
7. Advanced data structures

7.1 Amortized analysis . 44
7.2 Binomial heap . 47
7.3 Fibonacci heap . 50
7.4 Analysis of Fibonacci heap . 54
7.5 Disjoint sets . 56

44 7.1 Amortized analysis

7.1. AmorƟzed analysis
For some data structures, looking at the worst-case run time per operation may be unduly
pessimistic. This is especially true in two situations:

• Some data structures are designed so that most operations are cheap, but some of
them occasion expensive internal ‘housekeeping’. For example, Java’s ArrayList is a
dynamically-sized array which increases its capacity by 50% when it becomes full; if
the array has n elements then adding a new element might be O(1), or it might be
O(n) if a capacity increase is needed.

• Sometimes we want to know the aggregate cost of a sequence of operations, not the
individual costs of each operation. For example, in analysing the running time of
Dijkstra’s algorithm in Section 5.4, we said there are O(V) calls to popmin and O(E)
calls to either push or decreasekey; as far as this analysis is concerned all that matters
is total running time for all these O(V + E) operations, not the worst case for each.

Amortized analysis is a tool that makes it simpler to analyse aggregate costs, by using an
accounting trick for attributing the cost of expensive housekeeping operations to all the other
operations. First though, we’ll remind ourselves about aggregate costs.

AGGREGATE ANALYSIS

Aggregate analysis just means ‘work out the worst-case total cost of a sequence of operations’.

Example 7.1. When we analysed the running time of the breadth-first search code snippet on
page 5, we argued “Each vertex is visited at most once; when a vertex is visited then the
algorithm iterates over the edges out of that vertex; therefore the algorithm looks at each
vertex and each edge at most once; therefore the running time is O(V + E).”

This is an example of aggregate analysis. To be more formal about it, we might say that
a run of the algorithm is a sequence comprising three basic types of operations, init_vertex
on line 4, popright on line 9, and process_edge on lines 11–13. The sequence comprises V
cases of init_vertex, followed by ≤ V cases of popright mixed with ≤ E cases of process_edge.
Each of these three basic operation types is O(1), and so the aggregate cost of the sequence
is O(V + E).

Notice the subtle trick: the analysis looks at an individual ‘location’ in the data struc-
ture (e.g. an edge of the graph), asks “how much work is done on this place, over the entire
sequence of operations?”, and sums up over all locations. This trick, when it works, is much
easier than trying to find a formula for ‘amount of work done in operation number i’ and
summing over i.

Example 7.2 (Dynamic array). Consider a dynamically-sized array with initial capacity 1, and
which doubles its capacity whenever it becomes full. (To be precise: we maintain a fixed-
length array; when it becomes full then we allocate a new fixed-length array of double the
length, copy everything across from the old array, and deallocate the old array. We’ll only
consider appending, not deleting.)

initially empty

append
•

append, requires doubling capacity
• •

append, requires doubling capacity
• • •

append
• • • •

append, requires doubling capacity
• • • • •

7.1 Amortized analysis 45

Let’s assume that the cost of doubling capacity from m to 2m is m. After adding n elements,
the total cost from all of the doubling is

1 + 2 + · · ·+ 2⌊log2(n−1)⌋

which is ≤ 2n− 3. The cost of writing in the n values is n. Thus, the total cost of n calls to Standard formula:
1 + r + · · ·+ rn−1 is
equal to
(rn − 1)/(r − 1).

append is ≤ 3n− 3 = O(n).

AMORTIZED COST

When we look at the aggregate cost of a sequence of operations, we can (if it’s convenient for We’re not changing
the actual cost of
an operation. We’re
just using an
accounting trick to
ascribe the total
cost differently.

the analysis) reassign costs. Suppose there is a sequence of k operations, whose true costs
are c1, c2, . . . , ck. Suppose we invent c′1, c′2, . . . , c′k such that

c1 + · · ·+ cj ≤ c′1 + · · ·+ c′j for all j ≤ k ;

then we call these amortized costs. In words,

aggregate true cost of a
sequence of operations ≤ aggregate amortized cost

of those operations. (3)

Note that this inequality must apply to any sequence of operations, no matter how short or
long. It is not an asymptotic (big-O) statement.

In practice, we might read for example that a certain data structure ‘supports push
at amortized cost O(1), and popmin at amortized cost O(logN), where N is the number
of elements stored.’ This tells us: for any sequence comprising n1 push operations and n2

popmin operations,

worst-case aggregate true cost ≤ n1O(1) + n2O(logN) = O(n1 + n2 logN).

Example 7.3 (Dynamic array). Consider again the dynamically-sized array from Example 7.2.
We argued that n calls to append cost ≤ 3n − 3. If we assign a cost c′ = 3 to each append
operation, we ensure equation (3). Another way of putting this: the amortized cost of append
is O(1).

Example 7.4 (AccounƟng costs). Some items, like fridges, are expensive to dispose of. If it costs Indeed, garbage
collection is a
perfect example of
amortized analysis.
The cost of a single
large expensive
storage
reorganization can
be ascribed to each
of the elementary
allocations that
made it necessary.

£x to buy the item, and £y to dispose of it, I could (for accounting purposes) distribute the
total cost £(x+ y) in various ways:

• pay £x when I acquire the fridge, pay £y when I dispose of it
• pay £(x+ y) when I acquire the fridge, £x to the shop and £y into my bank account,

and pay nothing more when I dispose of it
• pay £(x+ y/2) when I acquire the fridge, pay £y/2 more when I dispose of it

but of course I can’t get away with paying less than £x when I acquire it, since the shop
won’t let me get away with it! This requirement, that I’ve paid enough to cover the total
true costs at each stage of the sequence, is the interpretation of ‘for all j ≤ k’ in the definition
of amortized cost.

THE POTENTIAL METHOD

How do we come up with amortized costs? For some data structures, there’s a systematic
approach.

Suppose there’s a function Φ, called a potential function, that maps possible states of Think of Φ as
measuring the
amount of stored-up
mess. If the
operation increases
mess then c′ > c,
and if it decreases
mess then c′ < c.

the data structure to real numbers ≥ 0. For an operation with true cost c, for which the
state just beforehand was Sante and the state just after is Spost, define the amortized cost of
that operation to be

c′ = c+Φ(Spost)− Φ(Sante).

46 7.1 Amortized analysis

We need to actually prove that c′ is a valid amortized cost, i.e. that inequality (3) is satisfied.
Consider a sequence of operations

S0
c1−→ S1

c2−→ S2
c3−→ · · · ck−→ Sk

where the true costs are c1, c2, . . . , ck. Then

aggregate amortized cost

=
(
−Φ(S0) + c1 +Φ(S1)

)
+
(
−Φ(S1) + c2 +Φ(S2)

)
+ · · ·+

(
−Φ(Sk−1) + ck +Φ(Sk)

)
= c1 + · · ·+ ck − Φ(S0) + Φ(Sk)

= aggregate true cost− Φ(S0) + Φ(Sk).

It’s convenient to set Φ = 0 for an empty data structure. Then, for any sequence of operations
starting from empty,

aggregate true cost ≤ aggregate amortized cost

i.e. the costs c′ that we defined are indeed valid amortized costs.

Example 7.5 (Dynamic array). Define the potential function
Notation: [x]+

means max(0, x).

Φ =

[
2

(
num. items
in array

)
− capacity

of array

]+
(4)

This potential function is ≥ 0, and for an empty data structure it is = 0. Now, consider the
two ways that an append operation could play out:

• We could add the new item without needing to double the capacity. The true cost is
c = O(1) and the change in potential is ∆Φ ≤ 2, so the amortized cost is O(1) + 2 =
O(1).

• Alternatively we need to double the capacity. Let n be the number of items just before.
The true cost is c = O(n), to create a new array and copy n items and then write in
the new value. The potential before is n, and the potential after is 2, so ∆Φ = 2 − n,
thus the amortized cost is O(n) + 2− n = O(1).

In both cases the amortized cost of an append is O(1).

We used sloppy notation in this argument, to say that ∆Φ = 2 − n cancels out O(n)
true cost. What we really mean is this: The true cost is c = O(n), i.e. there is some constant
κ such that the true cost is c ≤ κn for n sufficiently large. Let the potential be κ times the
expression in equation (4); then the change in potential genuinely does cancel out O(n) for
n sufficiently large.

UNIQUENESS AND TIGHTNESS

We can invent whatever potential function we like, and different choices might lead to different
amortized costs of operation. If we’re lucky we can find a matching big-Ω lower bound, and
then we know we can’t do better. See the example sheet.

7.2 Binomial heap 47

7.2. Binomial heap
Recall the abstract data type PriorityQueue11:

ADT PriorityQueue :
Holds a dynamic co l l e c t i on of items .
Each item has a value/payload v , and a key/ p r i o r i t y k .

Extract the item with the smal lest key
Pair<Key, Value> popmin()

Add v to the queue , and give i t key k
push(Value v , Key k)

For a value already in the queue , g ive i t a new (lower) key
decreasekey(Value v , Key newk)

Sometimes we a lso inc lude methods fo r :
merge two p r i o r i t y queues
de lete a value
peek at the item with smal lest key , without removing i t

In this section we’ll look at two simple implementations of a priority queue, and then intro-
duce a third, the binomial heap.

TWO SIMPLE PRIORITY QUEUES

A binary heap is an almost-full binary tree (i.e. every level except the bottom is full), so its
Notation: ⌊x⌋ is the
floor of x, i.e.
⌊x⌋ ≤ x < ⌊x⌋ + 1.

height is ⌊log2 n⌋ where n is the number of elements. It satisfies the heap property (each
node’s key is ≤ its children), so it’s easy to find the minimum of the entire heap. When the
heap is altered by push or popmin or decreasekey, the change needs to be bubbled up or down What’s the most

efficient way you
can think of to
merge two binary
heaps?

the tree, which takes time O(logn).

1

51

6 3 6 9

12 7

Why not something simpler, a doubly linked list? It would make push and decreasekey very
fast.

3 12 3 7 9 1 6 5 1

first

minitem

push(v, k) is O(1):
just attach the new item to the front of the list, and if k < minitem.key then update
minitem

decreasekey(v, newk) is also O(1):
update v’s key, and if newk < minitem.key then update minitem

11The code for Dijkstra’s algorithm in Section 5.4 also needs to test whether a value is already in the
PriorityQueue. We’ll assume that this piece of information is stored with each value, so it can be accessed in
O(1) time. We won’t include this test in the ADT.

48 7.2 Binomial heap

popmin() is O(n):
we can remove minitem in O(1) time, but to find the new minitem we have to traverse
the entire list.

BINOMIAL HEAP

A binomial heap is a compromise between the linked list and the binary heap. It maintains
a list rather than obsessively tidying everything into a single heap, so that push is fast; but
it still keeps some heap structure so that popmin is fast. It is defined as follows:

A binomial tree of order 0 is a single node. A binomial tree of order k is a tree obtained by
combining two binomial trees of order k− 1, by appending one of the trees to the root of the
other.
A binomial heap is a collection of binomial trees, at most one for each tree order, each obeying
the heap property i.e. each node’s key is ≤ those of its children. Here is a binomial heap
consisting of one binomial tree of order 0, and one of order 3. (The dotted parts in the middle
indicate ‘there is no tree of order 1 or 2’.)

3 1

56

9

1

73

12

Here are some basic properties of binomial trees and heaps.

1. A binomial tree of order k has 2k nodes
2. A binomial tree of order k has height k
3. In a binomial tree of order k, the root node has k children. Another word for this: the

degree of the root is k.
4. In a binomial tree of order k, the root node’s k children are binomial trees of all the

orders k − 1, k − 2, . . . , 0.
5. In a binomial heap with n nodes, the 1s in the binary expansion of the number n

correspond to the orders of trees contained in the heap. For example, a heap with 9
nodes (binary 1001 = 23 + 20) has one tree of order 3 and one tree of order 0.

6. If a binomial heap contains n nodes, it contains O(logn) binomial trees, and the largest
of those trees has degree O(logn).

The operations on binomial heaps end up resembling binary arithmetic, thanks to property 5.

push(v, k) is O(logn):
Treat the new item as a binomial heap with only one node, and merge it as described
below, at cost O(logn), where n is the total number of nodes.

decreasekey(v, newk) is O(logn):
Proceed as with a normal binary heap, applied to the tree to which v belongs. The
entire heap has O(n) nodes, so this tree has O(n) nodes and height O(logn), so the
cost of decreasekey is O(logn).

popmin() is O(logn):
First scan the roots of all the trees in the heap, at cost O(logn) since there are that
many trees, to find which root to remove. Cut it out from its tree. Its children form a
binomial heap, by property 4. Merge this heap with what remains of the original one,
as described below, at cost O(logn).

merge(h1, h2) is O(logn):
To merge two binomial heaps, start from order 0 and go up, as if doing binary addition,
but instead of adding digits in place k we merge binomial trees of order k, keeping the
tree with smaller root on top. If n is the total number of nodes in both heaps together,
then there are O(logn) trees in each heap, and O(logn) operations in total.

7.2 Binomial heap 49

* * *

What’s the advantage of the binomial heap, over the binary heap? A simple answer is
that it supports O(logn) merge, whereas the natural implementation for binary heaps —
concatenating the two underlying arrays and then heapifying the result — takes O(n).

A deeper answer comes from an amortized analysis. It can be shown that even though
the worst-case cost of push is O(logn), the amortized cost is O(1). (See Example Sheet 7/8.)

50 7.3 Fibonacci heap

7.3. Fibonacci heap

The Fibonacci heap is a fast priority queue. It was developed by Fredman and Tarjan in
1984, specifically to speed up Dijkstra’s algorithm. On a graph with V vertices and E edges,
Dijkstra’s algorithm might make V calls to popmin, and E calls to push and/or decreasekey;
since E might be as big as Ω(V 2), we want an implementation of PriorityQueue with very
fast push and decreasekey.

GENERAL IDEA

The general idea behind the Fibonacci heap is that we should be lazy while we’re doing
push and decreasekey, only doing O(1) work, and just accumulating a collection of unsorted
items, rather like the linked list implementation from Section 7.2. We’ll only do cleanup (into
something resembling a binomial heap) on calls to popmin.

If we’re accumulating mess that will have to be cleaned up anyway, why not just clean
up as we go? The heart of the answer lies in our analysis of heapsort in Section 2.13. We saw
that it takes time O(n logn) to add n items to a binary heap one by one, but only O(n) to
heapify them in a batch. Doing cleanup in batches is the first big idea behind the Fibonacci
heap.

The second big idea is that for decreasekey to be O(1), it needs to be able to get away
with only touching a small part of the data structure. In the binomial heap, we used a ‘binary
counter’ structure so that push only needs to touch a few small trees (most of the time), and
this gave us amortized cost O(1). The Fibonacci heap uses a clever trick so that decreasekey
can do the same.

7.3.1. IMPLEMENTATING PUSH AND POPMIN

1 # Maintain a l i s t of heaps (i . e . s tore a pointer to the root of each heap)
2 roots = []
3
4 # Maintain a pointer to the smal lest root
5 minroot = None
6
7 def push(v , k) :
8 create a new heap h consisting of a single item (v , k)
9 add h to the l i s t of roots
10 update minroot i f k < minroot . key
11
12 def popmin() :
13 take note of minroot . value and minroot . key
14 delete the minroot node , and promote i t s children to be roots
15 # cleanup the roots
16 while there are two roots with the same degree :
17 merge those two roots , by making the larger root a chi ld of the smaller
18 update minroot to point to the smallest root
19 return the value and key from l ine 13

7.3 Fibonacci heap 51

7 5 234

6

7 1 5 2

34

6

minroot

7

5 234

6

7

5 23

4

6

7 5

23

4

6

minroot

7 5 2

34

6

2

1. popmin extracts the minroot

2. promotes its children to root

3. merges trees of equal degree,

and updates minroot

In this simple version, with only push and popmin, one can show that the Fibonacci heap
consists at all times of a collection of binomial trees, and that after the cleanup in lines 16–17
it is a binomial heap.

It doesn’t matter how the cleanup is implemented, as long as it is done efficiently. Here is
an example implementation.

20 def cleanup(roots) :
21 root_array = [None, None, . . .] # empty array
22 for each tree t in roots :
23 x = t
24 while root_array [x . degree] i s not None:
25 u = root_array [x . degree]
26 root_array [x . degree] = None
27 x = merge(x , u)
28 root_array [x . degree] = x
29 return l i s t of non−None values in root_array

7.3.2. IMPLEMENTING DECREASEKEY

If we can decrease the key of an item in-place (i.e. if its parent is still ≤ the new key), then
that’s all that decreasekey needs to do. If however the node’s new key is smaller than its
parent, we need to do something to maintain the heap. We’ve already discussed why it’s a
reasonable idea to be lazy—to just cut such a node out of its tree and dump it into the root
list, to be cleaned up in the next call to popmin.

There is however one extra twist. If we just cut out nodes and dump them in the root
list, we might end up with trees that are shallow and wide, even as big as Ω(n), where n is
the number of items in the heap. This would make popmin very costly, since it has to iterate
through all minroot’s children.

52 7.3 Fibonacci heap

To make popmin reasonably fast, we need to keep the maximum degree small. The Fibonacci
heap achieves this via two rules:

1. Lose one child, and you get marked as a ‘loser’ node.
2. Lose two children, and you get dumped into the root list (and your mark is removed).

This ensures that the trees end up with a good number of descendants. Formally, we’llSimilarly, a
binomial tree of
degree k has 2k

nodes, which
implies a binomial
heap of n items has
maximum degree
O(log n).

show in Section 7.4 that a tree with degree d contains ≥ 1.618d nodes, and hence that the
maximum degree in a heap of n items is O(logn).

30 # Every node w i l l s tore a f lag , p . l o s e r = True / False
31
32 def decreasekey(v , k′) :
33 l e t n be the node where this value i s stored
34 n . key = k′

35 i f n violates the heap condition :
36 repeat :
37 p = n . parent
38 remove n from p . children
39 insert n into the l i s t of roots , updating minroot i f necessary
40 n . loser = False
41 n = p
42 unt i l p . loser == False
43 i f p i s not a root :
44 p . loser = True
45
46 def popmin() :
47 mark a l l of minroot ’ s children as loser = False
48 then do the same as in the simple version , l ines 13–19

1

34

6

2

57

8

1

34

6

2

37

8

1

34

6

2

07

8

1

34

6

2

0

7

8

1

34

6

2

0

1

8

1

34

6

2 0 1

8

1

34

6

2

0 1

8

decreasekey from 5 to 3

decreasekey again to 0 — move 0 to maintain the heap

decreasekey from 7 to 1 — move 1 to maintain the heap — move the double-loser to root

Here is another example of the operation of decreasekey, this time highlighting what happens
if there are multiple loser ancestors.

7.3 Fibonacci heap 53

5

8

5

8

5

8

5

4

9

1

4

6

1

4

61

4

61 8

4

61 58

decreasekey()

dump the heap

violator into the

root list

dump the

double-loser

into the root list

dump the

double-loser

into the root list

7.3.3. NUTS AND BOLTS OF THE IMPLEMENTATION

All problems in computer science can be solved by adding a layer of indirection. All the steps
we’ve described (cutting nodes out of their tree, promoting nodes to the root list, merging
trees) can be achieved in O(1) time by keeping enough pointers around. We can use a circular
doubly-linked list for the root list; and the same for a sibling list; and we’ll let each node
point to its parent; and each parent will point to one of its children.

degree:

is_loser:

key:

payload:

siblingsibling

parent

a child

Thus, this little Fibonacci heap

1

34

2

would be represented as

2

False

0

False

0

True

0

False

1
...

2
...

3
...

4
...

54 7.4 Analysis of Fibonacci heap

7.4. Analysis of Fibonacci heap
We’ll now compute the amortized costs of the various operations on the Fibonacci heap, using
the potential function

Φ = number of roots + 2
(
number of loser nodes

)
.

Let n be the number of items in the heap, and let dmax be an upper bound on the degree of
any node in the heap (we’ll see soon that dmax = O(logn) is suitable).

push() : amortized cost O(1)
This just adds a new node to the root list, so the true cost is O(1). The change in
potential is ∆Φ = 1, so the amortized cost is O(1).

popmin() : amortized cost O(dmax)
Let’s split this into two parts. First, cut out minroot and promote its children to the
root list. There are at most dmax children to promote, so the true cost is O(dmax).
These children get promoted to root, and maybe some of them lose the loser mark, so
∆Φ ≤ dmax. So the amortized cost for this first part is O(dmax).
The second part is running cleanup. Line 21 initializes an array, and size dmax + 1 will
do, so this is O(dmax). Suppose that cleanup does t merges and ends up with d trees
left in root_array; there must have been t + d trees to start with, so the total work
in lines 22–28 is t + d, and Φ decreases by t; so the total amortized cost is O(d), and
d ≤ dmax.

decreasekey() : amortized cost O(1)
It takes O(1) elementary operations to decrease the key. If the node doesn’t have to

D

A

C

B

loser

loser

move, then Φ doesn’t change, so amortized cost = true cost = O(1).
If the node does have to move, the following happens. (i) We move the node, call it
A, to the root list. The true cost is O(1), and Φ increases by ≤ 1: it increases by 1 if
A wasn’t a loser, and decreases by 1 if it was. (ii) Some of A’s loser ancestors B and
C are moved to the root list. For each of these, the true cost of moving is O(1), and
Φ increases by 1 because there’s a new root, and decreases by 2 because the node gets
marked as not as loser. Thus the amortized cost of this part is zero, regardless of the
nuber of loser ancestors. (iii) One ancestor D might have to be marked as a loser. The
true cost is O(1), and Φ increases by 2. In total the amortized cost is O(1).

We can see now why the potential function was chosen just so: popmin and decreasekey
both include a variable number of steps, but each step has already been ‘paid for’, so they
contribute zero to the amortized cost.

BOUNDING THE SHAPE OF THE TREES

The amortized cost of popmin is O(dmax), where dmax is the maximum number of children of
any of the nodes in the heap. The peculiar mechanism of decreasekey was designed to keep
dmax small. How small?

Theorem. If a node in a Fibonacci heap has d children, then the subtree rooted at that node
F1 = 1, F2 = 1,
F3 = 2, F4 = 3,
F5 = 5, . . . The
general formula for
Fn is
(ϕn − (−ϕ)−n)/

√
5.

consists of ≥ 1.618d nodes. More precisely, it has ≥ Fd+2 nodes, the (d + 2)nd Fibonacci
number, and Fd+2 ≥ ϕd where ϕ = (1 +

√
5)/2 ≈ 1.618 is the golden ratio.

It’s a simple exercise to deduce from this theorem that dmax = O(logn).

7.4 Analysis of Fibonacci heap 55

Proof. Consider an arbitrary node x in a Fibonacci heap, at some point in execution, and
suppose it has d children, call them y1, . . . , yd in the order of when they last became children
of x. (There may be other children that x acquired then lost in the meantime, but we’re not
including those.)

�

 !

�

 ! "

�

 #

�

 ! # ! "

�

 #

When x acquired y2, x already had y1 as a child, so y2 must have had ≥ 1 child seeing
as it got merged into x. Similarly, when x acquired y3, y3 must have had ≥ 2 children, and
so on. After x acquired a child yi, that child might have lost a child, but it can’t have lost
more because of the rules of decreasekey. Thus, at the point of execution at which we’re
inspecting x,

y1 has ≥ 0 children
y2 has ≥ 0 children
y3 has ≥ 1 child, . . .
yd has ≥ d− 2 children.

Now for some pure maths. Consider an arbitrary tree all of whose nodes obey the
grandchild rule “a node with children i = 1, . . . , d has at least i − 2 grandchildren via child
i”. Let Nd be the smallest possible number of nodes in a subtree whose root has d children.
Then

Nd = Nd−2︸ ︷︷ ︸
child d

+ Nd−3︸ ︷︷ ︸
child d − 1

+ · · ·+ N0︸︷︷︸
child 2

+ N0︸︷︷︸
child 1

+ 1︸︷︷︸
the root.

Substituting in Nd−1, we get Nd = Nd−2 + Nd−1, the defining equation for the Fibonacci
sequence, hence Nd = Fd+2.

We’ve shown that the nodes in a Fibonacci heap obey the grandchild rule, therefore
the number of nodes in the subtree rooted at x is ≥ Fd+2 where d is the number of children
of x. □

56 7.5 Disjoint sets

7.5. Disjoint sets

The DisjointSet data structure (also known as union-find or merge-find) is used to keep track
of a dynamic collection of items in disjoint sets. We used it in Kruskal’s algorithm for finding
a minimum spanning tree: the items corresponded to vertices of a graph, and we used sets
to track which vertices we had joined together into forest fragments.

ADT DisjointSet :
Holds a dynamic co l l e c t i on of d i s j o i n t se t s

Return a handle to the set containing an item .
The handle must be stable , as long as the Dis jo intSet i s not modified .
Handle get_set_with(Item x)

Add a new set cons i s t ing of a s i ng l e item (assuming i t ’ s not been added already)
add_singleton(Item x)

Merge two sets into one
merge(Handle x , Handle y)

The specification doesn’t say what a handle is, only that handles don’t change unless the
DisjointSet is modified (by either add_singleton or merge). In practice, we might use a
representative element from each set as the set’s handle.

IMPLEMENTATION 1: FLAT FOREST

merge

To make get_set_with fast, we could make each item point to its set’s handle.

get_set_with() is just a single lookup.

merge() needs to iterate through each item in one or other set, and update its pointer. This
takes O(n) time, where n is the number of items in the DisjointSet.

To be able to iterate through the items, we could store each set as a linked list:

merge

A smarter way to merge is to keep track of the size of each set, and pick the smaller set to
update. This is called the weighted union heuristic. In the Example Sheet you’ll show that
the aggregate cost of any sequence of m operations on n elements (i.e. m operations of which
n are add_singleton) is O(m+ n logn).

7.5 Disjoint sets 57

IMPLEMENTATION 2: DEEP FOREST

merge

To make merge faster, we could skip all the work of updating the items in a set, and just
build a deeper tree.

merge() attaches one root to the other, which only requires updating a single pointer.

get_set_with() needs to walk up the tree to find the root. This takes O(h) time, where h is
the height of the tree.

To keep h small, we can use the same idea as for the flat forest: keep track of the rank of each
root (i.e. the height of its tree), and always attach the lower-rank root to the higher-rank.
If the two roots had ranks r1 and r2 then the resulting rank is max(r1, r2) if r1 ̸= r2, and
r1 + 1 if r1 = r2. This is called the union by rank heuristic.

IMPLEMENTATION 3: LAZY FOREST

We’d like the forest to be flat so that get_set_with is fast, but we’d like to let it get deep so
that merge can be fast. Here’s a way to get the best of both worlds, inspired by the Fibonacci
heap—defer cleanup until you actually need the answer.

merge

�

get_set_with(�)

�

merge() is as for the deep forest.

get_set_with(x) does some cleanup. It walks up the tree once to find the root, and then it
walks up the tree a second time to make x and all the intermediate nodes be direct
children of the root.

This method is called the path compression heuristic. We won’t adjust the stored ranks
during path compression, and so rank won’t be the exact height of the tree, just an upper
bound on the height. (If we wanted to know the actual tree height we’d have to compute it,
which would be too much work.)

It can be shown that with the lazy forest the cost of m operations on n items is O(mαn)
where αn is an integer-valued monotonically increasing sequence, related to the Ackerman
function, which grows extremely slowly:

αn = 0 for n = 0, 1, 2

αn = 1 for n = 3

αn = 2 for n = 4, 5, 6, 7

αn = 3 for 8 ≤ n ≤ 2047

αn = 4 for 2048 ≤ n ≤ 1080, more than there are atoms in the observable universe.

For practical purposes, αn may be ignored in the O notation, and therefore the amortized
cost per operation is O(1).

8. Geometrical algorithms

8.1 Segment intersection . 60
8.2 Jarvis’s march . 62
8.3 Graham’s scan . 64

60 8.1 Segment intersection

8.1. Segment intersecƟon
Do two line segments intersect? This is a simple question, and a good starting point for
many more interesting questions in computational geometry.

Let’s start with a simpler problem. Is the point q above or below the dotted line? The answer
doesn’t need anything more than basic school maths: if qy >

(
py/px

)
qx then it’s above.

(��, ��)

(�, �)

But it’s easy to get tangled up thinking through all the cases (e.g. if px > 0 and py < 0 do
I need to flip the sign?) We can use slightly cleverer maths, namely dot products, to get a
cleaner answer:

Let p⊺ = (−py, px). If we rotate the vector # »
0 p by 90° anticlockwise, we get # »

0 p⊺. Now, the
sign of p⊺ ·q, i.e. of −pyqx + pxqy, tells us which side of the dotted line q is on. The dotted
line is called the extension of # »0 p.

p⊺ · q > 0 : q is on the left, as you travel along the dotted line in direction # »
0 p

p⊺ · q = 0 : q is on the line itself
p⊺ · q < 0 : q is on the right

0

 = (! , ")

 # = (− " , !)

%

left side of 0

right side of 0

This gives us all the tests we need to decide if two line segments r s and t u intersect.

1. If t and u are both on the same side of the extension of # »r s, i.e. if (s− r)⊺ · (t− r) and
(s− r)⊺ · (u− r) have the same sign, then the two line segments don’t intersect.

2. Otherwise, if r and s are both on the same side of the extension of # »
t u, then the two

line segments don’t intersect.
3. Otherwise, they do intersect.

�

�

!

8.1 Segment intersection 61

Well-written code should test all the boundary cases, e.g. when r = s or when t or u lie
on the extension of # »r s. It is however a venial sin to test equality of floating point numbers,
because of the vagaries of finite-precision arithmetic, and so the question “How should my
segment-intersection code deal with boundary cases?” depends on “What do I know about
my dataset and what will my segment-intersection code be used for?” The example sheet
asks you to consider a case in detail.

62 8.2 Jarvis’s march

8.2. Jarvis’s march
Given a collection of points p1, . . . , pn, a convex combination is any vector

q = α1p1 + · · ·+ αnpn where αi ≥ 0 for all i, and
n∑

i=1

αi = 1.

The convex hull of a collection of points is the set of all convex combinations.
�

�!

�"#

$

q = 0.6p1 + 0.16p2 + 0.24p3: is a convex combination
r = −0.5p1 + 0.9p2 + 0.6p3: not a convex combination

Convex hulls are used, among other things, for collision detection. Given a straight line
segment on the convex hull of a complex object, all points in that object must lie on the
same side of the line. If we can get away with checking the sides of just a few lines, we can
drastically speed up checks for collision.

THE ALGORITHM

Here is an algorithm to compute the convex hull of a collection of points P . It is due to
Jarvis (1973), and was discovered independently by Chand and Kapur (1970). (Formally,
this algorithm finds the corner points of the convex hull, i.e. the points p ∈ P such that
p ̸∈ convexhull(P \ {p}). But in this part of the course we shall use intuition rather than
definitions.)

8.2 Jarvis’s march 63

1 l e t q0 be the point with lowest y−coordinate
2 (in case of a tie , pick the one with the largest x−coordinate)
3
4 draw a horizontal (l e f t→r ight) l ine through q0
5 for a l l other points r ∈ P :
6 f ind the angle θ(r) from the horizontal l ine to # »q0 r , measured ⟲
7 l e t q1 be the point with the smallest angle
8 (in case of a tie , pick the one furthest from q0)
9
10 h = [q0 , q1]
11 repeatedly :
12 l e t p and q be the last two points added to h respectively
13 for a l l other points r ∈ P :
14 f ind the angle θ(r) from the extended # »p q l ine to # »q r , measured ⟲
15 pick the point with the smallest angle , and append i t to h
16 (in case of a tie , pick the one furthest from q)
17 stop when we return to q0

ANALYSIS

At each step of the iteration, we search for the point r ∈ P with the smallest angle θ(r), thus
the algorithm takes O(nH) where n is the number of points in P and H is the number of
points in the convex hull. (As with Ford-Fulkerson, running time depends on the content of
the data, not just the size.)

Performance note. The algorithm says “find the point r with the smallest angle θ(r)”. We
could use trigonometry to compute θ — but there is a trick to make this faster. (Faster in
the sense of ‘games get more frames per second’, but no difference in the big-O sense.) If all
the points we’re comparing are on the same side of dotted line, as they are at all steps of
Jarvis’s march, then

θ(r1) < θ(r2) ⇐⇒ r2 is on the left of the extended line # »q r1

and we’ve seen how to compute this true/false value with just some multiplications and
additions.

* * *

Jarvis’s march is very much like selection sort: repeatedly find the next item that goes into
the next slot. In fact, most convex hull algorithms resemble some sorting algorithm.

64 8.3 Graham’s scan

8.3. Graham’s scan
Here is another algorithm for computing the convex hull, due to Ronald Graham (1972). It
builds up the convex hull by scanning through all the points in a fan, backtracking when
necessary.

The code given here
doesn’t deal
correctly with some
boundary cases.
The example sheet
asks you to spot the
problems.

1 l e t r0 be the point with lowest y−coordinate
2 (in case of a tie , pick the one with the largest x−coordinate)
3
4 draw a horizontal (l e f t→r ight) l ine through r0
5 for a l l other points r :
6 f ind the angle from the horizontal l ine to # »r0 r , measured ⟲
7 l e t r1, . . . , rn−1 be the sorted l i s t of points , lowest angle to highest
8
9 h = [r0 , r1]
10 for each ri in the sorted l i s t of points , i ≥ 2 :
11 i f ri isn ’ t on the l e f t of the extension of the f ina l segment of h :
12 # backtrack
13 repeatedly delete points from the end of h unt i l ri i s
14 append ri to h

The diagram on the next page shows how the algorithm proceeds. Each row in the diagram
shows it working on a new ri, and the side-by-side panels show steps in backtracking.

ANALYSIS

The initial sort takes time O(n logn), where n is the number of points in the set. During the
scan, each point ri is added to the list once, and it can be removed at most once, so the loop
is O(n).

To save some trigonometrical calculations, the same trick as in Section 8.2 works.

8.3 Graham’s scan 65

	Graphs
	Notation and representation
	Breadth-first search
	Depth-first search
	Dijkstra's algorithm
	Bellman-Ford
	Johnson's algorithm
	All-pairs shortest paths with matrices
	Prim's algorithm
	Kruskal's algorithm
	Topological sort
	Graphs and big data

	Networks and flows
	Matchings
	Max-flow min-cut theorem
	Ford-Fulkerson algorithm

	Advanced data structures
	Amortized analysis
	Binomial heap
	Fibonacci heap
	Implementating push and popmin
	Implementing decreasekey
	Nuts and bolts of the implementation

	Analysis of Fibonacci heap
	Disjoint sets

	Geometrical algorithms
	Segment intersection
	Jarvis's march
	Graham's scan

