
9/30/17

1

Distributed	systems
Lecture	10:	Case	study:	the	Network	File	System	(NFS)

Dr.	Robert	N.	M.	Watson

1

Last	time
• Distributed	systems	are	everywhere
– Challenges	including	concurrency,	delays,	failures
– The	importance	of	transparency

• Simplest	distributed	systems	are	client/server
– Client	sends	request	as	message
– Server	gets	message,	performs	operation,	and	replies
– Some	care	required	handling	retry	semantics,	timeouts

• One	popular	model	is	Remote	Procedure	Call	(RPC)
– Client	calls	functions	on	the	server	via	network
– Middleware generates	stub	code	which	can	marshal	/	
unmarshal arguments/return	values	– e.g.	SunRPC/XDR

– Transparency	for	the	programmer,	not	just	the	user
2

9/30/17

2

First	case	study:	NFS
• NFS =	Networked	File	System	(developed	Sun)
– Aimed	to	provide	distributed	filing	by	remote	access

• Key	design	decisions:	
– Distributed	filesystem	vs.	remote	disks
– Client-server	model
– High	degree	of	transparency
– Tolerant	of	node	crashes	or	network	failure

• First	public	version,	NFSv2	(1989),	did	this	via:	
– Unix	filesystem	semantics	(or	almost)
– Integration	into	kernel	(including	mount)
– Simple	stateless	client/server	architecture

• A set	of	RPC	“programs”:	mountd,	nfsd,	lockd,	statd,	...

Transparency	for	
users	and		

applications,	but	also	
NFS	programmers:	
hence	SunRPC

3

NFS:	Client/Server	Architecture

User	Program

Syscall Level

Client	side

RPC	Request

VFS	Layer

Local	FS NFS	Client

Syscall Level

Server	Side

VFS	Layer

NFS	Server Local	FS

RPC	Response

1

2

3 4

5

• Client	uses	opaque	file	handles	to	refer	to	files
• Server	translates	these	to	local	inode numbers
• SunRPC with	XDR	running	over	UDP	(originally)

4

9/30/17

3

NFS:	mounting	remote	filesystems

NFS	
Client

NFS	
Server

/tmp

/

/home

x y

/home

/

/bin

foo bar

• NFS	RPCs	are	methods	on	files	identified	by	file	handle(s)
• Bootstrap	via	dedicated	mount RPC	‘program’	that:

– Performs	authentication	(if	any);
– Negotiates	any	optional	session	parameters;	and
– Returns	root	file	handle

5

NFS	file	handles	and	scoping

• Pure	names expose	no	visible	semantics	(e.g.,	NFS	handle)
• Impure	names have	expose	semantics	(e.g.,	file	paths)

User	Program

Syscall Level

VFS	Layer

NFS	Client

VFS	Layer

NFS	Server

Local	FS

int

file	*
vnode *
vnode *

nfsnode *
fhandle_t fhandle_t

vnode *

fhandle_t
vnode *
inode *

fsid

len

Example	server-defined	fhandle_t

pad ino

NFS

Local	
filesystemgen

6

• Arguments	at	each	layer	are	with	specific	scopes
– Layers	translate	between	namespaces	for	encapsulation
– Contents	of	names	between	layers	often	opaque

9/30/17

4

NFS	is	stateless

• Key	NFS	design	decision	to	ease	fault	recovery
– Obviously,	filesystems	aren’t	stateless,	so…

• Statelessmeans	the	protocol	doesn’t	require:	
– Keeping	any	record	of	current	clients
– Keeping	any	record	of	current	open	files

• Server	can	crash	+	reboot,	and	clients	do	not	
have	to	do	anything	(except	wait!)	

• Clients	can	crash,	and	servers	do	not	need	to	
do	anything	(no	cleanup	etc)

7

Implications	of	stateless-ness
• No	“open”	or	“close”	operations

– fh = lookup(<directory fh>, <filename>)
– All	file	operations	are	via	per-file	handles

• No	implied	state	linking	multiple	RPCs;	e.g.,
– UNIX	file	descriptor	has	“current	offset”	for	I/O:

read(fd, buf, 2048)
– NFS	file	handle	has	no	offset;	operations	are	explicit:

read(fh, buf, offset, 2048)
• This	makes	many	operations	idempotent
– This	use	of	SunRPC gives	at-least-once	semantics
– Tolerate	message	duplication	in	network,	RPC	retries

• Challenges	in	providing	Unix	FS	semantics…

8

9/30/17

5

Semantic	tricks	(and	messes)	
• rename(<old filename>, <new filename>)
– Fundamentally	non-idempotent
– Strong	expectation	of	atomicity
– Servers-side	“cache”	recent	RPC	replies	for	replay

• unlink(<old filename>)
– UNIX	requires	open	files	to	persist	after	unlink()
– What	if	the	server	removes	a	file	that	is	open	on	a	client?
– Silly	rename:	clients	translate	unlink() to	rename()
– Only	within	client	(not	server	delete,	nor	for	other	clients)
– Other	clients	will	have	a	stale file	handle:	ESTALE

• Stateless	file	locking seems	impossible
– Problem	avoided	(?):	separate	RPC	protocols

9

Performance	problems

• Neither	side	knows	if	other	is	alive	or	dead
– All	writes	must	be	synchronously	committed	on	
server	before	it	returns	success

• Very	limited	client	caching…
– Risk	of	inconsistent	updates	if	multiple	clients	
have	file	open	for	writing	at	the	same	time

• These	two	facts	alone	meant	that	NFS	v2	had	
truly	dreadful performance

10

9/30/17

6

NFSv3	(1995)

• Mostly	minor	protocol	enhancements
– Scalability	

• Remove	limits	on	path- and	file-name	lengths
• Allow	64-bit	offsets	for	large	files	
• Allow	large	(>8KB)	transfer-size	negotiation

– Explicit	asynchrony
• Server	can	do	asynchronous	writes	(write-back)	
• Client	sends	explicit	commit after	some	#writes	
• File	timestamps	piggybacked	on	server	replies	allow	clients	
to	manage	cache:	close-to-open	consistency

– Optimized	RPCs	(readdirplus,	symlink)
• But	had	major impact	on	performance

11

NFSv3	readdirplus

• NFSv2	behaviour for	“ls –l”
– readdir() triggers	
NFS_READDIR to	request	
names	and	handles

– stat() on	each	file	triggers	
one	NFS_GETATTR RPC

• NFS3_READDIRPLUS returns	a	
names,	handles,	and	attributes
– Eliminates	a	vast	number	of	

round-trip	times
• Principle:	mask	network	latency	by	

batching	synchronous	operations

N
FS
v2
		C
lie
nt

N
FS
v2
		S
er
ve
r

N
FS
v3
		C
lie
nt

N
FS
v3
			
Se
rv
er

NFSv3

READDIR

GETATTR

GETATTR

GETATTR

READDIRPLUS

4xRTT	(Round-Trip	Tim
e)

1xRTT

drwxr-xr-x 55 al565 al565 12288 Feb 8 15:47 al565/
drwxr-xr-x 115 am21 am21 49152 Feb 10 18:19 am21/
drwxr-xr-x 214 atm26 atm26 36864 Feb 1 17:09 atm26/

12

9/30/17

7

Distributed	filesystem	consistency
• Can	a	distributed	application	expect	data	written	on	
client	A to	be	visible	to	client	B?
– After	write() on	A,	will	a	read() on	B see	it?
– What	if	a	process	on	A writes	to	a	file,	and	then	sends	a	
message	to	a	process	on	B	to	read	the	file?

• In	NFSv3,	no!
– Amay	have	freshly	written	data	in	its	cache that	it	has	not	
yet	sent	to	the	server	via	a	write	RPC

– The	server	will	return	stale	data	to	B’s	read	RPC
Or:
– Bmay	return	stale	data	in	its	cache	from	a	prior	read

• This	problem	is	known	as	inconsistency:
– Clients	may	see	different	versions	of	the	same	object

13

NFS	close-to-open	consistency	(1)
• Guaranteeing	global	visibility	for	every	write()
required	synchronous	RPCs	and	prevented	caching

• NFSv3	implements	close-to-open consistency,	which	
reduces	synchronous	RPCs	and	permits	caching
1. For	each	file	it	stores,	the	server	maintains	a timestamp	

of	the	last	write	performed
2. When	a	file	is	opened,	the	client	receives	the	timestamp;	

if	the	timestamp	has	changed	since	data	was	cached,	the	
client	invalidates its	read	cache,	forcing	fresh	read	RPCs

3. While	the	file	is	open,	data	reads/writes	for	the	file	can	
be	cached	on	the	client,	and	write	RPCs	can	be	deferred

4. When	the	file	is	closed,	pending	writes	must	be	sent	to	
the	server	(and	ack’d)	before	close() can	return

14

9/30/17

8

NFS	close-to-open	consistency	(2)
• We	now	have	a	consistency	model	that	programmers	can	

use	to	reason	about	when	writes	will	be	visible	in	NFS:
– If	a	program	on	host	A needs	writes	to	a	file	to	be	visible	to	a	

program	on	host	B,	it	must	close() the	file
– If	a	program	on	host	B needs	reads	from	a	file	to	include	those	

writes,	it	must	open() it	after the	corresponding	close()
• This	works	quite	well	for	some	applications
– E.g.,	distributed	builds:	inputs/outputs	are	whole	files
– E.g.,	UNIX	maildir format	(each	email	in	its	own	file)

• It	works	very	badly	for	others
– E.g.,	long-running	databases	that	modify	records	within	a	file
– E.g.,	UNIX	mbox format	(all	emails	in	one	large	file)

• Applications	using	NFS	to	share	data	must	be	designed	for	
these	semantics,	or	they	will	behave	very	badly!

15

NFSv4	(2003)

• Time	for	a	major	rethink
– Single	stateful protocol	(including	mount,	lock)
– TCP	(or	at	least	reliable	transport)	only
– Explicit	open and	close operations
– Share	reservations
– Delegation
– Arbitrary	compound	operations
–Many	lessons	learned	from	AFS	(later	in	term)

• Now	seeing	widespread	deployment
16

9/30/17

9

Improving	over	SunRPC

• SunRPC (now	“ONC	RPC”)	very	successful	but
– Clunky	(manual	program,	procedure	numbers,	etc)
– Limited	type	information	(even	with	XDR)
– Hard	to	scale	beyond	simple	client/server

• One	improvement	was	OSF	DCE	(early	90’s)
– Another	project	that	learned	from	AFS
– DCE	=	“Distributed	Computing	Environment”
– Larger	middleware	system	including	a	distributed	file	
system,	a	directory	service,	and	DCE	RPC

– Deals	with	a	collection	of	machines	– a	cell – rather	
than	just	with	individual	clients	and	servers

17

DCE	RPC	versus	SunRPC

• Quite	similar	in	many	ways
– Interfaces	written	in	Interface	Definition	Notation	
(IDN),	and	compiled	to	skeletons	and	stubs

– NDR	wire	format:	little-endian	by	default!
– Can	operate	over	various	transport	protocols

• Better	security,	and	location	transparency
– Services	identified	by	128-bit	“Universally”	Unique	
Identifiers	(UUIDs),	generated	by	uuidgen

– Server	registers	UUID	with	cell-wide	directory	service
– Client	contacts	directory	service	to	locate	server…	
which	supports	service	move,	or	replication

18

9/30/17

10

Summary	+	next	time
• NFS	as	an	RPC,	distributed-filesystem	case	study
– Retry	semantics	vs.	RPC	semantics
– Scoping,	pure	vs.	impure	names
– Close-to-open	consistency
– Batching	to	mask	network	latency

• DCE	RPC

• Object-Oriented	Middleware	(OOM)
• Java	remote	method	invocation	(RMI)
• XML-RPC,	SOAP,	etc,	etc,	etc.
• Starting	to	talk	about	distributed	time

19

