundations of Data Science—DJW—2017/2018

Practical work is not assessed as coursework, and there is no submission deadline (apart from what-
ever your supervisor sets), and the practical session is optional. However, the topics and methods in
the practical questions are examinable material.
• You are not required to answer every question—but you are expected to spend around 6 solid

hours per example sheet, including the time you spend reviewing notes and attending the prac-
tical classes. Attempt Question 5 last.

• These questions are verbose, but you should be able to answer them with no more than 12
lines of code each. In inference, asking a question the right way is often harder than answering
it. You answers should include clear statements of what you have found, not just code and
numbers.

• There is an accompanying Python notebook ex2.ipynb, which contains code snippets that you
may find useful (though if you wish to use another programming language you are welcome to
do so). You can find the link on the course webpage.

• In a Jupyter Notebooks, you can run your code cells in any order. For the sanity of your
supervisor, before saving your work, please use Kernel | Restart & Clear Output and re-run
your code in the order it appears in the notebook. This will uncover bugs that arise from
assigning a variable in one place and using it earlier in the notebook.

• Do not waste time wrestling with Python; instead, post questions at the allanswered.com

forum, linked to on the course webpage.

For supervisors: This example sheet should be supervised some time after 30 October. Model an-
swers can be found on the course webpage.

In the first four questions you will investigate racial bias in police stop-and-search behaviour. You
will make inferences, and quantify your uncertainty about those inferences. The dataset is https://
teachingfiles.blob.core.windows.net/founds/stop-and-search.csv, and we will re-
strict attention to records with police force=’cambridgeshire’. We will work with the model

P(Yi = find) = θei

where Yi ∈ {find,nothing} is the outcome listed for row i, ei is the ethnicity, and

θ =
(
θAsian,θBlack,θMixed,θOther,θWhite

)
is an unknown parameter.

Question 1 (Bayesian confidence interval).
(a) Let θ consist of 5 independent random variables drawn from the Beta(δ,δ) distribution, where

δ = 0.5. Calculate the posterior distribution of θ. Implement a function posterior sample(size)
that generates size independent samples of θ drawn from the posterior distribution. Each sample
should be a vector of length 5.

(b) Given a sample of θ, define the maximum discrepancy to be

d(θ) = max
e,e′

|θe −θe′ |.

Plot a histogram of the posterior distribution of d(θ).
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(c) You should have found that the posterior distribution of d(θ) is highly variable, because the
dataset has few cases of ei = Mixed and none of ei = Other. Plot the histogram again, but
showing only the maximum discrepancy of (θAsian,θBlack,θWhite). We’ll call this d3(θ).

(d) Find a 95% confidence interval of the form

P
(
d3(θ)< c

)
= 95%

Question 2 (Frequentist confidence interval).
(a) Give a formula for the maximum likelihood estimator θ̂.
(b) Use the bootstrap resampling method to estimate, given ε > 0, the probability

P
(
d3(θ) ∈ [d3(θ̂)− ε, d3(θ̂)+ ε]

)
(c) Find a 95% confidence interval for d3(θ).

Question 3 (Frequentist hypothesis testing). In science and in policy making, it is often useful to
frame questions in the following way. “My default hypothesis is H0. I’m planning a data-gathering
exercise, and based on the data X I gather I might stick with H0 or I might reject it.” In programming
terms, the data scientist has to define a hypothesis-testing function reject H0(x) which returns either
True or False.

We don’t want reject H0(x) to return True when H0 actually is the case. For example, H0 might
be “There is no racial bias” and the police commissioner does not want to spend money to correct
bias if H0 is indeed the case. It’s typically impossible to know for certain from the observed data
whether H0 is actually the case or not, but what we can do instead is set a probability threshold e.g.

P
(
reject H0(X)= True

)
≤ 5% if H0 is true.

A common way to implement reject H0 is to invent some real-valued test statistic T (x), and define

def reject H0(x) :
i f T (x) > thresh :

return True
else :

return False

Whatever function T is chosen, thresh should be set so that P(T (X) > thresh) ≤ 5% if H0 is true.
We should try to design T such that P(T (X)> thresh) is large if there truly is bias.

(a) Let H0 be the hypothesis θAsian = θBlack = θWhite, and let X = (FAsian,FBlack,FWhite) where Fe ∈
{0,1, . . . ,ne} is the number of outcomes where Yi = find among members of group e, and ne is
the number of individuals in that group. If H0 is true, then we can generate a resampled version
X∗ by sampling three groups of individuals from the pooled population of nAsian+nBlack+nwhite
individuals from any of those three groups. Implement a function X star(n) that generates n
samples of X∗.

(b) Let the test statistic be T (x) = d3(θ̂(x)), where θ̂(x) is the maximum likelihood estimator of θ
when the observed data is x. Find the threshold value thresh such that

P
(
T (X∗)> thresh

)
= 5%.

Given the actual data we observed, do we reject H0 i.e. does reject H0() return True?
(c) Another way to express the output of a hypothesis test is as a significance level p. This is

defined as
p = P

(
T (X∗)> T (x)

)
where x is the actual observed data. (This has the property that p < 5% if and only if T (x) >
thresh.) Compute the significance level for this dataset.

Question 4 (Natural parameters). We might have a prior belief that the coefficients of θ are very
close to each other, but we might have no idea what that common value is. In Question 3 we
expressed this belief through our resampling method, drawing outcomes from the pooled population.
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Invent a Bayesian prior distribution for θ that expresses this same belief. Your distribution should
have the property that any θ in [0,1]5 is possible, but that those θ with small d(θ) are more likely.
Generate samples from this distribution and plot the joint distribution of (θAsian,θBlack). Hint. Gen-
erate suitable random variables in R5, and then transform them to values in the range [0,1].

In Part II Machine Learning and Bayesian Inference, you will learn how to generate samples
from an arbitrary Bayesian posterior distribution.

Question 5 (Model selection). A data scientist might want to know which of two models is better.
In this question we will compare two different ways of answering this. We will do so in a controlled
situation: we’ll simulate the data ourselves, so we know exactly which model is true.

The true model (unknown to the data scientist analysing the data) is

Y ∼ Normal(5+3x1 +0.1x2,1).

The dataset at https://teachingfiles.blob.core.windows.net/founds/model_selection_
sample.csv was generated from this distribution.
(a) As a data scientist, you have been given the dataset, and you believe the underlying model is

either

Model A: Yi ∼ Normal(α+β1x1,i +β2x2,i, σ2)

or

Model B: Yi ∼ Normal(α+βx1,i, σ2).

For each model, find the maximum likelihood estimators for all the parameters. Hint. Let
σ2 = eγ, and run the optimization over γ rather than σ or σ2. This ensures σ2 > 0 and it makes
the log likelihood differentiable so that scipy.optimize.fmin runs nicely.

(b) One way to select a model is to pick the model that gives better predictions. Normally the data
scientist should set aside some of her data for validation, but in our case we have a black box
that can synthesize as much validation data as we want. For every (x1,x2) on a grid of 10×10
points in the range x1 ∈ [−1.5,1.5], x2 ∈ [1.5,1.5], compute the expected value according to the
fitted Model A, and also generate 1000 simulated values of Y at every grid point. Compute the
mean square error

MSE = average
(
(simulated− expected)2

)
across all these 100× 1000 values. Repeat the exercise for Model B. Which model gives the
smaller mean square error? [NOTE. The original example sheet erroneously said 10000
simulated values at every grid point, when it should have said 1000.]

(c) Another way to select a model is by quantifying confidence in the fit. Models A and B differ
only in that Model B sets β2 = 0. A frequentist would ask “When I fit model A, what is the
range of values of β̂2 that I might expect to see?” By resampling from the original dataset,
generate samples of β̂2, and plot a histogram. Give a confidence interval for β2. Hint. See
section 2.5 of the notes for two different ways you might resample.

(d) How would a Bayesian say we should decide between the two models?
(e) Can you devise a hypothesis test for deciding between them?
This example is taken from To explain or to predict? by Galit Shmueli, 2010, https://projecteuclid.
org/download/pdfview_1/euclid.ss/1294167961.
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