Distributed systems

Lecture 10: Case study: the Network File System (NFS)

Dr. Robert N. M. Watson

Last time

* Distributed systems are everywhere
— Challenges including concurrency, delays, failures
— The importance of transparency
» Simplest distributed systems are client/server
— Client sends request as message
— Server gets message, performs operation, and replies
— Some care required handling retry semantics, timeouts
* One popular model is Remote Procedure Call (RPC)
— Client calls functions on the server via network

— Middleware generates stub code which can marshal /
unmarshal arguments/return values — e.g. SUunRPC/XDR

— Transparency for the programmer, not just the user

9/30/17

9/30/17

First case study: NFS

NFS = Networked File System (developed Sun)
— Aimed to provide distributed filing by remote access

Key design decisions: Tra“Spare“Cg for
— Distributed filesystem vs. remote disks oS Al

. applications, but also
— Client-server model
) NFS programmers:
— High degree of transparency hence SUnRPC
— Tolerant of node crashes or network failure
First public version, NFSv2 (1989), did this via:
— Unix filesystem semantics (or almost)
— Integration into kernel (including mount)
— Simple stateless client/server architecture

* Aset of RPC “programs”: mountd, nfsd, lockd, statd, ...

NFS: Client/Server Architecture

Client side Server Side

User Program

Syscall Level Syscall Level

VFS Layer VFS Layer

| localFs | | NFSClient | | NFsServer | | LocalFs |

@ RPC Request
RPC Response

* Client uses opaque file handles to refer to files
* Server translates these to local inode numbers
e SunRPC with XDR running over UDP (originally)

oA

NFS: mounting remote filesystems

N AN

/tmp /home /home /bin

X y foo bar

* NFS RPCs are methods on files identified by file handle(s)
* Bootstrap via dedicated mount RPC ‘program’ that:

— Performs authentication (if any);

— Negotiates any optional session parameters; and

— Returns root file handle

NFS file handles and scoping

* Arguments at each layer are with specific scopes
— Layers translate between namespaces for encapsulation
— Contents of names between layers often opaque

Example server-defined fhandle_t

int i

len pad ino Local
file : Syscall Level o~ filesystem
vnode VFS Layer
vnode * fhandle_t fhandle_t
nfsnode * NFS Client NFS Server vnode *
VFS Layer fhandle_t
*
Local FS ynode
inode *

* Pure names expose no visible semantics (e.g., NFS handle)
* Impure names have expose semantics (e.g., file paths)

6

9/30/17

9/30/17

NFS is stateless

Key NFS design decision to ease fault recovery
— Obviously, filesystems aren’t stateless, so...

Stateless means the protocol doesn’t require:
— Keeping any record of current clients
— Keeping any record of current open files

* Server can crash + reboot, and clients do not
have to do anything (except wait!)

Clients can crash, and servers do not need to
do anything (no cleanup etc)

Implications of stateless-ness

* No “open” or “close” operations
— fh = lookup(<directory fh>, <filename>)
— All file operations are via per-file handles
No implied state linking multiple RPCs; e.g.,
— UNIX file descriptor has “current offset” for I/0:
read(fd, buf, 2048)
— NFS file handle has no offset; operations are explicit:
read(fh, buf, offset, 2048)
* This makes many operations idempotent
— This use of SunRPC gives at-least-once semantics
— Tolerate message duplication in network, RPC retries

* Challenges in providing Unix FS semantics...

Semantic tricks (and messes)

* rename(<old filename>, <new filename>)
— Fundamentally non-idempotent
— Strong expectation of atomicity
— Servers-side “cache” recent RPC replies for replay

* unlink(<old filename>)
— UNIX requires open files to persist after unlink ()
— What if the server removes a file that is open on a client?
— Silly rename: clients translate unlink () to rename ()
— Only within client (not server delete, nor for other clients)
— Other clients will have a stale file handle: ESTALE

* Stateless file locking seems impossible
— Problem avoided (?): separate RPC protocols

Performance problems

* Neither side knows if other is alive or dead

— All writes must be synchronously committed on
server before it returns success

* Very limited client caching...

— Risk of inconsistent updates if multiple clients
have file open for writing at the same time

* These two facts alone meant that NFS v2 had
truly dreadful performance

10

9/30/17

NFSv3 (1995)

* Mostly minor protocol enhancements
— Scalability

* Remove limits on path- and file-name lengths
* Allow 64-bit offsets for large files
* Allow large (>8KB) transfer-size negotiation
— Explicit asynchrony
* Server can do asynchronous writes (write-back)
* Client sends explicit commit after some #writes
* File timestamps piggybacked on server replies allow clients
to manage cache: close-to-open consistency
— Optimized RPCs (readdirplus, symlink)

* But had major impact on performance

11

NFSv3 readdirplus

drwxr-xr-x 55 al565 al565 12288 Feb 8 15:47 al565/
drwxr-xr-x 115 am21 am21 49152 Feb 10 18:19 am2l/
drwxr-xr-x 214 atm26 atm26 36864 Feb 1 17:09 atm26/
* NFSv2 behaviour for “1s —1 e — 7
. . / -
— readdir () triggers = g
o T—, R
NFS_READDIR to request T | R — | g
names and handles % ——— :}:
. . /
— stat () on each file triggers z z
T amm—
one NFS_GETATTR RPC e AL]
* NFS3 READDIRPLUS returnsa m
names, handles, and attributes
— Eliminates a vast number of £ g
round-trip times S| resoomewms—= | g :|
* Principle: mask network latency by E é g
L
batching synchronous operations =z Z |

(dwiL dup-punoy) 114Xy

1IMXT

9/30/17

Distributed filesystem consistency

* Can a distributed application expect data written on
client A to be visible to client B?

— Afterwrite() on A, willa read () on B see it?

— What if a process on A writes to a file, and then sends a
message to a process on B to read the file?

* In NFSv3, no!

— A may have freshly written data in its cache that it has not
yet sent to the server via a write RPC

— The server will return stale data to B’s read RPC

Or:

— B may return stale data in its cache from a prior read
* This problem is known as inconsistency:

— Clients may see different versions of the same object

NFS close-to-open consistency (1)

* Guaranteeing global visibility for every write ()
required synchronous RPCs and prevented caching

* NFSv3 implements close-to-open consistency, which
reduces synchronous RPCs and permits caching

1. For each file it stores, the server maintains a timestamp
of the last write performed

2. When afile is opened, the client receives the timestamp;
if the timestamp has changed since data was cached, the
client invalidates its read cache, forcing fresh read RPCs

3. While the file is open, data reads/writes for the file can
be cached on the client, and write RPCs can be deferred

4. When the file is closed, pending writes must be sent to
the server (and ack’d) before close () can return

14

9/30/17

9/30/17

NFS close-to-open consistency (2)

* We now have a consistency model that programmers can
use to reason about when writes will be visible in NFS:

— If a program on host A needs writes to a file to be visible to a
program on host B, it must close () the file

— If a program on host B needs reads from a file to include those
writes, it must open () it after the corresponding close ()

* This works quite well for some applications
— E.g., distributed builds: inputs/outputs are whole files
— E.g., UNIX maildir format (each email in its own file)
* It works very badly for others
— E.g., long-running databases that modify records within a file
— E.g., UNIX mbox format (all emails in one large file)
* Applications using NFS to share data must be designed for
these semantics, or they will behave very badly!

15

NFSv4 (2003)

e Time for a major rethink
— Single stateful protocol (including mount, lock)
— TCP (or at least reliable transport) only
— Explicit open and close operations
— Share reservations
— Delegation
— Arbitrary compound operations
— Many lessons learned from AFS (later in term)

* Now seeing widespread deployment

16

Improving over SUnRPC

* SunRPC (now “ONC RPC”) very successful but
— Clunky (manual program, procedure numbers, etc)
— Limited type information (even with XDR)
— Hard to scale beyond simple client/server

* One improvement was OSF DCE (early 90’s)
— Another project that learned from AFS
— DCE = “Distributed Computing Environment”

— Larger middleware system including a distributed file
system, a directory service, and DCE RPC

— Deals with a collection of machines — a cell — rather
than just with individual clients and servers

17

DCE RPC versus SunRPC

* Quite similar in many ways
— Interfaces written in Interface Definition Notation
(IDN), and compiled to skeletons and stubs
— NDR wire format: little-endian by default!
— Can operate over various transport protocols

» Better security, and location transparency

— Services identified by 128-bit “Universally” Unique
Identifiers (UUIDs), generated by uuidgen

— Server registers UUID with cell-wide directory service

— Client contacts directory service to locate server...
which supports service move, or replication

18

9/30/17

Summary + next time

* NFS as an RPC, distributed-filesystem case study

— Retry semantics vs. RPC semantics
— Scoping, pure vs. impure names

— Close-to-open consistency

— Batching to mask network latency

DCE RPC

Object-Oriented Middleware (OOM)
Java remote method invocation (RMI)
XML-RPC, SOAP, etc, etc, etc.

Starting to talk about distributed time

19

9/30/17

10

